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Abstract

Accurately predicting the muscle strength of key muscle-tendon units during human mo-
tion is vital for understanding movement mechanisms, optimizing exercise training, evalu-
ating rehabilitation progress, and advancing prosthetic control technologies. Traditional
prediction methods often suffer from low accuracy and high computational complexity. To
address these challenges, this study employs independent component analysis (ICA) to
predict the muscle strength of tendon units in primary moving parts of the human body.
The proposed method had the highest accuracy in localization, at 98% when the sample size
was 20. When the sample size was 100, the proposed method had the shortest localization
time, with a localization time of 0.025 s. The accuracy of muscle strength prediction based
on backpropagation neural network for key muscle-tendon units in human motion was the
highest, with an accuracy of 99% when the sample size was 100. The method can effectively
optimize the accuracy and efficiency of muscle strength prediction for key muscle-tendon
units in human motion and reduce computational complexity.

Keywords: independent component analysis algorithm; muscle-tendon unit; BP; muscle
strength prediction; PCC

1. Introduction

Sports biomechanics is an interdisciplinary field that explores the influence of external
forces (such as gravity and air resistance) and internal forces (such as muscle contraction)
on human movement [1]. It is of great significance in rehabilitation training, improving
athletic performance, and prosthetic control. Skeletal muscle, as the key actuator driving
movement, is composed of multiple muscle-tendon units (MTUs). The coordinated acti-
vation patterns of each MTU in different movements determine the motor function [2,3].
Therefore, accurately identifying the key MTU and its muscle strength status is the founda-
tion for achieving personalized training and auxiliary control. Surface electromyography
(sEMG), as a non-invasive and easy-to-operate method for collecting bioelectric signals,
can reflect muscle activity status in real time and has been widely used in human motion
analysis [4,5]. However, sSEMG signals usually have high dimensions, strong noise, and are
vulnerable to muscle cross-talk interference, making it difficult for traditional MTUs muscle
strength modeling methods to accurately capture the nonlinear and dynamic characteristics
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of muscle activities, and the predictive ability is limited [6]. Independent component analy-
sis (ICA) is a feature extraction method commonly used for signal source separation, which
can separate statistically independent source components from observed signals [7,8]. ICA
does not require prior knowledge and has the potential to extract target muscle activation
components from mixed sEMG signals, which is expected to improve the localization
accuracy of key MTUs and provide a clear input basis for muscle strength prediction.

ICA has achieved remarkable results in areas such as heart rate estimation, electroen-
cephalogram (EEG) noise reduction, load identification, and vital sign detection, demon-
strating its advantages in complex physiological signal processing. For example, Gupta et al.
proposed an ICA-based method that was robust to motion and lighting artifacts, achieving
minimal estimation error in heart rate prediction [9]. Agarwal et al. combined sliding
singular spectrum analysis with ICA for EEG denoising in alcohol detection, reaching a
98.97% classification accuracy with reduced computational complexity [10]. Although EEG
and sEMG have different signal sources, both belong to high-dimensional non-stationary
physiological electrical signals and face signal aliasing and noise interference. Therefore,
the successful application of ICA in EEG provides theoretical and methodological support
for its feasibility in SEMG signal separation. Wang et al. improved component identification
using a semidefinite programming algorithm based on Lagrangian first-order informa-
tion [11]. In power systems, Zhang et al. used a modified FastICA to isolate harmonic
loads under noisy conditions [12]. Qi et al. validated the derivative ICA for non-contact
estimation of respiration and heart rate via radar [13].

Muscle strength prediction is critical in rehabilitation, sports training, and biomechan-
ics. It can quantify muscle function, support training optimization, prosthetic control, and
injury prevention [14]. Various strategies have been proposed to enhance muscle modeling.
Zaman et al. developed a hybrid model combining motion prediction and muscle dynamics
using a 2D skeletal system [15]. Sharma et al. introduced a machine learning strategy to
reduce reliance on complex upper-limb models, achieving a 0.23 error rate [16]. O. Keeffe
et al. proposed a non-parametric framework for strength estimation based on sEMG, which
could effectively monitor coordinated changes related to fatigue [17]. Zhou et al. improved
ankle joint torque prediction under various postures with non-negative matrix factorization,
with an accuracy rate of 94.15% [18]. Bennett et al. enhanced knee joint strength prediction
using static optimization and randomized sEMG input, achieving errors ranging from
192 to 674 N and capturing 98% of measured loads during standing [19].

In summary, although ICA and neural networks have shown great potential in sig-
nal processing and modeling, their comprehensive application in predicting key MTUs
during human motion is still relatively insufficient. To improve accuracy and real-time
performance, this study proposes a novel method combining ICA-enhanced sEMG signal
separation with backpropagation (BP) neural network modeling. The proposed method
aims to accurately locate key MTUs and estimate muscle strength. The innovation of
this study lies in applying ICA for the first time to localize key MTUs in human motion,
enabling deeper insight into the functional roles of different muscle groups during specific
actions and enhancing strength prediction accuracy. The proposed framework helps to
better understand muscle function and promote the development of biomechanics by
reducing signal mixing and improving analysis accuracy.
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2. Methods for Predicting Muscle Strength of Key Muscle-Tendon Units
in Human Movement

2.1. Key MTU Localization of Human Motion Based on Independent Component

Analysis Algorithm

Before predicting the muscle strength of the key MTUs in human motion, this study
first located the MTUs. The reason is that the exact location and structure of MTUs directly
affect the generation and transmission of muscle strength. As the connecting part between
muscles and bones, the integrity and accurate spatial position of tendons determine how
muscle strength is effectively converted into body motion [20,21]. By accurately locat-
ing MTUs, the mechanism of action of different muscle groups in specific movements is
obtained, thereby making muscle strength prediction more precise. In addition, correct
positioning can help identify possible pathological changes in MTUs, which is crucial
for designing effective rehabilitation plans and optimizing exercise performance. There-
fore, MTU localization research not only provides necessary basic information for muscle
strength prediction, but also serves as a prerequisite for ensuring prediction accuracy
and practicality.

Traditional preprocessing methods for sEMG signals, such as band-pass filtering,
wavelet denoising, or mean normalization, are primarily designed to remove high-
frequency noise and baseline drift. However, they are often insufficient when addressing
signal mixing caused by the coordinated activity of multiple muscle groups. In high-
dimensional sSEMG data, electrical signals from different muscles tend to overlap signifi-
cantly, which directly affects the accuracy of identifying target MTUs. To address this issue,
this study introduces the ICA method, which decomposes multiple mixed signals into
statistically independent components, thereby effectively separating source signals from
different muscles in high-dimensional sEMG data. Compared with other dimensionality
reduction or filtering techniques, ICA does not rely on the assumption of Gaussian distribu-
tion and offers stronger adaptability and robustness [22,23], making it particularly suitable
for unsupervised multi-source signal separation tasks. Therefore, using ICA for the localiza-
tion of key MTUs not only enhances the signal representation of target muscle groups but
also provides a more reliable input foundation for subsequent muscle strength modeling.

The sEMG data were collected using disposable surface electrodes (Ambu Inc.,
Columbia, MD, USA) and amplified with a Trigno Wireless EMG System (Delsys Inc.,
Natick, MA, USA). Motion capture was performed using a Vicon system (Oxford Met-
rics, 6 Oxford Pioneer Park, Yarnton, Oxfordshire, UK, OX5 1QU), and muscle oxygena-
tion was measured using Moxy monitors (Fortiori Design LLC, 1155 West Shore Dr SW,
Hutchinson, MN, USA, 55350). Data analysis was conducted in MATLAB (R2022b, Math-
Works, Natick, MA, USA) with the ICA algorithm implemented in Python (version 3.10,
https:/ /www.python.org/, accessed on 20 June 2024). The specific process is illustrated
in Figure 1.
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Figure 1. Diagram of the key MTU localization steps for human motion based on ICA.
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In Figure 1, the steps for locating the key MTUs of human motion based on ICA are
as follows. First, the high-density sSEMG signal is separated and the original signal and
associated mixing matrix are extracted. Secondly, the matrix obtained from the above
steps is analyzed using spectral analysis methods. By analyzing the spectral character-
istics of each component, the true source of electromyography signals and the source of
electromyography signals affected by factors such as noise are identified. Finally, based
on the correspondence between the array electrodes and the electromyography signal
source, the specific locations of MTUs are determined. When locating the key MTUs of
human motion, the first step is to collect the electromyography signals of the target muscle
area. SEMG signals are biological currents produced by contracted muscles. The nervous
system controls muscle activity. Different signals are generated simultaneously by different
muscle fiber motor units on the skin surface. sSEMG is a safe, easy-to-use, non-invasive
electromyography recording technique, which can objectively quantify muscle energy. It
is a frequently used electromyography signal acquisition strategy [24,25]. Therefore, this
study used sEMG to collect electromyography signals of the target muscle area, as shown

Electrode l> SEMG output

in Figure 2.

Motor neuron

AN K Skin surface

Amplifier

Neural axon Muscle fibers

Figure 2. sSEMG signal acquisition of target muscle area.

As shown in Figure 2, sSEMG was used to collect electromyography signals of the
target muscle area. The electrode is placed on the surface of the human skin. This records
the small potential difference caused by muscle contraction on the skin surface. Then,
the electromyographic acquisition circuit is amplified and converted to form surface elec-
tromyographic signals that can be used for processing. sEMG signals are easily affected
by environmental noise, electromyography noise, and power interference. Therefore, the
collected sEMG signals are preprocessed to remove noise and improve signal quality. The
steps for preprocessing sSEMG signals using this method are as follows. First, Fourier
transform is performed on the signal. Then, a Butterworth low-pass filter is used to filter
the spectrum. Finally, inverse Fourier transform is performed on the filtered spectrum to
obtain the denoised sound signal. Fourier transform is then used to change time-domain
signals into frequency-domain signals.

When using ICA to separate high-density SEMG signals, it is assumed that there are
multiple observation signals represented as x(t), which are linearly mixed from several
independent signal sources s(t). x(t) is shown in Equation (1).

x(t) = As(t) + n(t) (1)

In Equation (1), A represents the mixed matrix. n(t) represents the noise. ICA is
used to obtain a separation matrix W, resulting in y(f) = Wx(t). y(t) is an estimate of the
independent signal source s(t). The steps of using ICA to separate high-density sEMG
signals are as follows. First, the observation signal is centered by subtracting the mean to
eliminate the influence of the direct-current component. Further whitening transforms the
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covariance matrix of the observed signal into an identity matrix, removing the correlation
of the signal. Selecting the separation matrix W is a crucial step. Its goal is to convert
the whitened observation signal into an estimated independent signal source, typically
using maximum likelihood estimation to find the appropriate W. Finally, the estimated
separation matrix W is used to obtain the estimated independent signal source s(t). The
steps for separating high-density sEMG signals using ICA are shown in Figure 3.
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Figure 3. Step diagram of high-density SEMG signal separation based on ICA algorithm.

The centralization is to remove the mean of data and make it zero. For the observation
signal x(t), the centralized signal x*(f) can be obtained by Equation (2).

X(t) = x(t) —p @

In Equation (2), u represents the mean of x(¢). Whitening is the process of transforming
a signal into a statistically independent signal with unit variance. The covariance matrix of
x*(t) is B, and the whitening change Z is shown in Equation (3).

Z = Wzx*(t) 3)

In Equation (3), W7 represents the whitening matrix, which is usually composed of
the inverse square root of the eigenvalue matrix of B. In maximum likelihood estimation, it
is usually assumed that the probability density function of the source signal is known. The
separation matrix W is estimated by maximizing the logarithmic likelihood function of the
observed data. For a given observation signal x(t), the likelihood function L is expressed
as Equation (4).

T
L =) logp(x(t)) )
t=1

In Equation (4), p signifies the joint probability density function given W. T is the
number of observed data. The independent signal source s(t) is shown in Equation (5).

s(t) = Wx(t) ©)
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In Equation (5), W represents the separation matrix.

2.2. Muscle Strength Prediction and Evaluation of Key MTUs in Human Motion

After locating the key MTUs of human motion based on the ICA algorithm, the
muscle strength prediction and evaluation of human motion key MTUs was performed.
Backpropagation (BP) is a multi-layer feedforward network trained by error, which is the
most extensively applied method. BP adds one or more layers of neurons between the
input layer and the output layer, namely hidden units. These are not directly connected
to the outside, but changing their state can affect the ratio of input to output [26,27]. The
advantage of this approach lies in its powerful nonlinear fitting ability, which can handle
complex input and output relationships and can optimize its predictive performance
by learning rich training data. In contrast, BP can better capture the complex mapping
relationship between electromyography signals and muscle strength, thereby improving
the prediction accuracy [28]. Therefore, the study employed a BP neural network to predict
the muscle strength of key MTUs in human motion. Muscle strength prediction of key
MTUs in human motion based on BP is displayed in Figure 4.

Output hidden

Input Hidden layer layer

Envelope signal

Muscle strength

A '}/
= oe4n
N §

o ‘ 000 ‘

[ele]e)

.

Figure 4. Muscle strength prediction of human motion key MTUs based on BP.

In Figure 4, the core step in predicting muscle strength of key MTUs based on BP is
transmitting electromyography signals to the hidden layer nodes, and finally applying
them to the output layer to achieve nonlinear transformation, thereby generating predicted
muscle strength values. In the training phase of the network, each training sample includes
a group of input data and corresponding target output. while calculating the error between
the network’s predicted output and the actual target output. The error is calculated as
the difference between the network’s predicted output and the actual target output. To
reduce this error, the algorithm updates the weights and thresholds between input and
hidden layers, as well as between hidden and output layers, using gradient descent. After
multiple rounds of training, when the prediction error decreases to the lowest point, the
corresponding network parameters are decided. The training process ends accordingly.
The trained neural network is able to process similar input samples and output nonlinear



Sensors 2025, 25, 6273

7 of 17

transformation results that minimize errors. The output of each layer of neurons is shown
in Equation (6).

1 I (I-1 1
ol = U <;W§j)05 '+ )> ©

In Equation (6), o](l) represents the output of the [-layer neuron j. f () represents

l(jl) represents the weight. b](l)
between the predicted and the actual outputs is represented as a loss function, as displayed

the activation function. w represents the bias. The error

in Equation (7).
1& R
L= ;Z(%‘ — i) (7)

i=1
In Equation (7), n signifies the sample size. y; signifies the target output. ; signifies
the predicted output. The gradient calculation of the loss function for each weight is shown

in Equation (8).
1 1
oL oL 30§) 82]() -
O~ 5.0 5.0 5 (1)
E)wij aoj azj awi].

In Equation (8), z/(I) represents the input of the I-layer neuron. Gradient descent finds
the minimum objective function by taking the derivative of the objective function [29].
Compared with large-scale numerical matrices, gradient descent follows a more efficient
iterative solution. For some cases where the least squares method cannot calculate the glob-
ally unique optimal solution, gradient descent can still effectively search for the minimum
point [30]. Therefore, the study updates the weights and biases based on gradient descent,

as shown in Equation (9).
() _ (1) oL
Wi = Wi =50
y0 )
i ab"

L) _
b;

0
)
represents the updated bias. The BP training process mainly involves two stages:

In Equation (9), 17 represents the learning rate. w*..’ represents the updated weight.

b* (} )
foéward propagation of signals and backward propagation of errors. Firstly, in the former,
input samples are passed from the input layer, processed by each hidden layer, and then
passed to the output layer. If the actual output does not match the expected output, it
enters error propagation. Error BP is the process of backpropagating the output error in
some form to the input layer through a hidden layer, and distributing the error to all units
to obtain the error signal. This error signal serves as the foundation for correcting the unit
weight. The training steps of BP are shown in Figure 5.

In Figure 5, first, the network parameters, such as weights and biases, are initialized.
Secondly, the network output is calculated through forward propagation, and the loss
function is applied to evaluate the error between the output and the actual target. The
error is propagated back to the network through BP to calculate the gradient for each
parameter. Based on these gradients, the weights and biases are updated in the direction
of reducing errors. Finally, this process is repeated until the network meets the accuracy
requirements on the training data or the maximum iteration is obtained, and the training
is complete. It is crucial to choose a suitable muscle strength prediction and evaluation
model to ensure that the predicted results are as close to the actual situation as possible.
The Pearson correlation coefficient (PCC) is easy to calculate. Therefore, it is applied to
measure the correlation between two variables, ranging from —1 to 1, where 1 signifies
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complete positive correlation, 0 signifies no correlation, and —1 indicates complete negative
correlation. The covariance between X and Y is shown in Equation (10).

n
L (xi —=X)(vi — )
Cov(X,Y) == (10)
n—1

Calculate the 5&
Start average error of @ ¥

the network \o
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error '
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Figure 5. Training steps of BP.

In Equation (10), x; and y; represent the observed values between samples X and
Y. X and ¥ represent the mean values between samples X and Y. Cov(X, Y) signifies the
covariance between samples X and Y. The standard deviation between samples X and Y is
shown in Equation (11).

f (xi —x)?

o(X) = | =
. n—1 (11)
L (vi—7p)?

oY) = l n—1

In Equation (11), o(X) and o(Y) signify the standard deviations between samples X
and Y. The correlation between muscle strength and actual strength can be represented by
PCC v, as calculated in Equation (12).

_ Cov(X,Y)

"= e X)e(Y) (12)

When two variables are directly proportional, the PCC is positive. When they are
inversely proportional, the PCC is negative. When there is no linear relationship, the
correlation coefficient approaches zero. The steps for evaluating muscle strength prediction
based on PCC are as follows. First, actual muscle strength measurements and corresponding
predicted values are collected and preprocessed. Next, the mean, covariance, and standard
deviation of actual and predicted muscle strength are collected. Relying on the calculated
covariance and standard deviation, the PCC between actual muscle strength and predicted
muscle strength is obtained. Finally, the performance of the muscle strength prediction
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model based on the PCC is evaluated. The steps for evaluating muscle strength prediction
based on PCC are shown in Figure 6.

Covariance
Actual muscle
strength —Kﬂ_ Calculate Pearson
data Mean | correlatjon coefficient
Start .. l
a acquisition v value

= _fﬁ SXA—e—ERC

Assessment End

|~ processing
Predlctlng muscle ! ;td_
strength Standard
deviation

Figure 6. Steps for evaluating muscle strength prediction based on Pearson correlation coefficient.

2.3. Experimental Parameter Settings

To validate the effectiveness of the proposed ICA-BP for locating key MTUs and
predicting muscle strength during human motion, this study recruited 10 healthy male
participants aged between 23 and 25 years, with an average height of 175.6 cm and a weight
range of 64-68 kg. All participants avoided vigorous physical activity within 24 h prior to
the experiment. The study protocol was reviewed and approved by the Institutional Review
Board of Qingdao University (Protocol No. QDU-IRB-2023-145). All procedures were
conducted in accordance with the Declaration of Helsinki, and all participants provided
written informed consent prior to participation. The biceps brachii was selected as the
target muscle in this study for two main reasons: (1) it serves as the primary driving
muscle for upper limb elbow flexion, with well-defined functional anatomy; (2) it is located
superficially, making it convenient for sEMG electrode placement, and the resulting signals
exhibit high quality, which is suitable for muscle force modeling. During the test sessions,
participants were instructed to perform standard elbow flexion movements in a seated
position. Two forearm postures were examined: the neutral position (N position) and
the supine position (S position). For each posture, participants completed five full cycles
of elbow flexion, each lasting approximately 3 s, with a 5 s rest between repetitions to
prevent fatigue. As illustrated in Figure 7, different postures result in distinct activation
patterns of the medial and lateral MTUs within the biceps brachii. The medial MTU is
more active in the S position, while the lateral MTU dominates in the N position. SEMG
signals were recorded throughout the movement process and normalized using Maximal
Voluntary Contraction (MVC) tasks to ensure signal comparability and accurate muscle
force estimation.

For sEMG signal acquisition, disposable Ag/AgCl surface electrodes (10 mm diameter)
were placed using a bipolar configuration with a 20 mm inter-electrode distance, following
SENIAM guidelines. Skin areas were cleaned with 70% alcohol and shaved if necessary to
reduce impedance. To minimize motion artifacts, electrodes were secured with medical
adhesive tape, and subjects performed elbow flexion tasks while maintaining a stable seated
posture. The sEMG signals were normalized using the Maximal Voluntary Contraction
(MVC) method. Each participant performed three MVC trials for the biceps brachii, each
lasting approximately 5 s, with a 2 min rest interval between trials to avoid fatigue. The
highest value obtained across the three trials was used as the normalization reference for
subsequent sEMG amplitude calculations.



Sensors 2025, 25, 6273

10 of 17
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(a) Biceps brachii structure (b) Forearm: supination (S) and neutral (N)

Figure 7. Biceps and elbow flexion posture of the arm.

The experiment was conducted on a Windows 10 platform with an Intel Core i9-13900K
processor, 16 GB DDR4 RAM, and an NVIDIA RTX 4080 GPU (16 GB VRAM). MATLAB
R2020a was used as the software environment. The research divided the collected data into
a training set and a test set at an 8:2 ratio, with 80% of the data used for model training
and the remaining 20% used for model testing. Furthermore, to enhance the robustness of
the results, five-fold cross-validation was adopted in the training phase in this paper. The
average error index was calculated in each round of training, and the final performance
was summarized on the test set. The experimental parameter settings are summarized
in Table 1.

Table 1. Parameter settings for key MTU localization and muscle strength prediction in
human motion.

MTU Localization Muscle Strength Prediction
Parameter Value Parameter Value
Sampling rate 1000 Hz Hidden layers 2
Filter settings 20-450 Hz Number of neurons per layer 5
Window size 05s Training set size 80%
Step size 02s Test set size 20%
Number of components 5 Target error 0.001
Number of iterations 1000 Momentum 0.9
Convergence threshold 0.0001 Max epochs 1000
3. Results

3.1. Effects of Key MTU Localization in Human Motion Based on ICA Algorithm

The learning rate is crucial for the performance of the ICA algorithm, as it determines
the magnitude of weight adjustment during the optimization process. Therefore, this study
set the learning rate to different values. The loss value Fl-score was used for evaluation
to obtain the optimal learning rate, as presented in Figure 8. From Figure 8a, when the
iteration reached 700 times, the loss curves of different learning rates tended to be stable.
When the learning rate was 0.020, the loss value was the smallest. At 0.020, the loss value
decreased with the increase in the learning rate. In Figure 8b, the F1-score value decreased
as the learning rate increased. At 0.020, the F1-score value was optimal.
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Figure 8. Comparison of loss value and F1-score of ICA algorithm under different learning rates.

Under different sample sizes, the accuracy and time of locating the key MTUs of human
motion based on ICA were compared with other algorithms, as presented in Figure 9. From
Figure 9a, the accuracy of different algorithms in locating the key MTUs of human motion
decreased continuously with increases in sample size. The accuracy of locating the key
MTUs of human motion based on ICA was the highest, while the accuracy of locating the
key MTUs of human motion based on Factor Analysis (FA) was the lowest. The reason for
this is that FA usually requires a large sample size to generate reliable results and performs
poorly for tasks with less data. When the sample size was 20, the accuracy rates were 98%
and 71%, respectively. In Figure 9b, the accuracy of different algorithms in locating the key
MTUs of human motion increased continuously with increases in sample size. The ICA
showed good performance in locating the key MTUs of human motion, with the shortest
localization time. When the sample size was 100, the localization time was 0.025 s.

-@- [CA- PCA @ FA-4 SVM

Accuracy(%)

O 1 1 1 ] 0.01 1 1 1 ]
20 40 60 80 100 20 40 60 80 100

Number of samples

Number of samples

(b)Time for MTU localization using
different algorithms

(a)Accuracy of MTU localization using
different algorithms

Figure 9. Comparison of accuracy and time for MTU localization using different algorithms.

The error of locating the key MTUs based on the ICA algorithm was compared with
the error of locating the key MTUs using other algorithms, as displayed in Table 2. In
Table 2, the performance of locating the key MTUs of human motion based on the ICA
algorithm was the best, with the smallest errors in both N and S postures. When the sample
size was 20, the error was minimized, with errors of 1.24% and 2.33%, respectively. The
performance of locating the key MTUs based on FA was the worst, because FA is very
sensitive to initial values and optimization algorithms. Different initial values or algorithms
may lead to different results, thereby increasing errors. When the sample size was 100, the
errors were 3.87% and 3.67%, respectively.
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Table 2. Errors of MTU localization by different algorithms under different postures.
Number of Positioning Error Under N Posture Positioning Error Under S Posture
Samples ICA PCA FA SVM ICA PCA FA SVM
20 1.24% 2.98% 1.99% 1.64% 2.33% 3.45% 2.89% 2.59%
40 1.46% 3.12% 2.18% 1.87% 2.56% 3.67% 3.01% 2.73%
60 1.78% 3.44% 2.45% 2.03% 2.79% 3.89% 3.22% 2.95%
80 2.63% 2.76% 3.06% 2.58% 3.06% 4.05% 3.50% 3.31%
100 2.55% 3.58% 3.87% 3.12% 3.42% 4.24% 3.67% 3.56%

3.2. The Effect of Muscle Strength Prediction and Evaluation of the Key MTUs in Human Motion

The size of the learning rate directly affects the convergence speed and state of the
BP. Excessive learning rate may cause the model to oscillate near the optimal solution and
fail to converge. A low learning rate may lead to a slow convergence speed, and may
even cause the model to become stuck in local optimal solutions. Therefore, to obtain the
optimal learning rate, this study set the learning rate to different values and evaluated
it through the loss value and F1, as displayed in Figure 10. From Figure 10a, when the
iteration reached 800 times, the loss curves of different learning rates stabilized. The loss
value was minimized when the learning rate was 0.3. The loss value declined when the
learning rate was below 0.3. When the learning rate was greater than 0.3, the loss value
increased. In Figure 10b, when the learning rate was 0.3, the F1-score was optimal. When
the learning rate was below 0.3, the Fl-score increased with the learning rate. When the
learning rate exceeded 0.3, the F1 decreased.
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Figure 10. Comparison of loss values and F1-scores of BP neural networks at different learning rates.

The recall rate and F1-score value of muscle strength prediction based on the BP neural
network for key MTUs were compared with those of other algorithms, as displayed in
Table 3. As shown in Table 3, the BP showed good performance in predicting muscle
strength for key MTUs, with the highest recall rate and F1-score value, and the smallest
error, which were 88%, 0.90, and 2.34%, respectively. The reason is that the BP neural
network is trained through the BP algorithm, which can effectively adjust the network
weights to reduce prediction errors. The performance of muscle strength prediction based
on the Random Forest (RF) algorithm for key MTUs of human motion was poor, with the
lowest recall and F1-score values, and the largest errors of 75%, 0.80, and 3.98%, respectively.
The reason is that RF is affected by the inherent model complexity and feature selection
limitations when processing nonlinear and high-dimensional data, resulting in lower recall
rates and F1-score values.
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Table 3. Recall rate and Fl-score of muscle strength prediction using different algorithms.
Pooling Strategy Recall (%) F1-Score Error (%)
BP 0.88 0.90 2.34
SVM 0.80 0.85 2.79
RF 0.75 0.80 3.98
XGBoost 0.85 0.92 2.45
LSTM 0.82 0.88 2.56
CNN 0.79 0.83 3.37

The accuracy and efficiency of the designed method for predicting muscle strength
based on key MTUs of human motion were compared with other methods, as displayed in
Figure 11. As shown in Figure 11a, the accuracy of different algorithms in predicting muscle
strength based on key MTUs of human motion increased continuously with the increase in
sample size. The accuracy of muscle strength prediction based on BP for key MTUs was the
highest, while the accuracy of muscle strength prediction on the basis of a Convolutional
Neural Network (CNN) for key MTUs of human motion was the lowest. The reason is
that CNN usually requires rich training data to learn effective feature representations
and performs poorly on tasks with limited data. When the sample size was 100, the
accuracy rates were 99% and 91%, respectively. As shown in Figure 11b, the efficiency of
different methods in evaluating key MTUs of human motion for muscle strength prediction
decreased continuously with the increase in sample size. The efficiency of evaluating key
MTUs for muscle strength prediction based on PCC was the highest, while the efficiency
of evaluating key MTUs based on Point-Biserial Correlation Coefficient (PBCC) was the
lowest. The reason for this is that when there are missing values in the dataset, the PBCC
calculation is affected, and additional processing steps are required to handle the missing
data. When the sample size was 20, the efficiency was 96% and 88%, respectively.
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Figure 11. The accuracy and efficiency of muscle strength prediction for key MTUs of human motion
using different algorithms.

The comparison between actual muscle strength and predicted muscle strength under
different postures is displayed in Figure 12. In Figure 12a, in the N posture, the predicted
muscle strength curve for predicting key MTUs of human motion is basically consistent
with the actual muscle strength curve. At 900 ms, the error between the predicted muscle
strength curve and the actual muscle strength was the largest. The actual muscle strength
was 123 N, the predicted muscle strength was 116 N, and the error was 5.7%. In Figure 12b,
in the S posture, the predicted muscle strength curve is basically consistent with the actual
muscle strength curve. At 1800 ms, the error between the predicted muscle strength curve
and the actual muscle strength was the largest. At this time, the actual muscle strength
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was 137 N, the predicted muscle strength was 132 N, and the error was 3.6%. The error of
muscle strength prediction based on BP for key MTUs of human motion in the N posture
and S posture was less than 6%, which verifies the effectiveness of the proposed method.
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Figure 12. Comparison of actual muscle strength and predicted muscle strength under
different postures.

4. Discussion

The muscle strength prediction method that integrated ICA-based key MTU local-
ization with a BP neural network model demonstrates strong performance in localizing
key MTUs and predicting muscle strength. Experimental results show that the proposed
method maintained high accuracy and stability across different postures and sample sizes.
In the localization task, ICA achieved a localization error of only 1.24% when the sample
size was 20, significantly outperforming traditional dimensionality reduction methods,
such as PCA and FA. This superior performance can be attributed to the fact that ICA is able
to separate independent components from high-dimensional mixed sEMG signals, thereby
extracting target muscle activities more accurately and avoiding misidentification caused
by overlapping or redundant signals. In contrast, PCA can only ensure that components
are uncorrelated but cannot guarantee true statistical independence, making it difficult
to effectively separate different muscle activities when dealing with non-Gaussian and
non-stationary sEMG signals; FA, on the other hand, relies on a large sample size and is
highly sensitive to initial values and optimization processes, often resulting in instability
under small-sample and high-noise conditions. Therefore, ICA demonstrates stronger
adaptability and robustness in the separation of complex physiological signals, which leads
to lower localization errors in this study.

In addition, the muscle strength prediction error in this study was 5.7%, which falls
within the acceptable error range in rehabilitation medicine and sports training. It is
generally recognized that when the standard error of measurement (SEM%) is below 10%,
the measurement error is considered small and clinically acceptable. For example, Morin
et al. reported SEM% values ranging from 0.50% to 3.45% in a hand-held dynamometry-
based muscle strength assessment study, indicating that errors of this magnitude are
entirely within the acceptable range [31]. This precision is sufficient to provide a reference
for rehabilitation training, guiding patients to gradually increase the load and avoid over-
training. It is also applicable to real-time feedback systems in sports training, used to
monitor muscle strength output, optimize training movements, and prevent sports injuries.
Therefore, the proposed model demonstrates promising potential for practical application
in rehabilitation and sports training contexts. However, since the method has not yet been
clinically validated, its real-world applicability requires further investigation.
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Compared with the hybrid musculoskeletal modeling method proposed in [15], the
method in this study does not rely on complex anatomical reconstruction tools, such as
OpenSim, quickly predicting muscle strength without requiring detailed physiological
modeling. This gives it clear advantages in terms of generalizability and computational
efficiency. Unlike the machine learning strategy in [16], which depends heavily on extensive
feature engineering, the BP neural network model used in this study can directly learn
the mapping relationship from raw sEMG signals in an end-to-end fashion, effectively
reducing human-induced errors. Moreover, while the non-parametric functional muscle
network proposed in [17] has value in fatigue monitoring, it focuses more on state tracking
and trend analysis, and is less suitable for real-time muscle strength prediction. In contrast,
the ICA-BP integrated model proposed in this study demonstrated superior predictive
performance, achieving a prediction accuracy of 99% with a sample size of 100, a maximum
error of only 5.7%, a recall of 88%, an F1-score of 0.90, and maintaining millisecond-level
response speed, thereby reflecting higher prediction accuracy and real-time responsiveness.

Nevertheless, several limitations of this study should be acknowledged. First, experi-
mental data were collected from only 10 healthy male participants, and the experiments
focused solely on a single movement involving the biceps brachii (elbow flexion), which
limits the generalizability of the findings. Future studies should expand the sample size
to include subjects of different genders, ages, and muscle health conditions to verify the
broader applicability. Second, the input data used in this study were limited to unimodal
surface EMG signals, without considering multisource data fusion. Given the pronounced
spatiotemporal complexity of muscle activity, future research may draw on the multimodal
approach of Hwang et al. [32]. In their study, surface EMG signals were combined with
inertial measurement unit (IMU) data and processed using a CNN-LSTM-Attention model
for fatigue detection, achieving 87.94% classification accuracy and 87.94% balanced recall
across 35 participants, thereby significantly improving robustness in personalized monitor-
ing. This suggests that integrating additional sensors, such as IMUs or mechanomyography
(MMG), could support multidimensional modeling of motor intent and muscle function.
In addition, the proposed method has only been validated in an offline simulation environ-
ment and has not yet been deployed in actual rehabilitation devices or prosthetic systems,
lacking systematic evaluation of response time, latency, and operational stability.

5. Conclusions

The results demonstrate that the proposed model achieved high prediction accuracy
under both neutral (N) and supinated (S) arm positions, with average errors of 1.24% and
2.33%, respectively, and a maximum error not exceeding 5.7%. Compared with traditional
methods, the proposed ICA-BP neural network model can more accurately identify the
most actively engaged muscle-tendon units during movement and simultaneously improve
predictive performance. Future work will focus on reducing the computational complexity
of ICA and validating the model under diverse postures and muscle groups to enhance its
applicability in rehabilitation assessment and intelligent training systems.
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