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Abstract: Aiming at the problems of a six-degree-of-freedom robotic arm in a three-
dimensional multi-obstacle space, such as low sampling efficiency and path search failure,
an improved fast extended random tree (RRT*) algorithm for robotic arm path planning
method (abbreviated as HP-APF-RRT*) is proposed. The algorithm generates multiple
candidate points per iteration, selecting a sampling point probabilistically based on heuris-
tic values, thereby optimizing sampling efficiency and reducing unnecessary nodes. To
mitigate increased search times in obstacle-dense areas, an artificial potential field (APF)
approach is integrated, establishing gravitational and repulsive fields to guide sampling
points around obstacles toward the target. This method enhances path search in complex
environments, yielding near-optimal paths. Furthermore, the path is simplified using the
triangle inequality, and redundant intermediate nodes are utilized to further refine the path.
Finally, the simulation experiment of the improved HP-APF-RRT* is executed on Matlab
R2022b and ROS, and the physical experiment is performed on the NZ500-500 robotic arm.
The effectiveness and superiority of the improved algorithm are determined by comparing
it with the existing algorithms.

Keywords: six-degree-of-freedom robotic arm; path planning; RRT*; APF; triangular
inequalities

1. Introduction
The six-degree-of-freedom manipulator plays a crucial role in modern manufacturing,

healthcare, service, and logistics, as shown in Figure 1. With the rapid advancement of
automation technology, the application scenarios for robotic arms have become increasingly
complex, necessitating their ability to perform multiple tasks efficiently and safely in
dynamic and uncertain environments [1]. Path planning, as the core problem of robotic arm
motion control, aims to generate a feasible path for the robotic arm from the start position
to the target position. Simultaneously, it is essential to ensure that the path avoids collisions
with obstacles present in the environment throughout the motion [2].
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Path planning algorithms can be categorized into two types: search-based path plan-
ning algorithms and sampling-based path planning algorithms [3]. Search-based path
planning algorithms, such as Dijkstra [4] and the A* algorithm [5], determine the optimal
path from a starting point to an endpoint by exploring a discrete state space. They typically
operate on a grid or grid graph, constructing a state space graph by connecting adjacent
states, and executing pathfinding based on this structure. Although these algorithms
demonstrate strong performance in simple environments, they frequently encounter chal-
lenges, including low computational efficiency and unsmooth paths in high-dimensional
spaces and complex obstacle environments [6]. Unlike search-based algorithms, sampling-
based path planning algorithms, such as Rapidly Exploring Random Trees (RRT) [6] and
Probabilistic Roadmaps (PRM) [7], generate paths by randomly sampling points within
the state space. They are generally regarded as probabilistically complete. If a path exists,
the algorithm can certainly identify a feasible route over time. Even if the PRM is theoreti-
cally complete, it encounters several challenges in practical applications. These challenges
include low efficiency, time-consuming collision detection, a lack of consideration for the
robot’s kinematic model, and efficiency losses associated with the two-stage method [8,9].
In addition, the PRM offers probabilistic completeness but does not guarantee optimality.
Despite the RRT is effective in navigating high-dimensional spaces, it has several draw-
backs. These include significant randomness, slow search speeds in environments with
complex obstacles, and the generation of non-optimal planning paths [10,11].

In order to address the issue of the large number of nodes and non-optimal paths
generated by the RRT, Karaman et al. [12] proposed the RRT*. The algorithm incorporates
a cost function based on RRT. It reduces the randomness of the final path by eliminating
the selection of the parent node, which results in asymptotic optimality; however, this
approach increases the planning time. Adiyatov et al. [13] proposed a rapid exploration
algorithm known as the Randomized Tree Fixed Nodes (RRT*FN). The algorithm restricts
the maximum number of nodes, and its methods for sampling, node expansion, and
parent selection are consistent with those of the RRT*. Although this method prevents
the infinite growth of the tree and conserves memory, it does not significantly enhance
planning speed, and the convergence accuracy remains low. To address the issue of the
prolonged execution time of the RRT*, Lavalle et al. [14] proposed the bidirectional extended
randomized tree algorithm, Bi-RRT. The algorithm enhances pathfinding by extending it
from both directions, significantly improving the efficiency of search and path planning.
Zhou et al. [15] developed a novel strategy for searching nearest neighbors, known as the
generalized distance method, which significantly reduces search time. Aiming at the issue
of blind node sampling in the RRT* algorithm, Yi et al. [16] proposed an enhanced version
known as the improved P-RRT* algorithm based on RRT* (improved P-RRT*). The enhanced
P-RRT* employs two expansion methods for generating new nodes, thereby improving the
algorithm’s search efficiency. The first extension employs a target bias extension strategy.
The second extension utilizes a random sampling strategy within rectangular regions.
Fazhan Tao et al. [17] influenced the generation of random sampling points by introducing
a variable probability target bias strategy. Combining enhanced artificial potential field
methods with growing trees significantly improves the search speed and path quality of
randomized trees and reduces the generation of invalid nodes. Wang et al. [18] utilized
Gaussian mixed regression to identify key features in human demonstrations, thereby
creating a probability density distribution of human trajectories. It is used to guide the
sampling process, enabling the rapid generation of feasible paths. In light of the issue
of slow search speeds in narrow regions, Wang et al. [19] proposed the NRRT*. The
methodology utilizes the optimal paths derived from the A* algorithm as the training
set. It guides the expansion and path search processes that are enhanced by leveraging
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the predictive and optimization capabilities of neural networks, which facilitate a more
efficient sampling process in narrow spaces. Q.C. [20] proposed the RJ-RRT. It employs a
novel greedy sampling space reduction strategy along with an environmental assessment
approach. The method reduces redundant nodes while accelerating the expansion of the
random tree toward the target region. It can identify narrow passages and utilize subtrees
to explore these passages internally.

In the field of path planning, while the traditional RRT algorithm performs effectively
in many scenarios, one of its major drawbacks is its insufficient consideration of the impact
of obstacles on path planning. Khatib et al. [21] first proposed the APF algorithm in 1986.
The algorithm demonstrates strong real-time performance and effectively addresses the
obstacle avoidance problem. The core concept of the APF algorithm is to create a virtual
force field in Cartesian space. This field incorporates the attractive force exerted by the
target point on the robot arm, as well as the repulsive force generated by obstacles in relation
to the robot arm. In recent years, researchers have enhanced the artificial potential field
method. Wu et al. [22] combined the adaptive dynamic window method with an improved
artificial potential field method to enhance the obstacle avoidance capabilities and path
planning efficiency of robots operating in complex environments. This was achieved by
refining the repulsion function and incorporating dynamic windows. Aiming to address
the local minimum problem in traditional path planning, Zhang et al. [23] proposed an
enhanced artificial potential field method that incorporates relative velocity to improve
the obstacle avoidance capabilities of robots operating in uncertain and complex mobile
environments. For the obstacle avoidance problem of the robotic arm, Wang et al. [24]
address the issues of the robotic arm easily falling into dangerous areas and experiencing
unsmooth paths during the planning process by introducing the Jumping Point Search
algorithm and the cubic uniform B-spline function. Aiming to address the issue of robot
path planning in dynamic environments, Bounini et al. [25] solved the problem of robots
easily falling into local minima and experiencing oscillations by introducing virtual obstacle
points and dynamically adjusting potential field parameters.

This study synthesizes the advantages of two algorithms to propose an RRT* robotic
arm path planning algorithm that integrates heuristic probabilistic sampling with the artifi-
cial potential field method. The heuristic probabilistic sampling strategy is implemented to
improve sampling efficiency. The artificial potential field method is introduced to guide the
sampling points in avoiding obstacles and moving toward the target point. Constructing
gravitational and repulsive fields solves the challenge of pathfinding in complex environ-
ments. The triangle inequality is utilized to simplify the redundant intermediate nodes and
optimize the path. Ultimately, the effectiveness, reliability, and superiority of the improved
algorithm are validated through simulations and physical experiments.

The main innovations of this paper are the following:

1. Candidate Point Probability Calculation in the RRT* [26]: In three-dimensional Carte-
sian space, the line segment connecting the starting and ending points represents the
shortest path. Define a spherical region based on the shortest path as the diameter.
All candidate points will be sampled within this sphere. Calculate the distance from
the candidate point to the nearest point on the shortest path and direct it towards
the target point. By constructing a heuristic function, the weight of each candidate
point is evaluated. Based on the weight values, the sampling probability of each
candidate point is calculated to guide the algorithm in exploring the search space
more efficiently.

2. Obstacle Avoidance Strategy Based on the APF [27]: The search time is significantly
increased because the sampled nodes may be located in areas with dense obstacles.
APF is introduced to guide the sampling point to avoid obstacles and move toward
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the target point by constructing a gravitational field and a repulsive field. This method
enhances the density of sampling points, alters the direction of node expansion, and
addresses the challenge of pathfinding in complex environments.

3. Optimization of Paths Based on Trigonometric Inequalities [28]: The triangle in-
equality principle is employed to optimize each node along the generated path. The
evaluation function is designed to re-evaluate and select the parent node for each
node, eliminate redundant nodes along the path, simplify the path, and enhance both
the efficiency and clarity of the final path.

The remainder of this paper is organized as follows: Section 2 introduces the improved
HP-APF-RRT* in this study and offers a detailed explanation of the three key improvements.
Section 3 presents a comparative analysis of the proposed algorithm against traditional
RRT, RRT*, P-RRT*, and HP-RRT* through both simulation and physical experiments to
validate the effectiveness of the proposed approach. Finally, Section 4 provides a summary
and discusses potential avenues for future enhancements.

2. Improved RRT* with Heuristic Probability Sampling and APF
2.1. Kinematic Modeling and Solution of Robotic Arms

Robotic arms can only move within a defined spatial range due to the interrelated
constraints and connections among their numerous joints. This limitation restricts the
flexibility and diversity of motion, making it challenging for traditional path planning
methods to adequately address the requirements of obstacle avoidance in manipulator
path planning [29,30]. This study focuses on a six-degree-of-freedom robotic arm. The
arm comprises six rotary joints of varying lengths that are connected in series, creating
a modular structure. The 3D model, structural diagram of the robotic arm, and the D-H
coordinate system are illustrated in Figure 2. In this structure, the transformation matrix
between two adjacent joints is first calculated, and the positional relationship from the
base to the end effector is established through multiple matrix operations. Next, the
standard Denavit–Hartenberg (D–H) model [31] is employed to establish the configuration
of the coordinate system for each connecting rod. Specific D–H parameters are presented
in Table 1.
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Table 1. Standard D–H parameters of six degrees of freedom manipulator.

Connect Rod Serial Number (i) ai/mm αi/(◦) di/mm θi (◦) βi (◦)

1 0 −90 92.5 θ1 ±180
2 189 90 0 θ2 ±135
3 189 −90 0 θ3 ±150
4 0 0 0 θ4 −170~+180
5 0 −90 36 θ5 ±120
6 0 0 86 θ6 ±360

As shown in Table 1, i represents the linkage serial number; ai denotes the shortest
distance between the two joint axes; αi indicates the clamp between the two linkages; di

represents the distance along the z-axis from the origin of the i − 1 linkage to the origin of
the i linkage; θi denotes the angle of rotation of the i − 1 linkage, which is necessary for the
i − 1 linkage to align with the i linkage; βi specifies the limit of the i-joint.

Motion planning for robotic arms is a multi-body system problem that involves com-
plex dynamics and geometry [32]. According to the algorithm proposed herein, the robotic
arm can accurately navigate to a designated workspace location based on previously
calculated position information of the singular value point. It can also determine the
corresponding angular configurations of the joints at the singular value location, thereby
enabling the robotic arm to move directly to the singular value point to perform a specific
task or to avoid potential collisions. The motion planning of a robotic arm involves the
coordinated movement of multiple rigid structures. By applying the chi-square transfor-
mation matrix to each joint coordinate system, the position and orientation of each joint in
the robotic arm are calculated. In this article, the enhanced RRT* algorithm is employed to
sample and plan the joint space of the manipulator. Collision detection is conducted on
each of the generated joint poses to create an effective obstacle avoidance path.

2.2. Obstacle Collision Detection

In the manipulator’s workspace, there are both regular and irregular obstacles. The
computational complexity of collision detection is high. To reduce computational com-
plexity, the robot arm’s linkage can be abstracted as a cylinder. Therefore, it is essential
to assess the potential collisions between each cylindrical feature of the manipulator and
every obstacle in the environment. This paper employs the technique of enveloping the
obstacle ball to streamline the handling of irregular obstacles. In this manner, the task of
collision detection between the manipulator and the obstacle is converted into the problem
of calculating the distance between a cylinder and a sphere. By equating the radius of a
cylinder to the radius of a sphere, it is only necessary to calculate the distance between a
straight line in space and the sphere. The schematic is presented in Figure 3. In addition, the
article applies Obstacle Inflation for collision detection with standard obstacles. Consider
the radius of a cylinder as the expansion dimension of a standard obstacle, also known
as the safety margin. The collision detection between the manipulator and the obstacle is
transformed into spatial straight-line collision detection, taking into account the expansion
of the object [33]. The schematic diagram is shown in Figure 4.
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2.2.1. Collision Detection of Irregular Obstacles

In Figure 3a, r1 represents the radius of the robotic arm linkage, r2 denotes the radius
of the obstacle envelope, and r indicates the distance from the robotic arm linkage to the
obstacle. In Figure 3b, the connecting rod of the manipulator is represented as a straight
line in space, with its radius equal to that of the obstacle.

For the simplified obstacle collision detection model, it is necessary to calculate only
the distance from the straight line to the center of the obstacle in space. The angles of each
joint of the manipulator can be determined by solving the inverse kinematics for the desired
end position and orientation. According to forward kinematics, the homogeneous transfor-
mation matrix for each link’s coordinate system is derived. Therefore, the equivalent space
linear equation of each link can be obtained. Because the base of the manipulator is fixed,
only five links are required to determine whether the manipulator collides with obstacles.
The distance r from the straight line to the center of the obstacle in space is calculated. If r
is less than or equal to the sum of the link radius r1 and the obstacle envelope radius r2, a
collision occurs; conversely, if r is greater than this sum, no collision occurs.{

r ≤ r1 + r2

r > r1 + r2
(1)

2.2.2. Collision Detection of Regular Obstacles

In Figure 4a, r represents the radius of the robotic arm linkage; d indicates the distance
from the robotic arm linkage to the obstacle. In Figure 4b, the linkage of the robotic arm
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is represented as a simplified spatial straight line
.
→
l =

.
→
p2 −

.
→
p1.

.
→
p1 and

.
→
p2 are the starting

and ending points of the linkage, respectively. The standard obstacle uses a cuboid as an
example to expand the obstacle and create a larger boundary area, thereby simplifying
collision detection. For each link segment, verify whether it intersects with the expanded
area of the obstacle. If an intersection point exists, it can be concluded that the robotic
arm will collide with the obstacle. If there is no intersection between the connecting rod
segment and the obstacle, the minimum distance dmin between the connecting rod segment
and the line segment that forms the obstacle surface is calculated to assess the safe distance
between the manipulator and the obstacle. The dmin can be expressed as:

dmin = min→
P∈

.
→
l ,

→
Q∈

.
Obstacle f ace

∣∣∣∣∣∣∣∣→P −
→
Q
∣∣∣∣∣∣∣∣ (2)

where
→
P is a point on the robotic arm linkage, denoted as

→
P = (xP, yP, zP);

→
Q =

(
xQ, yQ, zQ

)
is a

point that represents the obstacle surface;
∣∣∣∣∣∣∣∣→P −

→
Q
∣∣∣∣∣∣∣∣ = √

(xP − xQ)
2 + (yP − yQ)

2 + (zP − zQ)
2

denotes the Euclidean distance between points
→
P and

→
Q.

Collision detection for square obstacles is accomplished by examining the intersection
of the connecting rod with each face of the square. Each surface of the cube can be
represented by a plane equation of the form: ax + by + cz + d = 0. a, b, and c are normal
vectors to the plane, while d is a constant term associated with the plane. The parameter t
for the intersection of the connecting rod with the square face can be expressed as:

t =
axp1 + byp1 + czp1 + d

a
(
xp2 − xp1

)
+ b

(
yp2 − yp1

)
+ c

(
zp2 − zp1

) (3)

If t is within the range of [0, 1], the connecting rod intersects the surface and a collision
occurs. Otherwise, no collision takes place.

2.3. Improved RRT* Based on Heuristic Probabilistic Sampling
2.3.1. Basics of the RRT*

The RRT* is a deterministic sampling-based path planning approach. It constructs
a tree structure within the configuration space through an iterative process to identify
the optimal path from the initial node Sinit to the target node Sgoal . The principle of the
RRT* is illustrated in Figure 5. In each iteration, the point Srand is randomly sampled
from the free space, and then the node Snearest with the minimum Euclidean distance to
Srand is selected from the tree. Based on this node, the step is extended in the direction
of Srand to generate a new node, Snew. A tree node whose distance from Snew is less than
the sampling radius rnear is identified from the tree to create a set Snear. Then, the parent
node is re-selected for Snew in the set Snear to minimize the path cost from the initial
node Sinit to Snew, and Snew is inserted into the tree. After that, rewrite the nodes in Snear,
excluding the parent of Snew. First, calculate the total cumulative cost of paths from Sinit to
Snew_new =

{
S ∈

(
Snear − Snear_parent

)}
for all nodes. Then, evaluate whether designating

Snew as a parent node reduces the total cost of paths from Sinit to Snear ∈ Snew_new. If
possible, update the parent of these nodes to Snew. By means of continuous iteration, the
RRT guarantees the asymptotic optimality of path cost, thereby facilitating efficient and
robust path planning in complex environments.
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2.3.2. Improved RRT* Algorithm

In complex three-dimensional multi-obstacle environments, traditional RRT* encoun-
ters challenges related to inefficient search processes and excessive randomness in the
selection of sampling points. So as to address the issue of reduced node sampling effi-
ciency in three-dimensional multi-obstacle spaces, this study proposes an improved RRT*
algorithm based on heuristic probabilistic sampling (HP-RRT*). The sampling process is
optimized by generating a set of candidate nodes within a predefined sampling space and
assessing the sampling priority of each candidate node through a specific heuristic function.
By employing this method, it is possible to minimize redundant sampling nodes and
enhance the efficiency of node sampling, thereby reducing the overall computation time.

As illustrated in Figure 6, the starting point a and the endpoint b of the path are first
connected. This line segment serves as the diameter to define a spherical space within
which the sampling is conducted. Multiple candidate points are randomly generated in the
spherical space as potential path nodes. The line segment connecting the starting point and
the endpoint represents the shortest path. Give priority to the point nearest to the shortest
path and the point closest to the endpoint. Design the corresponding heuristic function
and calculate the weight value for each candidate point. Finally, the sampling probability
for each candidate point is calculated and samples are drawn based on the corresponding
weight values. The specific realization process is outlined as follows:
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Figure 6. Sampling space.

1. Initialization phase;

Starting point: denoted by the symbol a. It serves as the beginning of the search
process and represents the starting position for all potential paths.

Goal Point: denoted by the symbol b. It indicates the end point of the search process
and serves as the destination for all paths.

Shortest path: In geometric path planning, the straight line segment connecting the
start point a and the end point b is regarded as an approximation of the shortest path.

Sphere space: the sphere space is defined by the diameter of the line segment ab
as the sampling region. The spherical space encompasses all possible path points, with
boundaries defined by the endpoints of the line segment ab.
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2. Candidate point generation;

Randomly generated point sets in spherical space are utilized as potential nodes in
the search process for subsequent pathfinding. Points are generated based on a probability
distribution, ensuring coverage of the entire search space and increasing the likelihood of
discovering optimal paths.

3. Heuristic function design;

Heuristic function: provides a thorough assessment for estimating the cost of the
shortest path from the current candidate point to the goal point. It considers both the
distance from the candidate point to the shortest path and the distance from the candidate
point to the goal point. It can be expressed as:

f (n) =
(

1 − dist_to_line
radius

)weight1
×

(
1 − dist_to_b

||b − a||+ radius

)weight2
(4)

where n denotes the n-th candidate point; dist_to_line represents the distance from the
candidate point to the line segment ab; radius identifies the radius of the sphere; weight1
controls the extent to which the distance from the shortest line segment influences the
weight; dist_to_b expresses the distance from the candidate point to the goal point b;
weight2 the extent to which the distance from point b affects the weight.

In order to more accurately capture the nonlinear relationship between weights and
distance, a nonlinear function is employed instead of the traditional linear decay model,
represented by the following expression.

f (n) = e−α dist_to_line
radius × e−β dist_to_b

||b−a||+radius (5)

where α and β are parameters that determine the decay rate.
To prevent numerical issues, establish a minimum value to ensure that the weights

remain sufficiently large.
f (n) = max( f (n), δ) (6)

where δ is a predetermined, very small positive number.

4. Sampling and path selection.

The sampling probability pi for each candidate point is determined by Equation (7).

pi =
fi

∑n
1 fi

i = 1, 2, 3 . . . n (7)

where fi represents the heuristic value of the i-th candidate point, and n denotes the total
number of candidate points.

2.4. Improved HP-RRT* Incorporating the APF

When path planning is conducted within the manipulator’s workspace, it is inevitably
influenced by obstacles, thereby increasing the complexity of the path planning process.

In order to solve this problem, based on the kinematic analysis of the robotic arm,
the APF is employed for path planning. This approach is integrated with the previously
proposed highly efficient probabilistic sampling algorithm, HP-RRT*. In this algorithm,
the potential field force of APF is utilized as an additional guiding force to influence the
generation of sampling points and the selection of paths. This approach aims to enhance
obstacle avoidance and results in a sub-optimal route that is close to the shortest path.
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2.4.1. Traditional APF

The robotic arm obstacle avoidance model utilizing the APF algorithm is illustrated in
Figure 7. The essence of the algorithm involves meticulously creating a virtual potential
field within the workspace of the robotic arm and solving for it. The model is based on
two primary potential fields: the target potential field and the obstacle potential field. The
target point generates a global gravitational potential field at the end effector position of
the manipulator, simulating an attractive force that encourages the manipulator to move
toward the target point. On the contrary, the obstacle creates a localized repulsive potential
field at the end effector position of the manipulator, simulating a repulsive force that helps
the manipulator avoid collisions with the obstacle [34].
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When the obstacle is outside the repulsive potential field, the end effector of the
manipulator is influenced solely by the gravitational potential field and moves directly
toward the target point. However, when the obstacle enters the repulsive potential field, the
end of the manipulator is affected by both the repulsive potential field and the gravitational
potential field. This superimposed effect of forces enables the robotic arm to dynamically
plan a path for obstacle avoidance, effectively avoid obstacles, and continue toward the
target point.

In the spatial model of the APF, the target point is strategically identified as the lowest
point in the potential field, specifically the minimum point of the potential function. By
calculating the potential functions of the gravitational field and the repulsive field, and then
superimposing them, one can obtain the potential function of the combined field. Under
the influence of the combined potential field, the manipulator moves in the direction of the
gradient descent of the potential function until it attains the target state.

The gravitational potential field is primarily associated with the distance between
the end position of the robotic arm and the target point. As the distance increases, the
value of the potential energy also increases; conversely, as the distance decreases, the value
of the potential energy diminishes. The expression for the gravitational potential field is
as follows:

Uatt

(
Cgoal

)
=

1
2

Ka p2
(

Carm, Cgoal

)
(8)

where Uatt

(
Cgoal

)
is the gravitational potential field at the target point; Ka is the positively

proportional gain coefficient; Carm denotes the current position of the robotic arm end-
effector; Cgoal indicates the desired position of the end-effector in the target configuration;

p
(

Carm, Cgoal

)
vector function, the difference between the position vector of the robotic

arm’s end-effector, Carm, and the ideal position of the target point, Cgoal .
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The corresponding gravitational force Fatt

(
Cgoal

)
is the negative gradient of the gravi-

tational field. It represents the fastest-changing direction of the gravitational potential field
function Uatt

(
Cgoal

)
. The expression is presented below.

Fatt

(
Cgoal

)
= −∇Uatt

(
Cgoal

)
= Ka p

(
Carm, Cgoal

)
(9)

The primary influence of the repulsive potential field is the distance between the
robotic arm and the obstacle. The expression for the repulsive potential field is as follows:

Ureq(Cobstacle) =

 1
2 Kr

(
1

p(Carm ,Cobstacle)
− 1

Pobstacle

)2
, 0 ≤ p(Carm, Cobstacle) ≤ Pobstacle

0, p(Carm, Cobstacle) > Pobstacle

(10)

where Ureq(Cobstacle) represents the repulsive potential field; Kr is the positive propor-
tionality gain coefficient; p(Carm, Cobstacle) is a vector function, the difference between the
position vector of the end-effector of the robotic arm, Carm, and the obstacle, Cobstacle;
Pobstacle represents the maximum influence range of the obstacle on the manipulator.

The repulsive potential field differs from the gravitational potential field in that the
robotic arm is not always subjected to the repulsive force exerted by the barrier. When the
relative distance between the manipulator and the obstacle exceeds Pobstacle, it is concluded
that the obstacle does not affect the manipulator’s operation. The smaller the relative
distance between the arm and the obstacle, the greater the effect of the repulsive force and
the higher the potential energy. Conversely, as the relative distance between the arm and
the obstacle increases, the effect of the repulsive force diminishes, resulting in a decrease in
potential energy.

The corresponding repulsive force is the negative gradient of the repulsive potential
field. The expression can be represented as follows:

Freq(Cobstacle) =

{
Kr

(
1

p(Carm ,Cobstacle)
− 1

Pobstacle

)
1

P2(p(Carm ,Cobstacle))
, 0 ≤ p(Carm, Cobstacle) ≤ Pobstacle

0, p(Carm, Cobstacle) > Pobstacle
(11)

The magnitude of the robot’s combined potential field is the sum of its repulsive
and gravitational potential fields. Therefore, the expression for the total function of the
combined potential field is:

U(Carm) = Uatt

(
Cgoal

)
+ Ureq(Cobstacle) (12)

The resultant force expression is:

F(Carm) = −∇U(Carm) = Fatt

(
Cgoal

)
+ Freq(Cobstacle) (13)

Under the guidance of the virtual potential field, the robotic arm moves toward the
direction of the steepest decrease in the combined potential field U(Carm). This is typically
where the final desired goal is situated.

In the application of the traditional APF, issues such as local minima and target
unreachability arise [35]. Specifically, the trajectory of the robotic arm can be directed
toward a region of force equilibrium, known as the potential well. As shown in Figure 8,
the combined force acting on the robotic arm in this region approaches zero. In this state,
the manipulator is prone to becoming trapped in a local minimum area, so it cannot achieve
the arrival of the target point. Due to the presence of a strong repulsive force field, the
manipulator may display oscillatory behavior. This further hinders its ability to reach the
intended target location and may ultimately result in the failure of the path planning task.
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Figure 8. Potential well problem.

2.4.2. Improved APF

To address these issues, this paper presents an enhanced gravitational potential field
function. This improved method adjusts to changes in the distance between the manipulator
and the target point, reduces the stagnation time of the manipulator within the potential
well, and improves its ability to escape from local minima. The gravitational potential field
can be expressed as:

Uatt

(
Cgoal

)
=


1
2 Ka p2

(
Carm, Cgoal

)
, p(Carm, Cobstacle) > Pg

sKa p
(

Carm, Cgoal

)
, p(Carm, Cobstacle) ≤ Pg

(14)

where Pg is the environmentally determined distance constant, and s is the constant factor.
When the position of the manipulator relative to the goal point is p(Carm, Cobstacle) ≤ Pg,

the gravitational force is maintained at a constant value. This ensures that the gravitational
force is not too weak as the manipulator approaches the target point, effectively guiding it
to move toward the target.

The corresponding expression for the gravitational force, Fatt

(
Cgoal

)
, is presented

in Equation (15).

Fatt

(
Cgoal

)
=

{
Ka p

(
Carm, Cgoal

)
, p(Carm, Cobstacle) > Pg

sKa, p(Carm, Cobstacle) ≤ Pg
(15)

The construction of the enhanced repulsive potential field is more complex than
that of the attractive potential field. By adjusting the influence range and strength of the
repulsive field function, the target unreachability can be mitigated, enabling the robotic
arm to navigate around obstacles more effectively. The repulsive potential field can be
expressed as:

Ureq(Cobstacle) =

 1
2 Kr

(
1

p(Carm ,Cobstacle)
− 1

Pobstacle

)2
pr

n, 0 ≤ p(Carm, Cobstacle) ≤ Pobstacle

0, p(Carm, Cobstacle) > Pobstacle

(16)

where pr is the adjustment factor for the distance between the end actuator of the robotic
arm and the target point, and n represents the number of normal.

The corresponding repulsive force Freq(Cobstacle) consists of two components:

Freq1(Cobstacle) and Freq2

(
Cgoal

)
. Their expressions are as follows:

Freq(Cobstacle) = Freq1(Cobstacle) + Freq2

(
Cgoal

)
(17)
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Freq1(Cobstacle) = Kr

(
1

p(Carm, Cobstacle)
− 1

Pobstacle

)
pr

n

p(Carm, Cobstacle)
(18)

Freq2

(
Cgoal

)
=

n
2

Kr

(
1

p(Carm, Cobstacle)
− 1

Pobstacle

)2 pr
n−1

p(Carm, Cobstacle)
(19)

where Freq1(Cobstacle) the first component of the repulsive force, directed from the obstacle

to the end actuator position of the robotic arm; Freq2

(
Cgoal

)
denotes the second component

of the repulsive force, oriented from the end actuator position of the robotic arm toward
the goal point.

By introducing a goal adjustment factor pr
n, the repulsive field function gradually

diminishes the repulsive force as the robot approaches the goal point. This approach
effectively mitigates the issues of local minima and goal unreachability, thereby enhancing
the efficiency and robustness of path planning.

2.4.3. HP-RRT* Incorporating APF

In the implementation of the HP-RRT*, this paper employs an optimized artificial
potential field method to incorporate obstacle perception information. The algorithm
captures real-time spatial distribution information of obstacles and calculates the potential
field value U(Scandidate) for each candidate point to be integrated into the heuristic function.
The selection of sampling points Srand are based on the probabilistic algorithm. Although
this improves the directionality of the sampling process and accelerates the convergence of
the algorithm, it does not fundamentally alter the randomness of the new node generation
process. In complex environments, this may cause the algorithm to become trapped in a
local minimum and experience deviations due to repeated sampling, thereby reducing the
efficiency of the path search. In order to solve this problem, the RRT* algorithm combines
heuristic probability sampling with the APF, referred to as HP-APF-RRT* for short. It
utilizes the superposition of the gravitational potential field function Uatt

(
Sgoal

)
associated

with the target point and the repulsive potential field function Ureq(Sobstacle) related to the
obstacle. This approach is applied to the neighboring nodes of the random tree algorithm
Snearest. Thus, the growth of random tree nodes is influenced not only by the gravitational
potential field function Uatt(Snearest) of the sampling point but also by the combined effects
of target attraction and obstacle repulsion. Figure 9 illustrates the impact of the artificial
potential field method on the expansion of random tree nodes.
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The expressions for the gravitational potential field Uatt(Srand) and the gravitational
force Frand calculated for the neighboring node Snearest in the tree, with respect to the
sampling point, are as follows:

Uatt(Srand) =
1
2

Kc p2(Snearest, Srand) (20)

Fatt(Srand) = −∇Uatt(Srand) = Kc p(Snearest, Srand) (21)

where Uatt(Srand) is the gravitational potential field at the Srand; Kc is the positively propor-
tional gain coefficient.

The total potential field value is defined as the difference between the gravitational
potential field and the repulsive potential field, expressed as:

U(Scandidate) = Uatt

(
Sgoal

)
− Ureq(Sobstacle) (22)

The expression for the heuristic function is denoted as:

f (n) =
(

e−α dist_to_line
radius × e−β dist_to_b

||b−a||+radius

)
+ U(Scandidate) ∗ τ (23)

where τ denotes the weighting factor used to balance the impact of U(Carm) on the total cost.
In the implementation process of the entire algorithm, weighted sampling in the

sphere function is utilized to calculate the probability distribution, allowing for the random
generation of the sampling point Srand in the configuration space. Subsequently, FindNear-
estPoint function is used to identify the node Snearest that is closest to Srand within the path
planning tree. Next, the geometric angle θ between Snearest and Srand, Sgoal , and the set of
obstacles Sobstacles is computed using compute_angle function. Based on the known angle
θ, the gravitational components Frand and Fgoal of Snearest, Srand, and Sgoal in the x, y and
z axis directions, respectively, are calculated using compute_Attract function. At the same
time, the repulsive force component Freq of each obstacle relative to the nearest point Snearest

is calculated in the x, y, and z axis directions, taking into account the compute repulsion
and the angle θ. The combined force is determined by integrating the gravitational and
repulsive components using the following expression:

F = Freq + Frand + Fgoal (24)

The combined force determines the search direction, ω, according to the
following expression:

ω =
F√

F(1)2 + F(2)2 + F(3)2
(25)

The new node position, Snew, is calculated using Equation (26).

Snew = Snearest + step ∗ ω (26)

Perform collision detection on Snew and add the path to the planning tree if no collisions
are detected. The algorithm continues until the distance between the Snew and the goal
point is less than a specified threshold. Ultimately, it generates an optimal path from
the starting point to the goal point. The general process of the algorithm is illustrated
in Figure 10.
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2.4.4. Algorithm Time–Space Complexity Analysis

In this study, the time complexity of the HP-APF-RRT* algorithm is primarily influ-
enced by the steps involved in candidate point generation, nearest node search, potential
field calculation, and collision detection. In each iteration, the algorithm generates n can-
didate points and performs potential field calculations and collision detection for each
candidate point. This results in a time complexity of O(n ∗ (N + M)) for each iteration,
where N represents the number of nodes in the path planning tree and M denotes the
number of obstacles. Overall, the time complexity of the algorithm is O(n ∗ T ∗ (N + M)),
where T represents the number of iterations. By adopting a spatially partitioned data
structure, the time complexity of the nearest node search can be optimized to O(log N)

through the use of k-d trees, significantly reducing the overall time complexity.
In terms of space complexity, the HP-APF-RRT* algorithm must maintain the path

planning tree, obstacle information, and a cache of n candidate points in each iteration.
This results in a space complexity of O(n + N + M). The space requirements change
dynamically with the algorithm; however, they are generally linearly related to the size of
the data being processed by the algorithm.

2.5. Path Optimization Based on Trigonometric Inequalities

In three-dimensional space, pathfinding using the RRT* and its derivative algorithms
produces a continuous line segment composed of a series of discrete points. However, this
process frequently generates a significant number of redundant nodes. The presence of
these nodes hinders the smooth operation of the robotic arm [36].

In this text, the triangle inequality is used to optimize each node in the path. Node
cost evaluation is essential for parent node reselection, rewriting, and path optimization
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algorithms. Equation (27) is used to evaluate the trade-offs associated with node expansion
by integrating path cost, security cost, and stability cost.

cos t(c) = k1P(c) + k2
1

F(c)
+ k3T(c) (27)

where P(c) represents the cumulative path cost from the starting point to the current node c;
1/F(c) signifies the security cost, F(c) is the reciprocal of the average distance between
the current node c and its neighboring obstacles; T(c) is the stability cost, which reflects
the path depletion from the parent node to the current node c; k1 k2 k3 serve as weighting
factors that correspond to the respective sub-costs within the total cost calculation.

After obtaining the initial path, it undergoes further optimization. Refer to Figure 11
for a schematic representation of the optimization process. If the grandfather node of
node C is used as its parent node, the cost can be reduced without causing a collision,
meaning that the triangle inequality is satisfied. The parent node of node C is updated to
its grandparent node. On the contrary, if the grandparent node of node C collides with
node C, it is considered that both node C and its parent node have been optimized. This
process is carried out recursively until the initial node is transformed into the node to be
optimized, thereby completing the entire optimization process.
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3. Experiments and Analysis
This section aims to experimentally validate the performance of the HP-APF-RRT*.

For this reason, this study compares and analyzes the improved HP-APF-RRT* with the
existing RRT, RRT*, P-RRT*, and the HP-RRT* proposed in this paper, all within a unified
three-dimensional simulation environment. The goal is to verify the superiority, validity,
and reliability of the improved HP-APF-RRT* in path planning.

The simulation experiments are conducted on a Windows 10 operating system plat-
form equipped with an Intel Core i5-12490F processor (with a base frequency of 3.0 GHz)
and 16 GB of RAM. An efficient, collision-free path from the initial point to the target point
is successfully planned. In addition, this study also uses the NZ500-500 model manipulator
from Jizhi Technology (Beijing, China) Co., Ltd. for simulation and physical experiments to
further validate the practical application potential of the algorithm.

3.1. Simulation Experiment Analysis

In order to thoroughly assess the superiority of the algorithm proposed in this paper
compared to existing algorithms, this study conducts comparative experiments within
a fixed and challenging 3D spatial environment. All algorithms were tested through
simulations in intricately designed 3D spatial environments.

In the experimental setup, the total area of the manipulable space for the robotic arm
was established to be 1000 mm × 1000 mm. The gray areas on the map delineate the
boundaries of the mobile space, and the cylinders, rectangles, and spheres within the map
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represent various types of obstacles. In each experiment, a consistent set of parameters
is utilized for every algorithm. The experimental parameters are set as follows: the step
size is set to 10 mm, the goal threshold is set to 50 mm, the search radius is set to 50 mm,
and the maximum number of iterations is set to 10,000. In the P-RRT*, the probability of
random sampling is set to 0.9.

In the HP-RRT* T and HP-APF-RRT* algorithms, the key parameters include the
following: the number of candidate points (N), attenuation factors (α, β), the gravitational
gain coefficient of the target point (Ka), the gravitational gain coefficient of the sampling
point (Kc), the repulsive gain coefficient of the obstacle (Kr), the distance obstacle effect
(Pobstacle), the gravitational distance constant (pg), and the repulsive adjustment factor (pr).
The specific configuration of the parameters is shown in Table 2.

Table 2. Key parameters.

Parameter N α β Ka Kc Kr Pobstacle pg pr

No. of Equation — (5) (5) (14) (20) (16) (16) (14) (16)
Value 10 0.6 0.4 1.5 1 1 50 300 1.2

In order to ensure the statistical significance of the experimental results, 200 repetitive
operations were conducted for each experimental group. In the three scenarios presented,
the coordinates of the starting point in Scene 1 are (100, 100, 100) mm, while the coordi-
nates of the target point are (900, 900, 900) mm. In Scene 2, the starting point remains
at (100, 100, 100) mm, and the target point is located at (900, 900, 500) mm. In Scene 3,
the starting point is again (100, 100, 100) mm, and the coordinates of the target point are
(850, 850, 650) mm. The planning results of the algorithm are shown in Figures 12–14. The
average data from the experiments are systematically summarized in Tables 3–5. In parts
(a) to (e) of the figure, the path graphs generated by various algorithms are presented.
Among them, the blue line illustrates the exploration tree structure of the algorithm, and
the red solid line denotes the path planned by the corresponding algorithm. In order to
reflect the boundary extension property of the algorithm, no additional safety distances
were incorporated into the actual collision judgment. As a result, the path lines appear to
be very close to the surface of the obstacle.

In Scenario I, the performance of each algorithm demonstrates significant differences.
The average search time of the RRT algorithm is 4.203 s, with an average of 5703 node
samples, an average path length of 2112.441, and a search success rate of 91%. In contrast,
the RRT* algorithm improves the path quality; however, the average search time increases
to 7.262 s. The number of sampled nodes decreases slightly, while the success rate remains
at 93%. The P-RRT* algorithm operates similarly to RRT*, exhibiting slightly different
search times and path lengths while maintaining the same success rate. The HP-RRT*
algorithm is significantly optimized for search time and node sampling while maintaining
a 100% success rate and a short path length. The HP-APF-RRT* algorithm demonstrates
optimal performance across all metrics, achieving an average search time of just 1.039 s, the
fewest nodes sampled (2290), the shortest path length (1467.493), and a 100% success rate.
Compared to RRT, HP-APF-RRT* offers approximately a 75% improvement in search time
and a 30% reduction in path length.
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Figure 13. Different algorithms to generate paths in Scenario II: (a) RRT; (b) RRT*; (c) P-RRT*;
(d) HP-RRT*; and (e) HP-APF-RRT*.

In Scenario II, the average search time and the number of nodes sampled by the RRT
algorithm increase to 4.625 s and 6304, respectively. Although the path length is slightly
reduced, the success rate decreases to 73%. The RRT* algorithm excels in path optimization;
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however, the search time and the number of sampled nodes remain comparable, resulting
in a significant decrease in the success rate to 61%. The P-RRT* algorithm experiences an
increase in both search time and path length, accompanied by a modest rise in the success
rate. The HP-RRT* algorithm continues to demonstrate advantages in search time and the
number of nodes sampled. The path length is shorter, and the success rate is 100%. The HP-
APF-RRT* algorithm outperforms all other methods across all metrics, achieving a search
time of just 0.889 s, the fewest nodes sampled (1576), the shortest path length (1286.505),
and a consistent success rate of 100%. Compared to RRT, HP-APF-RRT* improves search
time by approximately 81% and reduces path length by about 33%.
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Figure 14. Different algorithms to generate paths in Scenario III: (a) RRT; (b) RRT*; (c) P-RRT*;
(d) HP-RRT*; and (e) HP-APF-RRT*.

Table 3. Comparison of Scene I algorithms.

Algorithm Name Average Search
Time/s

Average Number of
Node Samples Average Path Length Search Success Rate

RRT 4.203 5703 2112.441 91%
RRT* 7.262 5513 1686.495 93%

P-RRT* 7.768 5539 1690.284 93%
HP-RRT* 3.015 2544 1713.812 100%

HP-APF-RRT* 1.039 2290 1467.493 100%

In Scenario III, the average search time of the RRT algorithm is 2.241 s. The number of
nodes sampled is 3984, the path length is 1880.449, and the success rate is 72%. The RRT*
algorithm has an average path length of 1484.154. However, the search time increases to
3.674 s, the number of sampled nodes decreases, and the success rate remains the same as
that of the RRT algorithm. The P-RRT* algorithm shows an increase in both search time
and path length, along with a slight decrease in the success rate. The HP-RRT* algorithm
offers advantages in search time and the number of nodes sampled, resulting in shorter
path lengths and a 100% success rate. The HP-APF-RRT* algorithm completes its search in
just 0.796 s, utilizing the fewest number of nodes sampled (1710) and finding the shortest
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path (1268.786) while maintaining a 100% success rate. Compared to RRT, HP-APF-RRT*
reduces search time by approximately 65% and shortens path length by around 33%.

Table 4. Comparison of Scene II algorithms.

Algorithm Name Average Search
Time/s

Average Number of
Node Samples Average Path Length Search Success Rate

RRT 4.625 6304 1935.640 73%
RRT* 10.415 6297 1530.290 61%

P-RRT* 11.925 6488 1549.293 67%
HP-RRT* 2.237 1978 1445.297 100%

HP-APF-RRT* 0.889 1576 1286.505 100%

In order to verify the robustness and adaptability of the HP-APF-RRT* algorithm
proposed in this paper within complex dynamic environments, two challenging dynamic
test scenarios have been established. In both scenarios, the dynamic obstacle configurations
encountered by each algorithm are kept consistent to ensure a fair evaluation of their
performance. Additionally, the underlying configuration of the algorithm is consistent with
previous experiments, ensuring the reliability and comparability of the experimental results.
The results of the experiment are presented in Figures 15 and 16. Figure 15 illustrates the
various locations of obstacles and the effects of path planning for different algorithms, based
on varying numbers of iterations in Dynamic Scenario 1. Figure 16 shows the different
iterations of different algorithms, different positions of obstacles, and the effects of path
planning in Dynamic Scene 2. The mean data from the experiments are systematically
summarized in Tables 6 and 7.

Table 5. Comparison of Scene III algorithms.

Algorithm Name Average Search
Time/s

Average Number of
Node Samples Average Path Length Search Success Rate

RRT 2.241 3984 1880.449 72%
RRT* 3.674 3603 1484.154 72%

P-RRT* 5.168 4200 1498.405 70%
HP-RRT* 2.047 1941 1449.738 100%

HP-APF-RRT* 0.796 1710 1268.786 100%

In Dynamic Scenario 1, the average search time of the HP-APF-RRT* algorithm is
0.439 s, making it 86.33% faster than the RRT algorithm. Additionally, the number of node
samples is reduced by 84.57%, the path length is shortened by 29.46%, and the search
success rate is 100%. In Dynamic Scenario II, the average search time of this algorithm is
reduced to 0.380 s, which is 87.96% faster than the RRT algorithm, the number of node
samples is reduced by 86.01%, the path length is shortened by 27.90%, and the search
success rate is maintained at 100%. This demonstrates that the HP-APF-RRT* algorithm is
both efficient and robust in dynamic environments, enabling it to quickly identify short
and reliable paths.

In contrast, the RRT algorithm demonstrates consistent performance across both
scenarios, with average search times of 3.187 and 3.133 s, node samples of 4596 and 4982,
path lengths of 1950.186 and 1978.461 units, and search success rates of 76% and 85%. The
RRT* algorithm has average search times of 7.59 and 6.811 s, node samples of 4952 and
5112, path lengths of 1508.926 and 1595.858 units, and search success rates of 82% and 84%.
The P-RRT* algorithm has average search times of 5.487 and 5.988 s, with node samples of
4376 and 4778, path lengths of 1560.228 and 1571.750 units, and search success rates of 82%
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and 93%. The hp-RRT* algorithm exhibits average search times of 2.881 and 2.170 s, node
sample counts of 2526 and 2337, path lengths of 1553.850 and 1513.380 units, and search
success rates of 100%. Although the HP-RRT algorithm performs well, the HP-APF-RRT*
algorithm offers greater advantages in terms of efficiency and robustness.
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Figure 15. Different algorithms to generate paths in Dynamic Scene I: (a) RRT; (b) RRT*; (c) P-RRT*;
(d) HP-RRT*; and (e) HP-APF-RRT*.
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Figure 16. Different algorithms to generate paths in Dynamic Scene II: (a) RRT; (b) RRT*; (c) P-RRT*; 

(d) HP-RRT*; and (e) HP-APF-RRT*. 
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Figure 16. Different algorithms to generate paths in Dynamic Scene II: (a) RRT; (b) RRT*; (c) P-RRT*;
(d) HP-RRT*; and (e) HP-APF-RRT*.

The experimental results show that the HP-APF-RRT* algorithm outperforms several
key performance metrics, particularly in search time, sampling efficiency, path length, and
search success rate. This improvement is primarily attributed to its heuristic sampling
strategy and the incorporation of the artificial potential field method. These enhancements
increase the algorithm’s sensitivity to obstacle perception and effectively direct the sampling
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points to circumvent obstacles. As a result, the number of required sampling points is
significantly reduced, and the path optimization capability is enhanced. The HP-RRT*
algorithm demonstrates improved performance; however, it is slightly less efficient than HP-
APF-RRT* regarding search time and path length. The RRT, P-RRT*, and RRT* algorithms,
although superior in certain aspects, fall short of the HP-APF-RRT* and HP-RRT in terms
of overall performance. The RRT* algorithm, in particular, exhibits significant deficiencies
in path optimization and robustness.

Table 6. Comparison of Dynamic Scene I algorithms.

Algorithm Name Average Search
Time/s

Average Number of
Node Samples Average Path Length Search Success Rate

RRT 3.187 4596 1950.186 76%
RRT* 7.59 4952 1508.926 82%

P-RRT* 5.487 4376 1560.228 82%
HP-RRT* 2.881 2526 1553.850 100%

HP-APF-RRT* 0.439 703 1375.543 100%

Finally, after optimizing the path in accordance with the triangular inequality, the
optimization results presented in Table 8 have been obtained.

Table 7. Comparison of Dynamic Scene II algorithms.

Algorithm Name Average Search
Time/s

Average Number of
Node Samples Average Path Length Search Success Rate

RRT 3.133 4982 1978.461 85%
RRT* 6.811 5112 1595.858 84%

P-RRT* 5.988 4778 1571.750 93%
HP-RRT* 2.170 2337 1513.380 100%

HP-APF-RRT* 0.380 690 1427.195 100%

The optimization results indicate that in Scenario 1, the average path length was
reduced from 1467.493 to 1461.463, achieving an optimization range of 0.4%. In Scenario 2,
the average path length decreased from 1286.505 to 1275.741, resulting in an optimization
range of 0.8%. In Scenario 3, the average path length improved from 1268.786 to 1261.857,
with an optimization range of 0.5%. In Dynamic Scenario 1, the average path length was
optimized from 1375.543 to 1350.293, yielding an optimization range of 1.8%. In Dynamic
Scenario 2, the average path length was reduced from 1427.195 to 1396.321, achieving an
optimization range of 2.2%. These data show that the optimized path length is reduced,
further verifying the algorithm’s effectiveness in path optimization.

Table 8. Comparison of optimization algorithms.

Algorithm Name Average Path Length Average Optimized Path Length

Scenario I 1467.493 1461.463
Scenario II 1286.505 1275.741
Scenario III 1268.786 1261.857

Dynamic Scene I 1375.543 1350.293
Dynamic Scene II 1427.195 1396.321

Through the experimental analysis, the HP-APF-RRT* proposed in this paper demon-
strates superior performance in complex environments with multiple obstacles. In all
scenarios, despite differing complexities, the HP-APF-RRT* achieves the shortest search
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time and the fewest number of node samples. It also provides the optimal path length
and maintains a 100% search success rate. These results confirm that the HP-APF-RRT*
surpasses other algorithms in search efficiency, node sampling efficiency, path optimization,
and robustness, demonstrating its effectiveness and practicality in addressing complex
path planning challenges.

3.2. Physical Experiment Analysis

In order to assess the effectiveness of the HP-APF-RRT* proposed in the text for practi-
cal applications, an experimental environment was established within the framework of the
Robot Operating System (ROS) using the NZ500-500 model robotic arm from Jizhi Technol-
ogy (Beijing, China) Co., Ltd. The initial step of the experiment was to construct a complex
environmental scenario containing static obstacles, initial configuration points, and target
configuration points within the Gazebo11 simulation software. In the ROS environment,
the NZ500-500 manipulator model was loaded and visualized in three dimensions using
the Gazebo tool. The HP-APF-RRT* directs the robotic arm using the MoveIt1 motion
planning framework to facilitate obstacle avoidance. Ultimately, it successfully devises a
collision-free path that satisfies the specified requirements.

As shown in Figure 17, key elements within the experimental scenarios have been
designated with specific specialized symbols. The red square represents the target to
be grasped, specifically the entity to be recognized and manipulated by the robotic arm.
The purple columns symbolize the static obstacles in the path planning, which serve as
physical barriers along the trajectory from the starting point to the endpoint. The black
table represents the placement area, which is the final destination of the robotic arm’s
operation and signifies the completion stage of the task.
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Figure 17. Robotic arm poses: (a) initial pose; (b) gripping pose; (c) intermediate pose; and
(d) target pose.

Figure 17 illustrates the four key positions of the NZ500-500 robotic arm as it executes
the path planning task from the starting point to the target point: the initial position, the
gripping position, the intermediate position during movement, and the target position.

Real-time control of the NZ500-500 robotic arm and its interaction with the environ-
ment are achieved through the integration of the MoveIt motion planning framework with
the ROS. Under this framework, the various key poses involved in the obstacle avoidance
experiment of the robotic arm—including the initial, grasping, intermediate, and target
poses—are precisely synchronized and scheduled using the topics and services of ROS.
These intricate motion sequences and positional transformation processes are illustrated in
Figure 18.

In order to verify the feasibility and superiority of the algorithm through real exper-
iments, Under the same obstacle conditions described above, twenty simulations were
conducted for each algorithm, and the results were averaged, as shown in Table 9.
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sampling points, and adjusts the direction of node extension. This method effectively ad-

dresses the pathfinding problem in complex environments. In addition, redundant inter-

mediate nodes are streamlined using triangular inequalities to further optimize the path. 

The results of the experimental simulation confirm the superiority of the algorithm 

compared to traditional algorithms, particularly in multi-obstacle sampling environ-

ments. Physical experiments further validate the feasibility of the algorithm in practical 

Figure 18. Real robotic arm poses: (a) initial pose; (b) gripping pose; (c) intermediate pose; and
(d) target pose.

The experimental data demonstrate that the HP-APF-RRT* exhibits high efficiency
in motion planning during simulation experiments. This efficiency is evident in the algo-
rithm’s optimality and completeness, specifically in its ability to determine the shortest
paths and facilitate the fastest planning. The HP-APF-RRT* algorithm also performs well
in physical experiments incorporating real-world application scenarios. Its performance
satisfies the motion requirements of a real robotic arm, particularly in the time needed to
execute the gripping action, which is shorter than that of other algorithms.

Table 9. Comparison of algorithms.

Algorithm Name Average Grasp Time/s Average Search Time/s Search Success Rate

RRT 49.65 24.75 85%
RRT* 58.74 36.71 80%

P-RRT* 53.61 32.95 85%
HP-RRT* 24.85 7.56 100%

HP-APF-RRT* 19.79 5.62 100%

4. Conclusions
In this study, a six-degree-of-freedom robotic arm is selected as the research subject.

The standard D–H parameter model is employed to establish its coordinate system and
to derive both its forward and inverse kinematic equations. On this basis, an improved
RRT* path planning algorithm (HP-APF-RRT*) combines a heuristic probability sampling
strategy with the artificial potential field method. This approach aims to address the issues
of low sampling efficiency, extended computation time, non-optimal paths, and failures in
pathfinding within complex environments that are encountered by the traditional RRT*
in three-dimensional space path planning. The algorithm minimizes redundant sampling
nodes and enhances sampling efficiency by incorporating heuristic probabilistic sampling
techniques. At the same time, the artificial potential field method is introduced to construct
gravitational and repulsive fields. This approach guides the sampling points to avoid ob-
stacles and move toward the target point, enhances the gravitational effect on the sampling
points, and adjusts the direction of node extension. This method effectively addresses the
pathfinding problem in complex environments. In addition, redundant intermediate nodes
are streamlined using triangular inequalities to further optimize the path.

The results of the experimental simulation confirm the superiority of the algorithm
compared to traditional algorithms, particularly in multi-obstacle sampling environments.
Physical experiments further validate the feasibility of the algorithm in practical applica-
tions. Compared to the traditional RRT* algorithm, the running speed of this algorithm has
been significantly enhanced.

The work presented in this paper has significant potential for improvement. Real-time
path planning for dynamic target points is a significant research challenge, particularly



Sensors 2025, 25, 328 26 of 27

in the context of utilizing reinforcement learning algorithms for moving target points. In
real-world applications, such as robotic arm garbage sorting, real-time target tracking, and
dynamic target path planning, traditional path planning algorithms must be integrated
with reinforcement learning. This combination enhances adaptability and robustness in
response to dynamically changing environments.
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