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Abstract

Autonomous driving in complex real-world environments requires robust perception, rea-
soning, and physically feasible planning, which remain challenging for current end-to-end
approaches. This paper introduces VLA-MP, a unified vision-language-action framework that
integrates multimodal Bird’s-Eye View (BEV) perception, vision-language alignment, and a
GRU-bicycle dynamics cascade adapter for physics-informed action generation. The system
constructs structured environmental representations from RGB images and LiDAR, aligns
scene features with natural language instructions through a cross-modal projector and large
language model, and converts high-level semantic hidden states outputs into executable and
physically consistent trajectories. Experiments on the LMDrive dataset and CARLA simula-
tor demonstrate that VLA-MP achieves high performance across the LangAuto benchmark
series, with best driving scores of 44.3, 63.5, and 78.4 on LangAuto, LangAuto-Short, and
LangAuto-Tiny, respectively, while maintaining high infraction scores of 0.89–0.95, outper-
forming recent VLA methods such as LMDrive and AD-H. Visualization and video results
further validate the framework’s ability to follow complex language-conditioned instructions,
adapt to dynamic environments, and prioritize safety. These findings highlight the potential
of combining multimodal perception, language reasoning, and physics-aware adapters for
robust and interpretable autonomous driving.

Keywords: Vision-Language-Action models; multimodal perception; autonomous driving;
large language models; trajectory planning

1. Introduction
In complex and dynamic real-world driving environments, human drivers can effort-

lessly handle various emergencies and rare corner cases by leveraging their rich world
knowledge and powerful reasoning capabilities. However, current autonomous driving sys-
tems often demonstrate inadequate performance when facing these challenges. Although
deep learning-based end-to-end autonomous driving methods have achieved remarkable
results in standard benchmark tests, they frequently lack deep understanding of complex
scenarios and flexible reasoning capabilities [1,2].

The emergence of vision-language-action (VLA) models brings new promise to this
challenge [3]. As shown in Figure 1, unlike traditional modular autonomous driving sys-
tems, VLA models break down the boundaries between perception, prediction, planning,
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and control modules, directly generating intelligent driving decisions from multimodal in-
puts (vision and language) through a unified framework. By integrating world knowledge
from large-scale pre-trained vision-language models with domain-specific autonomous
driving expertise, VLA models can deeply understand complex driving contexts and natu-
ral language instructions like human drivers, directly generating corresponding intelligent
driving behaviors [4,5].

Figure 1. Comparison between traditional autonomous driving systems vs. VLA driving systems.

Recent research demonstrates that VLA models have achieved significant progress in
multitask joint training and complex scene reasoning, redefining the capability boundaries
of autonomous driving systems. These models can not only handle traditional perception
and planning tasks but also demonstrate promising capabilities in understanding complex
driving scenarios and executing language-conditioned driving behaviors [6–14].

In recent years, breakthroughs in several key technologies have laid the foundation for
VLA autonomous driving systems [4]. Multimodal perception and BEV fusion technology
has evolved from simple sensor fusion to deep semantic understanding, where Bird’s Eye
View (BEV) representation successfully unifies the processing pipeline for RGB camera and
LiDAR point cloud data [15–19]. The introduction of Transformer architecture has further
enhanced sequence modeling and attention mechanism capabilities, enabling systems to
better process spatiotemporal information [20–23]. Meanwhile, the powerful reasoning
capabilities demonstrated by large language models enable systems to understand complex
traffic rules and driving instructions, providing new possibilities for intelligent driving
decision making [24].

Despite the maturing technological foundation, practical application of VLA au-
tonomous driving systems still faces critical challenges [4]. The core issue lies in effectively
fusing multimodal feature representations [25]. Traditional feature concatenation methods
struggle to establish deep cross-modal semantic associations, while existing semantic-
to-action mapping methods often lack consideration of vehicle physical characteristics,
resulting in feasibility issues in generated trajectories during actual execution [2]. Ad-
ditionally, maintaining language understanding capabilities while achieving multitask
collaborative optimization remains an urgent problem in system design [26].

To address these challenges, this paper proposes a closed-loop VLA-based autonomous
driving training framework that deeply integrates multimodal perception, language under-
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standing, and physical constraint modeling for end-to-end intelligent driving decisions.
The main contributions of this work are as follows:

1. We propose a unified end-to-end VLA framework that integrates multimodal BEV per-
ception, vision-language understanding, and physically constrained action generation,
achieving seamless mapping from sensor observations and natural language instruc-
tions to executable control commands, with demonstrated closed-loop operation and
competitive driving performance in the CARLA simulation environment.

2. We extract hierarchical map, scene, and trajectory features from BEV space, charac-
terizing static road topology, dynamic traffic participants, and future motion trends,
respectively, and pass these features to the large language model to bridge perception
and cognition.

3. We design a GRU-bicycle model cascade adapter where the GRU processes tempo-
ral semantic information and the bicycle model ensures trajectory compliance with
vehicle dynamics constraints, guaranteeing physical feasibility and executability of
generated trajectories.

4. We develop a three-stage progressive training strategy encompassing environmental
perception pre-training, vision-language alignment, and end-to-end fine-tuning, en-
abling effective knowledge transfer and stable convergence in the complex multimodal
learning process.

2. Related Works
2.1. End-to-End Autonomous Driving

End-to-end autonomous driving represents a paradigm shift from traditional modular
approaches, directly mapping sensor inputs to driving actions through a unified neural
architecture, thereby avoiding information loss between modules in traditional pipelines.
The unified perception-prediction-planning framework has become the cornerstone of this
field. UniAD [23] introduced a comprehensive framework that integrates multiple driving
tasks, such as object detection, tracking, motion prediction, occupancy prediction, and
planning, into a single neural network, demonstrating the performance advantages of cross-
task joint optimization over independent modular methods. Building on this foundation,
several methods have adopted vectorized representations and sparse attention mechanisms
to efficiently process complex traffic scenarios in a unified vector space and achieve direct
mapping from perception to planning through spatiotemporal feature learning [27–30],
further highlighting the advantages of end-to-end multimodal fusion and joint optimization,
including improved safety and performance.

The deployment challenges of end-to-end systems primarily lie in model complexity
and generalization capabilities. Several works have identified key issues in handling long-
tail scenarios and proposed methods to improve generalization and domain adaptation
through synthetic data augmentation and transfer learning techniques [31,32], laying an
important foundation for the practical application of end-to-end autonomous driving.

Although end-to-end methods exhibit advantages in unified optimization, existing
systems are primarily confined to traditional perception-prediction-planning paradigms
and lack the ability to understand and reason about natural language instructions. These
systems are unable to handle complex driving scenarios that require commonsense rea-
soning and language interaction, making it difficult to achieve truly human-machine
interactive intelligent driving, thus posing an urgent need for the development of unified
vision-language-action frameworks.
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2.2. Multimodal Perception and BEV Fusion

Integrating multiple sensor modalities through Bird’s Eye View (BEV) representations
has revolutionized autonomous driving perception, providing a unified framework for
handling heterogeneous sensor data while maintaining spatial consistency. RGB-LiDAR
fusion methods have evolved from simple concatenation to complex cross-modal learning
frameworks. TransFusion [33] introduced a transformer-based fusion architecture that
learns attention weights across different modalities, enabling adaptive sensor integration
based on environmental conditions. Several subsequent methods have further promoted
bidirectional information flow between RGB and LiDAR features and bridged semantic
gaps under adverse conditions [34,35], enhancing perception robustness.

Unified BEV representation learning has become the dominant paradigm for multi-
modal fusion. BEVFormer [17] laid the foundation by demonstrating how transformer
architectures can effectively learn BEV representations from multi-camera inputs through
spatial cross-attention mechanisms. BEVFusion [16] extended this concept by integrating
LiDAR point clouds, showing significant performance improvements in detection and
segmentation tasks. Recent advances include addressing depth estimation challenges in
camera-based BEV learning and introducing position-guided attention mechanisms for
more accurate 3D object detection in BEV space [19,36].

Although existing multimodal fusion methods have made significant progress in
perception tasks, deficiencies remain in feature representation and cross-modal alignment.
Existing methods primarily employ simple feature concatenation or attention mechanisms
for modal fusion, lacking hierarchical feature extraction strategies to distinguish different
semantic levels, such as static environmental structures, dynamic traffic participants, and
future motion trends.

2.3. Vision–Language Models in Autonomous Driving

Integrating vision–language models into autonomous driving systems represents
a major leap toward human-like reasoning and decision-making capabilities, enabling
vehicles to understand and respond to natural language instructions while maintaining
comprehensive scene perception. Large language models for scene understanding and
decision making have demonstrated exceptional capabilities in handling complex driving
scenarios. LLM4Drive [1] provides a comprehensive review on adapting large language
models to autonomous driving tasks, highlighting their potential in managing complex
reasoning and commonsense understanding. GPT-Driver [13] demonstrates how generative
pre-trained transformers can be fine-tuned for driving-specific tasks, including scene
description, risk assessment, and action planning.

Interpretable driving behavior generation is becoming increasingly important for
building trust and ensuring system safety. DriveGPT4 [11] pioneered the integration of
large language models into interpretable driving decisions, showing how natural language
explanations can accompany driving behaviors. LMDrive [12] extends this concept by
incorporating chain-of-thought reasoning, enabling the system to express decision pro-
cesses step by step. ADAPT [37] further enhances interpretability by introducing adaptive
reasoning mechanisms that can provide explanations at varying levels of detail based on
scene complexity and user needs.

Instruction-following driving systems represent a key step toward more interactive
and adaptive autonomous driving vehicles. Talk2Drive [38] extends this concept by en-
abling real-time dialogue between passengers and the driving system, facilitating dynamic
route changes and driving style adjustments. NuPrompt [39] introduces a prompting
framework capable of handling complex multi-step instructions.
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However, existing VLA methods exhibit key deficiencies in the physical feasibility of
trajectory generation. Most methods directly output trajectory coordinates from language
models, lacking modeling of vehicle dynamics constraints, resulting in trajectories that
may violate physical laws and cannot be executed in practice. Additionally, existing
semantic-action mapping mechanisms often overlook the processing of temporal dynamic
information, making it difficult to fully utilize historical state information for continuous
trajectory planning. These issues underscore the importance of integrating vehicle physical
models and temporal state modeling in VLA systems.

3. Methodology
This paper proposes VLA-MP (Multimodal Perception and Physics-Informed Action

Generation), an end-to-end vision-language-action framework that integrates multimodal BEV
perception, vision-language bridging, and physics-constrained action generation as its core
components, achieving a unified mapping from sensor observations and natural language
instructions to executable control commands. Compared with traditional modular systems,
VLA-MP can fuse scene semantics with language priors within a single architecture, thereby
enhancing understanding and reasoning capabilities in complex scenarios.

As shown in Figure 2, the system integrates pre-trained environmental components, a
driving VLA module, and an adapter for end-to-end processing. The system takes multi-
view RGB images, LiDAR point clouds, and user instructions as inputs. The Env encoder
and decoder components, which are pre-trained from the multimodal environmental
perception module (Figure 3), construct structured environmental representations in BEV
space covering dynamic traffic participants, static road semantics, and motion priors. These
feature outputs are then fed into the driving VLA module to perform vision-language
fusion and generate decisions.

Figure 2. Overview of the proposed VLA-MP autonomous driving framework. The system integrates
pre-trained env encoder and decoder components, a driving VLA module, and an adapter to achieve
end-to-end mapping from multimodal inputs to control commands. The Env encoder and decoder
components are pre-trained from the multimodal environmental perception module (detailed in
Figure 3).

As illustrated in Figure 4, training adopts a three-stage strategy: Stage 1 performs pre-
training of the multimodal environmental perception module components (Env encoder,
Env decoder, and Prediction heads), focusing on multitask joint optimization of perception
and environmental modeling to obtain robust and reusable BEV representations; Stage
2 freezes the pre-trained Env encoder and decoder from the environmental perception
module, text tokenizer, and LLM, training only the projectors and adapter, where the Env
encoder and decoder output feature-level representations (discarding prediction heads)
to learn the alignment mapping from BEV features to language space; and Stage 3 freezes
the pre-trained Env encoder and decoder from the environmental perception module
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and text tokenizer, jointly training the projectors, LLM, and adapter to further optimize
multimodal reasoning and instruction-conditioned driving decision generation capabilities.
Finally, the adapter converts high-level semantic hidden states output by the LLM into
executable trajectories and low-level control commands (steering, throttle, brake) that
satisfy vehicle dynamics constraints. This design deeply couples the structured world
model provided by BEV with the knowledge and reasoning capabilities of LLMs, providing
a robust, interpretable, and executable decision foundation for complex, dynamic, and
language-conditioned driving tasks.

Figure 3. Multimodal Environmental Perception Module used in Stage 1 pre-training. The module
processes RGB images and LiDAR data through separate 2D and 3D backbones, fuses them via a BEV
fusion encoder, and extracts hierarchical features through scene, map, and trajectory decoders with
corresponding prediction heads for multitask learning.

Figure 4. Three-stage training strategy. Stage 1 performs multimodal environmental perception pre-training,
Stage 2 conducts vision–language alignment training, and Stage 3 performs end-to-end fine-tuning.

3.1. Multimodal Environmental Perception Module

As shown in Figure 3, the multimodal environmental perception module serves as
the foundational component for Stage 1 pre-training, responsible for unifying hetero-
geneous data from diverse sensors into structured BEV representations and extracting
hierarchical features including scene semantics, road topology, and motion priors through
specialized environmental understanding heads. During VLA-MP training, we utilize
the pre-trained env encoder and decoder components from this module. This module
employs a Transformer-based fusion architecture [30,40] that maps RGB images and LiDAR



Sensors 2025, 25, 6163 7 of 22

point cloud data into a unified BEV grid space, providing stable and rich environmental
representations for subsequent language-vision alignment and trajectory generation.

The system first processes RGB images and LiDAR point cloud data through separate 2D
and 3D backbone networks. For multi-view RGB inputs, ResNet50 [41] is employed as the 2D
backbone to extract deep features from each viewpoint, with learnable view embeddings and
positional encodings to distinguish spatial relationships between different cameras. LiDAR
data is converted to pseudo-image representation through the PointPillar [42] network and
subsequently processed by a 3D convolutional backbone to extract geometric structural fea-
tures. Features from both modalities are then deeply fused in the BEV fusion encoder through
cross-modal attention mechanisms [12,17]. Specifically, RGB features from each viewpoint
are processed through convolutional projection and then flattened into a sequence format
for the Transformer encoder with multi-head self-attention to fuse multi-view information.
LiDAR features processed by PointPillar serve as BEV queries in a H ×W format. The
BEV decoder then uses these LiDAR-derived queries to attend to the encoded RGB features
through cross-attention, where the RGB tokens serve as keys and values, while LiDAR fea-
tures serve as queries, enabling the model to selectively extract relevant visual information
for each BEV grid location. This process generates a unified BEV feature representation
FBEV ∈ RB×D×H×W , where B denotes batch size, D represents feature dimension, and H, W
indicate BEV grid resolution.

To support multitask learning and hierarchical environmental understanding, the
system incorporates three specialized environmental understanding heads, each equipped
with task-specific query mechanisms and network architectures to extract correspond-
ing semantic information. The scene head interacts with BEV features through learnable
query tokens Qscene and utilizing multi-layer linear transformation networks [43] to out-
put 8-dimensional feature vectors containing target confidence, center point coordinates,
bounding box dimensions, heading angle, and motion velocity, achieving precise detection
and state estimation for traffic participants including vehicles, pedestrians, and bicycles.
The map head employs an upsampling decoder structure [44], decoding from BEV features
through specialized query tokens Qmap and progressively upsampling to high resolution,
generating three-channel semantic maps containing road markings, drivable lanes, and
sidewalks to provide precise road topology information for path planning. The trajectory
head utilizes a GRU temporal predictor structure [45], extracting temporally correlated fea-
ture representations through query tokens Qtrajectory and modeling temporal dependencies
of vehicle motion using GRUs, providing prior information containing motion trends and
scene constraints for the subsequent physics-constrained trajectory generation module.

Through this hierarchical environmental understanding design, the system can simul-
taneously process static scene structures and dynamic traffic situations, providing com-
prehensive and structured environmental cognitive foundations for subsequent language-
conditioned reasoning and action generation. The scene head employs threat-aware multi-
task detection loss [30] for supervised learning:

Lscene = λprobLprob + λlocLloc + λboxLbox + λoriLori (1)

where Lprob is the probability loss using binary cross-entropy to supervise object existence
prediction; Lloc is the location loss employing L1 distance to supervise center point coordinate
prediction; Lbox is the bounding box loss using L1 distance to supervise object dimension
prediction; and Lori is the orientation loss using L1 distance to supervise heading angle
estimation. All regression losses employ dynamic threat-aware weighting coefficients. These
four loss components are essential for comprehensive object detection: probability loss ensures
accurate object identification, location and box losses provide precise spatial localization
needed for safe trajectory planning, and orientation loss captures vehicle heading information
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critical for predicting future motion patterns and potential collision risks. The map head
utilizes binary cross-entropy loss for pixel-wise semantic segmentation supervision:

Lmap = −∑
h,w

[mh,w log σ(m̂h,w) + (1−mh,w) log(1− σ(m̂h,w))] (2)

where mh,w are ground truth semantic labels and m̂h,w are predicted semantic maps at spatial
coordinates (h, w). The trajectory head adopts L1 loss for trajectory prediction supervision:

Ltraj =
T

∑
t=1
||pt − p̂t||1 (3)

where pt and p̂t represent ground truth and predicted trajectory coordinates at time step t,
respectively, and T is the prediction horizon.

3.2. Vision–Language Bridge and Large Language Action Model

The vision–language bridge module serves as the critical component connecting
BEV environmental perception with intelligent decision making, responsible for precisely
aligning feature representations from the environmental perception module with natural
language instructions and achieving instruction-conditioned scene understanding and
high-level decision generation through the large language action model. As illustrated
in the driving VLA module of Figure 2, this module primarily consists of cross-modal
projectors and a large language model (LLM), realizing unified processing of multimodal
information by mapping BEV features to language space and fusing them with text tokens.
The complete vision–language bridging process is summarized in Algorithm 1.

Algorithm 1 Vision–Language Bridge and Cross-Modal Alignment
Require : BEV decoder features {Fscene, Fmap, Ftraj}; instruction T

Ensure : waypoints

// Cross-Modal Feature Projection

1 Fuse environmental features: Ffeatures ← Concat(Fscene, Fmap, Ftraj);

2 Initialize learnable query tokens Q;

3 Cross-attention interaction: Zvisual ← QFormer(Q, Ffeatures);

4 Project to LLM space: V← LinearProj(Zvisual);

// Multimodal Token Fusion

5 Text embedding: Etext ← Embed(Tokenizer(T));

6 Token concatenation: Ejoint ← Concat(Etext, V);

// LLM Reasoning and Decision Generation

7 R← LLMhidden(Ejoint);

8 waypoints←WaypointsDecoder(R);

The cross-modal projector employs a BLIP2-like [46] Q-Former architecture to achieve
vision–language alignment. Unlike conventional cross-attention that directly maps features,
Q-Former uses a fixed set of learnable query tokens to selectively extract task-relevant
information from BEV features. The system performs cross-attention interaction between
learnable query tokens and BEV features to extract key semantic information, which is
then mapped to the large language model’s feature space through linear projection layers.
During Stage 2 training, the pre-trained environmental components discard prediction
heads and output only feature-level representations from the environmental decoder,
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containing semantic information from scene understanding, map generation, and trajectory
planning branches. The Q-Former selectively extracts driving-task-relevant key information
from these BEV features through cross-attention mechanisms, generating compact visual
representations. Subsequently, linear projection layers ensure precise alignment between
visual semantics and language semantics at the feature level, ultimately outputting visual
token representations.

The large language action model employs pre-trained language models based on
LLaVA [47] or Qwen [48] architectures as the reasoning backbone, achieving instruction-
conditioned driving decision generation by processing joint sequences of text tokens and
visual tokens. The system processes pre-existing natural language driving instructions
from the LMDrive dataset rather than generating new command prompts, converting these
given instructions into text token sequences through a text tokenizer, then concatenates
them with visual tokens processed by the projector to form unified multimodal input
sequences. The large language model leverages its powerful self-attention mechanism
to simultaneously model complex dependencies between text instructions and visual
scene information, performing deep understanding of complex driving scenarios through
commonsense knowledge and reasoning capabilities acquired during pre-training. The
model can handle various types of driving instructions, such as “Maintain your current
course until the upcoming intersection,” and generate corresponding high-level semantic
decisions based on current visual observations.

Through this carefully designed vision-language bridging mechanism, the system
can fully leverage the knowledge repository and reasoning capabilities of large language
models to achieve deep understanding of complex driving scenarios and intelligent decision
making based on natural language instructions. The high-level semantic representations
output by the large language model are passed to the subsequent physics-constrained action
generation module, where they are converted through waypoint decoders into executable
trajectories and low-level control commands that satisfy vehicle dynamics constraints,
realizing complete mapping from semantic understanding to physical execution.

3.3. Physics-Constrained Action Generation

The physical-constrained action generation module serves as the execution terminal of
the entire VLA system, responsible for converting high-level semantic hidden states output
by the large language model into executable trajectories and control commands that satisfy
vehicle dynamics constraints. The core innovation of this module lies in introducing a cascaded
architecture of GRU temporal state modeling [45] and bicycle model dynamics [49], ensuring
that generated trajectories are not only semantically reasonable but, more importantly, physi-
cally feasible and safe. Unlike traditional methods that directly output trajectory coordinates,
this module achieves reliable mapping from semantic understanding to physical execution by
modeling temporal dependencies and physical constraints of vehicle motion.

The system employs a GRU recurrent neural network to model the temporal motion
states of the vehicle, effectively capturing the influence of historical state information on
future trajectories. The GRU unit takes the vehicle’s three-dimensional state vector [x, y, θ]

as input, where x and y represent the vehicle’s position in the BEV coordinate system, and θ

represents the vehicle’s heading angle. Compared to traditional methods that only consider
positional information, introducing the heading angle enables the system to more accurately
model vehicle motion trends and steering behaviors. The GRU’s hidden state is initialized
by the output features of the large language model, ensuring that the temporal modeling
process can fully utilize semantic information from language instructions and visual scenes.
At each time step, the GRU predicts control variables based on the current state and hidden
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state, including vehicle velocity v and steering angle δ, which are subsequently passed to
the physical dynamics module for constraint processing.

To ensure the physical feasibility of generated trajectories, the system integrates
vehicle dynamics constraints based on the bicycle model [49]. The bicycle model, as a
classical simplified model of vehicle kinematics, can accurately describe vehicle steering
and driving behaviors while maintaining computational efficiency. The model adopts
fixed parameters as specified in the LMDrive dataset: a 3.1 m wheelbase corresponding to
standard vehicle configurations in the CARLA [50] simulation environment, and a 0.1 s
discrete time step, ensuring consistency with the dataset configuration and fair comparison
with other methods. The system performs state updates through kinematic equations of
the bicycle model: new positions are calculated through current velocity, heading angle,
and time step, while new heading angles are updated based on velocity, steering angle,
and wheelbase parameters. To maintain numerical stability of angles, the system performs
[−π, π] range normalization of heading angles after each step update.

To achieve balanced optimization of trajectory quality, physical feasibility, and safety,
the system employs a multi-objective loss function that combines trajectory prediction,
safety constraints, and termination prediction:

Laction = λtrajLtraj + λendLend + λsa f etyLsa f ety (4)

where the trajectory loss is

Ltraj =
N

∑
i=1
||wi − ŵi||1 (5)

where wi and ŵi represent the ground truth and predicted waypoints, respectively, for
measuring the L1 distance between predicted and ground truth waypoints. The safety
loss is

Lsafety =
N

∑
i=1

Mi

∑
j=1

(
max

(
0, dsafe − ∥wi − aji∥2

))2
(6)

which penalizes trajectories that are too close to other traffic participants, where aji denotes
the position of actor j at time step i (j = 1, . . . , Mi), and dsafe is the safety-distance threshold.
And the termination loss is

Lend = −
N

∑
i=1

[ei log σ(êi) + (1− ei) log(1− σ(êi))] (7)

for predicting when the vehicle should complete its trajectory sequence with ei ∈ {0, 1}
denoting termination labels. The trajectory termination prediction loss is designed to
predict when the vehicle should complete its current trajectory sequence, enabling the
system to determine appropriate stopping points or transition moments for different
driving maneuvers.

Through this cascaded architecture design of GRU temporal modeling and the bicycle
model, the system achieves reliable conversion from high-level semantic decisions to
low-level control commands. The generated 5 waypoints not only respond to language
instructions and visual scene requirements at the semantic level but also satisfy vehicle
dynamics constraints and safety requirements at the physical level. The waypoints are
subsequently converted to vehicle control commands (steering, throttle, brake) through
PID controllers for deployment in the CARLA simulation environment. This physics-
aware action generation mechanism effectively addresses the key deficiency of traditional
VLA models in trajectory physical feasibility, laying an important foundation for the
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practical deployment of language-conditioned autonomous driving. The complete physics-
constrained action generation process is summarized in Algorithm 2.

Algorithm 2 Physics-Constrained Action Generation.
Require : LLM hidden states R; initial state s0 = [x0, y0, θ0]

Ensure : control commands

// Initialize GRU temporal state modeling
1 h← GRU_InitialHidden(R);
2 state← s0; [x, y, θ]← state;
3 waypoints← [ ];

// Iterative trajectory generation with bicycle model
4 for step = 1 to 5 do
5 h← GRU(state, h);
6 [v, δ]← ControlPredictor(h);

// Bicycle model dynamics
7 L← 3.1; dt← 0.1;
8 x ← x + v · dt · cos(θ);
9 y← y + v · dt · sin(θ);

10 θ ← θ + v · dt · tan(δ)/L;
11 θ ← atan2(sin(θ), cos(θ));
12 state← [x, y, θ];
13 waypoints.append([x, y]);

// Convert waypoints to control commands
14 [steer, throttle, brake]← PIDControl(waypoints, v);

4. Experiments
4.1. Datasets

We conduct experiments on the LMDrive dataset [12], a large-scale multimodal
dataset specifically designed for language-conditioned autonomous driving research. The
dataset comprises approximately 64,000 instruction-sensor-control data clips collected in
the CARLA simulator. Each clip contains one navigation instruction, several notice instruc-
tions, a sequence of multimodal multi-view sensor data, and control signals, with durations
ranging from 2 to 20 s.

The dataset was collected using a rule-based expert agent across 8 towns in CARLA
0.9.10.1, encompassing diverse weather conditions and routes. The sensor configuration
includes multi-view cameras (400× 1200 resolution, which can be split into left, center, right,
and rear views) and LiDAR point clouds (covering 180 degrees of horizontal field of view).
Data is collected at a frequency of approximately 10Hz, ensuring rich temporal information.

4.2. Implementation Details

In the Env Perception Module pre-training stage, we use 8 RTX A6000 GPUs to train
for 25 epochs. The multi-view input size is set to 3 × 128 × 128, integrating multi-view
cameras, LiDAR, and map information. Training uses the AdamW optimizer with a
learning rate of 0.001, backbone learning rate of 0.0004, and weight decay of 0.05. The
learning rate scheduling adopts a cosine annealing strategy with 5 epochs of warmup. The
scene understanding loss function weights are set to λprob = 0.4, λloc = λbox = λori = 0.2,
with reference to LMDrive [12] and InterFuser [30].
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In the Driving VLA module training stage, we use 8 RTX A6000 GPUs (NVIDIA Corpo-
ration, Santa Clara, CA, USA) to train for 10 epochs. We adopt LLaVA-v1.5-7B as the base
large language models, with the maximum text length set to 64. Training uses linear warmup
cosine learning rate scheduling with an initial learning rate of 0.0002 and minimum learning
rate of 0.00002, and integrates a GRU encoder to process temporal information. The action
generation loss function weights are set to λtraj = 1.0, λend = 0.2, λsa f ety = 0.1.

The evaluation stage runs on a local RTX3090 single GPU, using the CARLA 0.9.10.1
simulator for closed-loop testing.

4.3. Evaluation Metrics

We adopt the CARLA Leaderboard [51] evaluation protocol to assess the driving
proficiency of our VLA autonomous driving system. The evaluation quantifies driving
performance across multiple dimensions through a comprehensive set of metrics.

Route Completion (RC) measures the percentage of route distance successfully com-
pleted by the agent, Ri, ranging from 0 to 100.

The Infraction Score (IS) aggregates all infractions through the formula:

Pi =
1

1 + ∑j cj × #infractionsj

where agents begin with a base score of 1.0, cj represents the penalty coefficient for infraction
type j, and #infractionsj is the number of infractions of type j.

The Driving Score (DS) serves as the primary evaluation metric, defined as the product
of route completion rate Ri and infraction penalty Pi: DS = Ri × Pi, where Ri represents
the completion percentage of the i-th route and Pi denotes the corresponding infraction
penalty coefficient, with a maximum value of 100.

The evaluation system monitors various types of infractions with corresponding
penalty coefficients: collisions with pedestrians (1.0), collisions with other vehicles (0.70),
collisions with static objects (0.60), running red lights (0.40), violating stop signs (0.25), and
off-road driving (proportional penalty).

Upon completion of all test routes, the system calculates global values for each metric
using arithmetic averaging across all routes. The global driving score serves as the primary
benchmark for inter-system performance comparison.

4.4. Results and Analysis
4.4.1. Overall Performance Comparison

We conducted a comprehensive quantitative evaluation on the LangAuto benchmark
to assess the effectiveness of VLA-MP. Table 1 reports the comparison results against existing
baselines under three evaluation settings: LangAuto (routes > 500 m), LangAuto-Short
(150–500 m routes), and LangAuto-Tiny (<150 m routes).

Our model, built upon LLaVA-7B, achieves the best driving scores across all three
settings, with DS values of 44.3, 63.5, and 78.4, respectively. In terms of the route completion
rate, the method also reaches high levels of 49.6, 71.1, and 82.3, indicating consistent
performance across different route lengths and levels of complexity. Regarding safety, the
proposed approach yields infraction scores of 0.89, 0.90, and 0.95, demonstrating reduced
violation rates. These results reflect the contribution of the physics-constrained action
generation module and the GRU-bicycle dynamics cascade, which together help ensure the
feasibility and safety of the generated trajectories.

Performance on shorter routes (LangAuto-Tiny) is notably higher, suggesting that the
framework is reliable in relatively simple driving tasks. As route length and complexity
increase, performance decreases but remains competitive, confirming the robustness and
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practicality of the approach. Overall, the results validate the effectiveness of the end-
to-end vision–language–action architecture in handling language-conditioned driving
scenarios, and highlight the potential of integrating large language models into autonomous
driving systems. The performance variations among baselines reflect differences in model
capacity (e.g., DSDrive’s [14] 1B vs. 7B parameters), training strategies, hierarchical BEV
feature extraction, and the lack of physics-constrained trajectory generation in existing
VLA methods.

Table 1. Overall performance comparison on the LangAuto benchmark under three evaluation
settings: LangAuto, LangAuto-Short, and LangAuto-Tiny. Higher values indicate better performance
(↑). Best results are highlighted in bold.

LLM Backbone
LangAuto LangAuto-Short LangAuto-Tiny

DS ↑ RC ↑ IS ↑ DS ↑ RC ↑ IS ↑ DS ↑ RC ↑ IS ↑

Random Init. 10.7 16.2 0.63 14.2 20.1 0.72 20.1 24.7 0.75
LMdrive (LLaMA-7B) [12] 31.3 37.1 0.82 42.8 49.1 0.87 52.5 57.8 0.91
LMdrive (LLaVA-7B) 36.2 46.5 0.81 50.6 60.0 0.84 66.5 77.9 0.85
AD-H (LLaVA-7B) [52] 44.0 53.2 0.83 56.1 68.0 0.78 77.5 85.1 0.91
AD-H (Mipha-3B) 41.1 48.5 0.86 54.3 61.8 0.86 68.0 74.4 0.87
BEVdriver (Llama3.1-8B-I) [6] 33.1 40.7 0.83 60.9 65.8 0.92 66.0 69.9 0.90
DSDrive (LLaMA-1B) [14] 29.5 39.3 0.77 62.0 76.1 0.81 60.6 72.5 0.84
Ours VLA-MP (LLaVA-7B) 44.3 49.6 0.89 63.5 71.1 0.90 78.4 82.3 0.95

4.4.2. Qualitative Visualization Results

This section presents specific driving scenarios to deeply analyze the decision-making
process and execution performance of the VLA autonomous driving framework in complex
environments. To intuitively demonstrate the complete perception-decision-execution
pipeline of the system, we designed a customized HUD (Head-Up Display) interface. This
interface integrates multiple information sources, including multi-view camera inputs
(left view, focus view, right view) providing 360-degree environmental perception, the
main driving perspective displaying front road conditions, a system status panel showing
real-time time, the frame count and vehicle speed, a vehicle control panel displaying
throttle, steering, and brake values with progress bars, and a navigation information panel
presenting planned waypoint coordinates and current language instructions.

As shown in Figure 5, when the system receives the instruction “Get to the point, the
next one’s just 49 m ahead and 11 m to your left”, it demonstrates the understanding and
execution capability for specific spatial distance instructions. The system accurately parses
the spatial position information, with the vehicle traveling at 8.7 km/h and a steering
value of −0.05 indicating execution of a slight left turn action. The corresponding BEV
clearly shows the trajectory planning generated by the system, marked by numbered
waypoint sequences 1–5 indicating the target path, validating that our vision-language
bridge module can effectively convert spatial descriptions in natural language into precise
trajectory planning.

The nighttime scenario shown in Figure 6 highlights the system’s safety perception
and emergency decision-making capabilities. Facing the instruction “Preserve your current
trajectory until the forthcoming intersection”, the system detects pedestrians ahead in the
nighttime urban environment and immediately executes safety stop operations: speed
reduces to 0.0 km/h with the brake value reaching 1.00. From the navigation panel in the
interface and the bird’s-eye view, it can be observed that the first three waypoints planned
by the system almost overlap at the current position, indicating that the vehicle chooses to
wait in place until predicting when the pedestrian passes before continuing forward. This
behavior demonstrates the system’s comprehensive decision-making capability, showing
that while executing language instructions, it can simultaneously perceive environmental
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changes in real time and prioritize driving safety, reflecting the effective integration of
multimodal perception and intelligent decision making.

(a) HUD driving view

(b) BEV trajectory planning view

Figure 5. Spatial navigation scenario demonstration. (a) HUD interface displaying multi-view camera
inputs, vehicle controls, and navigation information guided by language instructions. (b) BEV
trajectory planning view with the numbered waypoints (1–5), indicating the planned path.
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(a) HUD driving view

(b) BEV trajectory planning view

Figure 6. Safety-aware emergency stop scenario. (a) HUD interface showing the emergency stop
operation with a speed of 0.0 km/h and braking upon detecting pedestrians in a nighttime environ-
ment. (b) BEV view showing overlapping waypoints at the current position, indicating the vehicle’s
decision to wait until the pedestrian pass.
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4.4.3. Dynamic Video Demonstrations

In addition to the HUD interface design and static scene analysis, we provide three
video demonstrations (see Supplementary Materials) to more intuitively showcase the
performance of the proposed VLA framework during continuous driving processes. Un-
like static images, these videos can comprehensively present the system’s perception–
understanding-execution process across temporal sequences, thereby highlighting the
model’s adaptability and reliability in dynamic environments.

Videos S1 and S2 correspond to the scenarios shown in Figure 5 and Figure 6, respectively.
These two videos complement the static visualization results by demonstrating the system’s
understanding of language instructions, perception of environmental elements, and subsequent
action execution processes in the same environments. Through dynamic demonstrations, the
gradual completion of behaviors such as steering, acceleration, or collision avoidance by the
vehicle in interactive scenarios can be observed more clearly.

Video S3 presents a longer driving segment (approximately 50 s) that focuses on
demonstrating the system’s long-term sequential decision-making and execution capabili-
ties in more complex scenarios. Unlike the previous two short-term tasks, this case reflects
the model’s consistency in multi-step task planning, maintaining coherent goal-oriented
behavior in dynamic traffic environments, further validating the stability and effectiveness
of the proposed method over extended time sequences.

4.4.4. Ablation Studies

To validate the contribution of different components in our VLA autonomous driving
framework, we conduct comprehensive ablation studies on the LangAuto-Tiny benchmark.
Table 2 presents the performance comparison when removing key components from our
complete system.

Table 2. Ablation study results on LangAuto-Tiny benchmark. All experiments use LLaVA-7B as the
backbone. Higher values indicate better performance (↑). Best results are highlighted in bold.

Module Design DS ↑ RC ↑ IS ↑

Ours(VLA-MP) 78.4 82.3 0.95
w/o Projector 67.5 75.0 0.91
w/o Physical-Constrained 58.0 64.0 0.92
w/o Env Pre-training 42.3 61.1 0.69

Eliminating the projector module causes a 10.9-point drop in driving score, under-
scoring the necessity of robust vision-language alignment. The projector’s cross-attention
mechanism selectively extracts driving-relevant information from BEV features, effectively
bridging the gap between visual perception and language reasoning.

Without physical constraints, the driving score decreases by 20.4 points. This result
confirms that directly predicting coordinates from a language model-without accounting
for vehicle dynamics-produces infeasible trajectories that cannot be executed safely. By
cascading a GRU with a bicycle model, the system enforces temporal consistency and
kinematic feasibility, both of which are essential for reliable autonomous driving.

The absence of environmental pre-training leads to the most severe performance col-
lapse, with the driving score plunging by 36.1 points and the infraction score falling from
0.95 to 0.69. This demonstrates the foundational role of structured scene understanding
provided by the pre-trained BEV perception module. Without a solid multimodal envi-
ronmental representation, the system struggles to interpret complex driving scenarios and
fails to generate appropriate responses to language instructions.
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These ablation studies confirm that each component plays a vital role in the overall
system performance. Environmental pre-training provides the foundation for structured
scene understanding, physical constraints guarantee safety and feasibility, and the projector
enables efficient multimodal fusion. Together, they validate the architectural choices of our
VLA framework.

4.4.5. Computational Efficiency Analysis

To evaluate the practical deployment potential of our VLA autonomous driving
framework, we conduct a comprehensive computational efficiency analysis on a single RTX
3090 GPU. Table 3 summarizes the performance metrics of our system during inference.

Table 3. Computational efficiency analysis of the proposed VLA framework on RTX 3090 GPU.

Metric Value Unit

Total Time 125.04 ms
Visual Processing 43.78 ms
LLM Inference 20.91 ms
Physics Control 0.25 ms
FPS 8.0 frames/s
Peak GPU Memory 13.7 GB
Model Parameters 6.9 B
Hardware Platform RTX 3090 -

The experimental results show that our framework achieves a total processing time
of 125.04 ms per frame, corresponding to a processing rate of 8.0 FPS on the RTX 3090
platform. Among the core computational components, the visual processing module takes
43.78 ms, the LLM inference module requires 20.91 ms, and the physics control module
only needs 0.25 ms. The remaining time is primarily attributed to CARLA simulation
environment communication overhead and system-level data processing. Visual processing
and LLM inference serve as the two main computational bottlenecks, fully demonstrating
the computational complexity brought by the deep integration of high-dimensional BEV
perception and large language model inference.

In performance comparison with existing VLA methods, our framework demonstrates
significant computational efficiency advantages. AutoVLA [7] operates at approximately 1 FPS,
while FastDriveVLA [53] achieves about 4.86 FPS. In contrast, our method reaches 8.0 FPS,
showing excellent performance among current VLA methods and proving the effectiveness of
our architectural design and optimization efforts.

However, when compared with traditional end-to-end autonomous driving methods
evaluated in CARLA closed-loop environments, we find there is still significant room for
optimization. Traditional methods such as TransFuser [54] have a runtime of 44 ms, and
TF++ [40] has a runtime of 50 ms, both significantly lower than our 125.04 ms. This perfor-
mance gap indicates that while VLA methods have unique advantages in providing superior
interpretability and complex reasoning capabilities, they still require further technological
breakthroughs in pure computational efficiency to match traditional end-to-end systems.

From a system resource perspective, our framework shows a peak GPU memory
usage of 13.7 GB during inference, which is well within the capacity of modern high-end
consumer GPUs, providing good hardware compatibility for practical deployment. The
model contains a total of 6.9 billion parameters, with the vast majority coming from the large
language model backbone, enabling the system to possess strong language understanding,
logical reasoning, and scene analysis capabilities.
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From a practical deployment perspective, the current experimental results point to
clear directions for future optimization work. Model quantization techniques can effectively
reduce parameter precision to lower computational complexity, knowledge distillation
methods can compress large model knowledge into smaller networks, and specialized
hardware accelerators can be optimized for specific computational patterns. The com-
prehensive application of these techniques is expected to significantly improve inference
efficiency while maintaining model capabilities, thereby narrowing the performance gap
with traditional end-to-end methods and laying a solid foundation for the widespread
application of VLA methods in real-world autonomous driving systems.

5. Conclusions
This paper proposes VLA-MP, a unified end-to-end vision-language-action framework

for autonomous driving. The framework consists of three core modules: a multimodal
environmental perception module that fuses heterogeneous sensor data into structured
BEV representations and extracts hierarchical features, a vision-language bridge and large
language action module that enables cross-modal semantic alignment and high-level
decision generation, and a physics-constrained action generation module that ensures
both semantic reasonableness and physical feasibility of trajectories through a GRU-bicycle
model cascade. Through a three-stage progressive training strategy, the framework achieves
seamless mapping from sensor observations and natural language instructions to executable
control commands.

Comprehensive experiments on the LMDrive dataset validate the effectiveness of our
approach. Quantitative results demonstrate that our method achieves the best driving
performance across all evaluation settings, showing consistent performance across different
route complexities. Qualitative visualization results through our designed HUD interface
showcase the system’s capability in spatial navigation and safety decision scenarios, accu-
rately understanding language instructions and generating reasonable driving behaviors.
Dynamic video demonstrations further confirm the system’s stability and adaptability dur-
ing continuous driving processes. Ablation studies verify the importance of each proposed
component, with environmental pre-training providing the system foundation, physical
constraints ensuring trajectory safety, and projectors enabling effective multimodal fusion.
Computational efficiency analysis indicates that the system achieves acceptable inference
performance, providing clear directions for future optimization.

Despite achieving promising experimental results, our system still has several limita-
tions. First, the current inference speed cannot meet the typical frequency requirements
for real-time autonomous driving, primarily constrained by the computational complexity
of large language models. The computational heaviness of LLMs presents deployment
challenges in terms of processing requirements and operational costs. Second, our eval-
uation reveals challenges in handling complex and lengthy scenarios and routes. The
system’s performance degrades on long-distance complex routes, indicating difficulties
in maintaining coherent decision making over extended temporal sequences and process-
ing of lengthy contextual information. Third, the system’s operation with complex and
implicit user requests remains constrained. Handling ambiguous instructions, multi-step
commands, or contextual references that require deeper understanding of unstated inten-
tions presents ongoing challenges for robust language understanding in driving scenarios.
Additionally, our evaluation is mainly conducted in the CARLA simulation environment,
and real-world generalization capabilities and robustness require further validation. Real-
world deployment would face additional challenges including sensor noise and calibration
drift, dynamic weather conditions affecting perception reliability, and unexpected traffic
scenarios not covered in simulation datasets.



Sensors 2025, 25, 6163 19 of 22

In future work, we plan to improve computational efficiency through model compres-
sion, knowledge distillation, and specialized hardware optimization techniques to meet
real-time deployment requirements. We will validate the system’s generalization capabili-
ties on other datasets and more diverse driving scenarios. We also aim to investigate more
sophisticated language understanding capabilities, including multi-turn dialogue, contex-
tual reasoning, and instruction disambiguation, to achieve more natural human-machine
interactive autonomous driving experiences.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s25196163/s1, Video S1: Spatial navigation scenario demonstration;
Video S2: Safety-aware emergency stop scenario demonstration; Video S3: Long-sequence driving
scenario (50 s).
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