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Highlights

What are the main findings?
• A multimodal deception detection framework combining visual, audio, and language-

based reasoning achieved high accuracy on a DOLOS dataset.
• The ViViT-based visual model reached 74.4% accuracy, while HuBERT audio classifica-

tion showed strong performance on prosodic cues.
What is the implication of the main finding?
• Multimodal fusion enhances robustness and interpretability in behavioral biometrics for

deception analysis.
• Language-guided models like GPT-5 prompt-level fusion provide explainable AI out-

puts, facilitating trust and real-world applicability.

Abstract

Advances in multimodal artificial intelligence enable new sensor-inspired approaches
to lie detection by combining behavioral perception with generative reasoning. This
study presents a deception detection framework that integrates deep video and audio
processing with large language models guided by chain-of-thought (CoT) prompting.
We interpret neural architectures such as ViViT (for video) and HuBERT (for speech) as
digital behavioral sensors that extract implicit emotional and cognitive cues, including
micro-expressions, vocal stress, and timing irregularities. We further incorporate a GPT-5-
based prompt-level fusion approach for video–language–emotion alignment and zero-shot
inference. This method jointly processes visual frames, textual transcripts, and emotion
recognition outputs, enabling the system to generate interpretable deception hypotheses
without any task-specific fine-tuning. Facial expressions are treated as high-resolution
affective signals captured via visual sensors, while audio encodes prosodic markers of
stress. Our experimental setup is based on the DOLOS dataset, which provides high-quality
multimodal recordings of deceptive and truthful behavior. We also evaluate a continual
learning setup that transfers emotional understanding to deception classification. Results
indicate that multimodal fusion and CoT-based reasoning increase classification accuracy
and interpretability. The proposed system bridges the gap between raw behavioral data
and semantic inference, laying a foundation for AI-driven lie detection with interpretable
sensor analogues.

Keywords: lie detection; multimodal AI; deception analysis; behavioral sensors; machine
learning; transformers
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1. Introduction
Detecting deception remains a persistent challenge across domains, such as forensic

analysis, psychology, and artificial intelligence. Traditional lie detection methods, including
polygraph tests and physiological sensors, often suffer from limited reliability due to
susceptibility to stress, emotional variability, or intentional countermeasures. As a result,
researchers have increasingly turned to behavioral indicators such as facial expressions,
voice fluctuations, and linguistic patterns as non-invasive signals of deceptive behavior[1].

Recent advances in multimodal artificial intelligence (AI) and large language models
(LLMs) have opened new avenues for developing sensor-inspired lie detection systems.
Vision transformers, such as ViViT, and audio-based models, like HuBERT, act as high-level
behavioral sensors, extracting implicit emotional cues from facial expressions, gestures,
and prosodic features. These digital sensory modules can detect micro-expressions, vocal
stress, or timing anomalies, traits often associated with deceptive intent.

In parallel, the emergence of multimodal generative models such as GPT-5 prompt-
level fusion and GPT-4 has enabled the interpretation of complex behavioral patterns
through natural language reasoning. Specifically, chain-of-thought (CoT) prompting allows
these models to articulate step-by-step judgments about deceptive behavior, increasing
system transparency and interpretability. This fusion of perceptual input and semantic
inference reflects a shift toward explainable AI in behavioral analysis.

In this study, we propose a multimodal deception detection framework that integrates
behavioral signals from visual and auditory modalities with CoT-enabled language reason-
ing. Our system leverages pretrained models to simulate perceptual sensing, while using
prompting strategies to generate interpretable justifications for predictions. We validate
our approach on the DOLOS dataset, which contains high-quality video segments with
labeled deceptive and truthful speech. Additionally, we explore a continual learning setup,
where emotion recognition serves as a pretext task for deception classification, testing the
hypothesis that emotional cues can enhance model transferability.

The goal of this research is not only to improve deception detection performance but
also to demonstrate how AI models can emulate sensor functions like observing, analyzing,
and explaining, within a unified framework. By combining signal-level feature extraction
with language-based reasoning, our approach represents a novel direction in intelligent lie
detection systems.

2. State-of-the-Art
2.1. Traditional Approaches to Lie Detection

The detection of deception has long been a subject of interest in psychology and
forensic science. The most well-known method, the polygraph test, is based on measuring
physiological responses such as heart rate, respiration, and electrodermal activity while an
individual responds to questions. One of the most widely used protocols is the compari-
son question test (CQT), which compares physiological reactions to control and relevant
questions to infer deception. However, polygraph tests have been criticized for high false
positives, susceptibility to countermeasures, and lack of a strong theoretical foundation.

To overcome these limitations, alternative techniques such as the guilty knowledge
test (GKT) and cognitive load theory have been explored. GKT assumes that deceivers
exhibit differential responses when exposed to crime-relevant stimuli. Cognitive load-
based techniques measure the effort required to maintain a lie, often through linguistic or
behavioral analysis.
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2.2. Micro-Expression Analysis in Deception Detection

Micro-expressions, brief and involuntary facial expressions, have been extensively
studied as indicators of deception. Ekman et al. [2] proposed the facial action coding
system (FACS) [3], which identifies subtle facial muscle movements linked to emotional
suppression. Research has shown that liars often attempt to control their facial expressions,
but micro-expressions escape conscious suppression, making them useful for deception
detection [4–6].

Recent approaches leverage computer vision and deep learning to automatically detect
micro-expressions. The hierarchical transformer network (HTNet) [7] has been proposed to
enhance micro-expression recognition by segmenting the face into localized regions (e.g., the
eyes and lips) and applying attention-based feature extraction. Other methods, such as local
binary patterns (LBP) and optical flow analysis, have also been used to identify subtle facial
movements indicative of deception.

Despite advancements, existing micro-expression datasets are often small and lack
diversity, making generalization to real-world deception detection challenging.

2.3. Multimodal Deception Detection Systems

Multimodal approaches integrate facial expressions, voice analysis, and physiological
signals to improve lie detection performance. Previous systems have combined audio–
visual embeddings using feature fusion or attention mechanisms. Models such as OpenFace
(facial behavior) and eGeMAPS (prosodic features), as well as biometric sensors, have
shown improvements in specific contexts; but, they suffer from limited interpretability and
a high reliance on handcrafted features or expensive sensor setups.

Recent studies have introduced deep learning frameworks that combine speech
(e.g., HuBERT) and video (e.g., ViViT or VideoMAE) to extract affective and behavioral
embeddings. These models act as sensor analogues, capturing subtle deception cues with-
out invasive instrumentation. However, their outputs often lack semantic interpretability,
raising concerns about their use in sensitive or forensic scenarios[8].

2.4. CoT-Based Generative Analysis of Deception

Recent developments in multimodal large language models (MLLMs) have opened
up new possibilities for interpreting human behavior in a more descriptive and trans-
parent way. Instead of relying solely on discrete emotion labels or classification outputs,
models like AffectGPT [9] demonstrate that deep learning systems can now generate
natural-language explanations of emotional states, grounded in visual, auditory, and con-
textual data.

This shift from categorical prediction to generative reasoning represents a major step
forward in human-centered AI. The AffectGPT framework introduces a large-scale dataset
(MER-Caption) with detailed descriptions of affective behavior, and pairs it with a model
capable of processing video, audio, and text jointly. These models are not only able to
detect emotions such as anxiety, hesitation, or nervousness, which are closely linked to
deceptive behavior, but also explain what they see and hear, using language that humans
can understand.

In the context of deception detection, this descriptive capacity is especially valuable.
Micro-expressions, tone of voice, and timing patterns often play a subtle but critical role
in identifying dishonest behavior. Traditional classifiers may detect such patterns, but
without interpretability, their outputs remain opaque. Multimodal LLMs, by contrast,
can act as behavioral sensors that both perceive and articulate their observations. When
guided by chain-of-thought (CoT) prompting, these models reason step by step, linking



Sensors 2025, 25, 6086 4 of 16

observed behaviors to likely emotional or cognitive states, and ultimately to truthful or
deceptive intent.

This approach aligns with recent work using models like GPT-5 prompt-level fusion,
which can perform zero-shot video-language reasoning. When prompted properly, such
systems can describe behavioral cues in real time, for example, noting that a speaker is
“avoiding eye contact while answering a direct question” and explaining how this might
indicate dishonesty. This form of explanatory AI not only enhances trust in the system but
also brings it closer to how humans interpret complex social behavior.

As the field progresses, these generative, multimodal models promise to bridge the
gap between low-level perception and high-level reasoning, forming a core component of
interpretable and reliable lie detection systems.

2.5. Emotion-Driven Cues in Deception Detection

Emotions play an important role in the expression of deceptive behavior. Psychological
theories, such as Paul Ekman’s concept of emotional leakage, suggest that individuals who
lie often experience internal emotional states like guilt, fear, or cognitive dissonance. These
emotions may involuntarily manifest through facial expressions, voice, or body movements,
even when the speaker attempts to suppress them[10,11].

One prominent concept is that of micro-expressions, which are rapid and involuntary
facial expressions lasting less than half a second. These brief expressions have been associ-
ated with concealed emotions and are often studied as potential indicators of deception.
While detecting them can be difficult for human observers, deep learning models trained
for facial emotion recognition may be capable of identifying such subtle cues.

In our experiments, we investigated the relationship between emotion and deception
by applying a continual learning approach with the ViViT transformer model. The model
was first trained on emotion classification using facial visual data. In the second phase, it
was fine-tuned to classify deceptive versus truthful behavior. This approach was based
on the hypothesis that emotional representations could provide meaningful priors for
detecting deception-related signals, such as facial stress or inconsistencies in expression.

However, this method did not lead to a significant improvement in deception classifi-
cation accuracy compared to training the model directly on the deception task. One possible
reason is the domain shift between typical emotion datasets and the spontaneous behavior
found in the DOLOS dataset, which includes more subtle and context-dependent expres-
sions. Additionally, individuals who lie may deliberately attempt to suppress emotional
cues, reducing the effectiveness of emotion-based models.

Despite these limitations, emotion remains a promising intermediate representation in
multimodal deception detection. Future models may benefit from using emotion embed-
dings as auxiliary features or from applying multitask learning strategies to jointly train for
both emotion recognition and deception detection objectives.

3. System Overview
The proposed system for multimodal deception detection integrates behavioral percep-

tion and generative reasoning using three complementary components: a visual encoder,
an audio encoder, and a multimodal language model. Each module plays the role of a soft
behavioral sensor, extracting and interpreting cues related to emotional state, cognitive
load, and potential deception[12].

3.1. Visual Processing with ViViT

We use the Vision Transformer ViViT to process temporal sequences of facial and
upper-body expressions. This model captures fine-grained motion patterns, such as micro-
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expressions, eye movement, and head gestures. These visual signals are essential in
identifying subtle indicators of stress, discomfort, or concealment. The extracted visual
features are passed downstream to inform the reasoning module. In some configurations,
ViViT is pretrained on emotion recognition and then fine-tuned for deception detection
using a continual learning setup.

3.2. Multimodal Prompt-Level Fusion in GPT-5

In the proposed framework, multimodal information is integrated using prompt-level
fusion within a large multimodal model (GPT-5). Unlike classical late fusion approaches
that combine classifier logits, or architectures such as GPT-5 prompt-level fusion, which
natively encode both image and text modalities, our method embeds all available modality
information into a structured prompt that is processed by GPT-5 in a zero-shot manner.

The pipeline consists of three main stages:

1. Preprocessing of modalities:

• Video frames: Sixteen equally spaced frames are extracted from each video using
OpenCV, preserving spatial, facial, and bodily cues while ensuring coverage
across the entire utterance.

• Speech transcription: Audio is extracted from the video and transcribed using
the OpenAI Whisper-1 model, providing a verbatim text representation of the
spoken content.

• Emotion metadata: Paralinguistic emotional features are obtained from the audio
signal using the SpeechBrain emotion-recognition-wav2vec2-IEMOCAP model.
The predicted categorical label (e.g., angry, neutral, and happy) and its confidence
score are recorded.

2. Prompt construction: Each modality is converted into a prompt component:

• The 16 frames are attached to the user message as base64-encoded images.
• The transcript text is inserted verbatim.
• The detected emotion and its confidence score are provided in natural language.

Depending on the ablation configuration, one or more modalities are omitted from
the prompt to measure their individual impact.

3. Reasoning and classification: The system message instructs GPT-5 to act as a decep-
tion detection researcher, evaluating behavioral, verbal, and paralinguistic consistency.
The model is required to output only a JSON object with three fields: label (“lie” or
“truth”), confidence (0.0–1.0), and reasoning (a short explanation of observed cues).
Decoding parameters are fixed (temperature = 0.2, top-p = 1.0) to ensure deterministic
output.

This approach allows GPT-5 to jointly reason over multiple modalities without explicit
feature concatenation or model fine-tuning. In the ablation study, we systematically evaluate
unimodal (Video-only and Transcript-only), bimodal (Video + Transcript, Video + Emotion,
and Emotion + Transcript), and trimodal (Video + Transcript + Emotion) configurations to
quantify each modality’s contribution.

Our approach differs from prior multimodal lie detection pipelines in two impor-
tant ways. First, instead of simply stacking pretrained encoders with a shallow fusion
layer, we employ prompt-level fusion in GPT-5, where the outputs of each modality en-
coder (video frames, transcript text, and audio-based emotion) are jointly presented to
the model in a unified reasoning prompt. This design allows the large language model
to perform cross-modal reasoning implicitly, rather than relying solely on pre-computed
feature concatenation.
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Second, GPT-5 is a newly released large multimodal model and, to the best of our
knowledge, this is among the first peer-reviewed studies to evaluate its performance in
deception detection. The model is leveraged in a zero-shot setting, without task-specific
fine-tuning, making it directly applicable to new domains and datasets without costly
retraining. By integrating affective, visual, and lexical cues in a single reasoning step, the
system can generate interpretable justifications alongside classification outputs.

3.3. DOLOS Dataset

The DOLOS dataset serves as the foundational benchmark for all experiments con-
ducted in this study. It consists of high-quality video samples extracted from the British
television show Would I Lie to You? (WILTY), in which participants engage in a structured
deception game format. Each clip is annotated as either truthful or deceptive, providing a
naturalistic and challenging setting for multimodal lie detection.

Unlike many synthetic or laboratory-collected datasets, DOLOS captures spontaneous
human behavior in a semi-controlled yet socially dynamic environment. The clips feature
a wide range of speakers, accents, and emotional expressions, recorded in studio-quality
conditions with frontal camera views and clear audio. This diversity makes the dataset
suitable for evaluating generalization across individuals and content types.

Each video sample is accompanied by aligned audio and, in some cases, automatic
transcripts, enabling experiments across vision, audio, and language modalities. We
selected a subset of DOLOS containing both lies and truths balanced across speakers to
ensure fair evaluation. The dataset also provides sufficient temporal depth to analyze
fine-grained behavioral cues such as facial micro-expressions, prosodic variations, and
gestural inconsistencies. Figure 1 illustrates sample frames from the DOLOS dataset [13].

(a) (b)

(c) (d)

Figure 1. Selected frames from the DOLOS dataset showing representative examples of truthful
and deceptive responses. Facial cues and micro-expressions are used in downstream classification.
(a) Truth sample: participant answering truthfully. (b) Truth sample: neutral facial expression. (c) Lie
sample: subtle signs of discomfort. (d) Lie sample: raised eyebrows and eye contact aversion.
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4. Preliminary Experiments
To evaluate the feasibility of multimodal deception detection using transformer-based

architectures, we conducted a series of baseline experiments involving visual, auditory, and
classical feature-based models. All evaluations were performed on the DOLOS dataset, which
contains high-quality audiovisual recordings annotated for truthful and deceptive behavior.

4.1. Visual Stream: Video Transformers for Deception Classification

In the visual modality, we utilized ViViT-B/16 and Timesformer-B architectures as
spatiotemporal feature extractors. Both models were trained using LoRA[14,15] adapters
on short video clips extracted from DOLOS.

Two sampling strategies were explored: dense sampling and uniform sampling. The
best results were achieved using ViViT-B/16 with uniform sampling and 32-frame clips,
reaching an average accuracy of 74.4%. Timesformer-B achieved comparable performance
(74.3%) on eight-frame sequences, although required early stopping due to overfitting.
Results indicate that visual cues alone provide a solid foundation for deception detection,
especially when fine-tuned on domain-specific data. Table 1 presents the performance of
ViViT-B/16, Timesformer-B, and ResNet+LSTM models trained on the DOLOS dataset,
comparing dense versus uniform sampling along with mean accuracy and key training
settings. Figure 2 shows the training and validation accuracy for the HuBERT-based model,
and Figure 3 shows the same for the VideoMAE-based model.

Table 1. Performance of deep learning models trained on DOLOS (video modality).

Model Accuracy (Mean) Training Details

ViViT-B-1 6 × 2-kinetics + LoRA
(32 frames), dense sampling 0.740 30 epochs, Adam (0.00005), no

overfitting

ViViT-B-1 6 × 2-kinetics + LoRA
(32 frames), uniform sampling 0.744 30 epochs, Adam (0.00005), no

overfitting

Timesformer-B-kinetics + LoRA
(8 frames), uniform sampling 0.743 30 epochs, Adam (0.00005),

early stopping used

ResNet (frozen) + LSTM ≈0.74 30 epochs, Adam StepLR
(0.0005), overfitting noted
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Figure 2. Training vs. validation accuracy for the HuBERT-based audio classification model. Perfor-
mance improves steadily up to 67.5% with minimal overfitting.

Figure 3. Training vs. validation accuracy for the VideoMAE-based visual classification model.

4.2. Facial Feature Streams: OpenFace and ResNet Backbones

We also experimented with facial feature-based models, using OpenFace landmarks
and ResNet embeddings combined with LSTM layers. A frozen ResNet backbone achieved
up to 74% accuracy but suffered from significant overfitting, even with regularization
techniques such as dropout and weight decay. Fine-tuned ResNet variants did not yield
conclusive results[16,17].

4.3. Classical Models on Multimodal Features

For comparison, we trained classical machine learning models (SVM, naive Bayes,
random forest, and MLP) on MUMIN-style handcrafted features extracted from DOLOS
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clips. These models achieved accuracy in the 54–58% range, with MLP reaching the highest
reported score (58%).

Although these results are notably lower than deep learning-based approaches, they
establish a useful lower bound and highlight the complexity of deception classification
from static features. Table 2 presents the performance of classical machine learning models
on MUMIN features extracted from the DOLOS dataset, including accuracy, F1-score, and
brief comments.

Table 2. Performance of classical machine learning models on MUMIN features (DOLOS dataset).

Model Accuracy F1-Score Comments

Linear SVM 0.54 0.52 -

RBF SVM 0.55 0.54 -

Bernoulli Naive Bayes 0.56 0.55 Slightly better than other
models

Random Forest 0.55 0.55 -

MLP 0.58 N/A Best among classical models

4.4. Ablation Study

To quantify the contribution of each modality, we perform a systematic ablation study
using the GPT-5 prompt-level fusion approach described in Section 3.2. In this setting, all
predictions are generated in a zero-shot manner by conditioning GPT-5 on the available
modalities embedded within a structured prompt. Ablation is implemented by selectively
omitting modalities from the prompt while keeping all preprocessing, prompt formatting,
and decoding parameters identical.

We evaluate:

• Unimodal: Video frames only (V) and transcript only (T).
• Bimodal: Video + Transcript (V + T), Video + Emotion (V + E), and Transcript +

Emotion (T + E).
• Trimodal: Video + Transcript + Emotion (V + T + E), i.e., the full proposed configuration.

For each configuration, we report the precision, recall, F1-score, accuracy, and
Matthews correlation coefficient (MCC) for the binary classification task (lie vs. truth).
Confusion matrices are computed using the ground truth labels from the DOLOS dataset.
All metrics are macro-averaged to account for class imbalance.

Table 3 summarizes the results. The trimodal configuration (V + T + E) achieves the
highest F1-score, indicating that all three modalities contribute complementary information.
Bold values denote the best score in each column.
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Table 3. Ablation study results for different modality combinations using GPT-5 prompt-level fusion.

Configuration Precision Recall F1-Score Accuracy MCC

Unimodal

Video only (V) 0.639 0.883 0.741 0.692 0.415
Transcript only (T) 0.602 0.933 0.732 0.658 0.379

Bimodal

Video + Transcript (V + T) 0.671 0.917 0.775 0.733 0.502
Video + Emotion (V + E) 0.558 0.967 0.707 0.600 0.294
Transcript + Emotion (T + E) 0.598 0.917 0.724 0.650 0.355

Trimodal

Video + Transcript + Emotion
(V + T + E) 0.683 0.933 0.789 0.750 0.537

Among the unimodal settings, video-only achieves the highest F1-score, suggesting
that visual cues alone already encode significant deception-related patterns. Transcript-
only performs slightly worse, indicating that verbal content alone may miss nonverbal
leakage signals. We do not report an emotion-only configuration, as preliminary trials
indicated insufficient stand-alone predictive value. Video cues, while less discriminative in
isolation, provide valuable nonverbal signals, such as micro-expressions and gaze aversion.
Emotion features derived from audio contribute subtle prosodic patterns that become more
informative when combined with other modalities. In particular, adding emotion to the
video and transcript improved the F1-score.

In the bimodal setting, the combination of video and emotion (V + E) yields the weakest
performance among all tested configurations, with an F1-score of 0.71 and a Matthews
correlation coefficient (MCC) of only 0.29. While the recall is exceptionally high (0.97),
indicating that the model correctly identifies almost all truthful statements, the precision
drops significantly (0.56), leading to a large number of false positives in deception detection.
This suggests that emotion cues extracted from audio, when combined with visual frames
alone, introduce noise rather than complementary information for the classification task.

Interestingly, when emotion features are incorporated into the trimodal configuration
(V + T + E), performance improves notably across all metrics, including a substantial
increase in MCC to 0.54 and a balanced F1-score of 0.79. This indicates that emotion
features, while insufficient on their own or in the absence of textual context, can provide
additional discriminative power when fused with both video and transcript data. Such a
finding supports the hypothesis that paralinguistic cues are best interpreted in combination
with verbal and visual content rather than in isolation.

Notably, GPT-5 shows a clear tendency to classify true statements correctly (high
recall for the truth class) but is less sensitive to lies, a pattern observed across all modality
configurations. In the bimodal group, combining visual and textual information (V + T)
substantially improves performance over either modality alone, while the inclusion of
emotion cues further boosts recall.

These results confirm that GPT-5 is able to leverage multimodal cues effectively when
they are presented in a carefully structured prompt. While unimodal setups can provide
meaningful predictions, combining modalities yields a consistent improvement in balanced
accuracy and F1-score. The observed gains support the hypothesis that visual, verbal, and
paralinguistic signals capture complementary aspects of deceptive behavior.

When comparing our zero-shot GPT-5–based system with AffectGPT, we observe
competitive performance despite the fact that our approach does not involve any fine-
tuning or task-specific training. AffectGPT, which is fully fine-tuned on multimodal
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sentiment and deception datasets, achieves a mean score of 74.17 across diverse benchmarks,
including MER, MELD, IEMOCAP, MOSI, MOSEI, and the SIMS family of datasets. Notably,
AffectGPT attains particularly high performance on SIMS v2 (88.99), indicating strong
generalization in sentiment-rich conversational contexts. Our trimodal GPT-5 configuration
(Video + Transcript + Emotion) attains an accuracy of 75.0% and an F1-score of 0.789 on
the DOLOS deception detection benchmark, matching AffectGPT’s mean performance
while operating entirely in a zero-shot setting. This result is notable given the absence
of gradient-based optimization in our pipeline and the reliance on prompt-level fusion,
suggesting that modern large language models can leverage multimodal cues effectively
without supervised adaptation.

The DOLOS study by Guo et al. reported, on a full dataset using a three-fold protocol,
unimodal video performance of 61.44% ACC, an F1-score of 69.42%, audio performance
of 59.19% ACC, and an F1-score of 73.46%. Their best fusion approach (PAVF + multitask)
achieved 66.84% ACC and an F1-score of 73.35%. In our experiments on a balanced subset of
DOLOS, unimodal video reached 74.4% ACC, unimodal audio achieved ∼67.5% ACC, and
prompt-level fusion of video, transcripts, and emotion cues using GPT-5 in a zero-shot setting
achieved 75.0% ACC with an F1-score of 78.9%. While the higher performance of our system
is partly attributable to the additional transcript modality and a different evaluation split, it is
notable that our zero-shot, prompt-based fusion surpasses the best supervised multimodal
fusion results reported by Guo et al. These results highlight the potential of large language
models to integrate multimodal cues effectively without task-specific fine-tuning.

4.5. Zero-Shot Inference and Testing Procedure

We adopt a zero-shot inference strategy, in which GPT-5 is not fine-tuned on the DO-
LOS dataset. Instead, the model receives modality-specific inputs (video frames, transcript
text, and emotion label with confidence) encoded as natural language and images in a
single prompt. The prompt template is fixed for all experiments and explicitly instructs the
model to output a JSON object containing a predicted label (lie or truth), a confidence score
between 0 and 1, and a brief reasoning.

Algorithm 1 outlines the zero-shot, prompt-level multimodal deception detection
procedure using GPT-5.
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Algorithm 1 Prompt -level multimodal deception detection (zero-shot GPT-5).

Require: Dataset D of videos with ground-truth labels y ∈ {lie, truth}
Require: Ablation flags: USEVIDEO, USETRANSCRIPT, USEEMOTION

1: Initialize metrics containers
2: for each sample x ∈ D do
3: I ← ∅, T ← ∅, E← ∅
4: if USEVIDEO then
5: Extract 16 uniformly spaced frames I = { f0, . . . , f15}
6: end if
7: if USETRANSCRIPT then
8: Extract audio; obtain ASR transcript T (Whisper-1)
9: end if

10: if USEEMOTION then
11: Extract audio; compute emotion label e and confidence ce (SpeechBrain

wav2vec2)
12: E← “Detected emotion: e (ce)”
13: end if
14: Build user prompt: include E (if any), T (if any), instruction to return strictly JSON
15: Attach frames I (if any) as images to the same message
16: System message: safety + research framing
17: Query GPT-5 with deterministic decoding
18: Parse first valid JSON object: {label, confidence, reasoning}
19: ŷ← label ▷ final class: lie or truth
20: q← confidence ∈ [0, 1] ▷ used only for analysis/threshold sweeps
21: Store (ŷ, q) and compare with ground truth y
22: end for
23: Compute Accuracy, Precision/Recall/F1 per class, Macro-F1, MCC, Cohen’s κ

4.6. Computational Environment

All experiments were conducted using high-performance GPU resources (NVIDIA
Corporation, Santa Clara, USA). A100 40GB and 80GB cards available on institutional clus-
ters. To accommodate large batch sizes and memory-intensive models such as ViViT[18], we
employed DeepSpeed with ZeRO-3 optimization. This setup enabled efficient distributed
training and rapid experimentation across multiple modalities. For smaller-scale tasks,
RTX-class GPUs were also sufficient, particularly when using lower batch sizes.

4.7. Fusion Experiments and Modality Ablations

We also explored multimodal fusion strategies to combine visual and auditory infor-
mation for enhanced deception detection. Both early fusion (feature-level concatenation)
and late fusion (ensemble of modality-specific classifiers) were considered.

Preliminary findings suggest that each modality provides distinct and complementary
cues: the visual stream captures facial expressions and microgestures, while the auditory
stream encodes paralinguistic features such as hesitations and intonation changes. Ablation
studies confirmed that removing either modality leads to a drop in performance, reinforcing
the benefit of multimodal integration.

Experiments involving late fusion of HuBERT[19] and VideoMAE[20] models are
currently ongoing. While early observations indicate potential synergy between these
modalities, full evaluation on the DOLOS dataset has not yet been completed. These fusion
pipelines are expected to improve generalization and robustness in real-world scenarios
and constitute a promising direction for future research. Algorithm 2 summarizes the
end-to-end multimodal deception detection experiment pipeline, from loading DOLOS
data to model training, fusion, and evaluation. Figure 4 shows the block diagram of
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the multimodal deception detection pipeline: audio (HuBERT), video (VideoMAE), and
transcripts are processed separately and then fused for final classification.

Algorithm 2 Multimodal deception detection experiment pipeline.

1: Input: DOLOS dataset with audiovisual clips and labels
2: Output: Model performance metrics
3: Load video and audio samples from DOLOS
4: for each sample in dataset do
5: Extract video frames and audio waveform
6: Generate transcript via speech-to-text model
7: end for
8: Split dataset into training, validation, and test sets
9: Train ViViT model:

10: Preprocess video frames
11: Train transformer on frame sequences
12: Evaluate on validation set
13: Train HuBERT model:
14: Extract speech embeddings
15: Train classifier on HuBERT features
16: Evaluate on validation set
17: Run GPT-5 prompt-level fusion (zero-shot):
18: for each test sample do
19: Create Chain-of-Thought prompt using transcript and visual cues
20: Generate textual reasoning and decision
21: end for
22: Fusion:
23: Combine ViViT and HuBERT predictions (late fusion)
24: Evaluate fused model accuracy
25: return accuracy and interpretability analysis
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Raw Input Video

Extract Modalities

Audio (HuBERT)
Video (VideoMAE)

Text (Transcripts)

Multimodal Fusion

Deception Classification

Output: Lie / Truth

Figure 4. Block diagram of the multimodal deception detection pipeline. Each modality is processed
individually before fusion and final classification.

5. Future Work
The preliminary results demonstrate the feasibility of integrating multimodal deep

learning with generative reasoning for deception detection. However, several areas remain
open for further exploration and improvement.

One of the key directions involves refining the interaction between perception and
reasoning. While current results show promise with zero-shot prompting using GPT-5
prompt-level fusion, more structured prompt engineering and fine-tuning on task-specific
reasoning paths could enhance consistency and robustness. In particular, chaining out-
puts from ViViT and HuBERT directly into CoT sequences via intermediate symbolic
representations may offer greater interpretability.

Additionally, the integration of physiological and biometric signals represents a natural
extension of the system. Signals such as heart rate variability (HRV), galvanic skin response
(GSR), and pupillometry, collected via wearable sensors, can serve as additional behavioral
modalities, enriching the model’s perception of stress and deception. This aligns well with
the thematic scope of Sensors, where multimodal sensing systems are central.

6. Conclusions
This study presents a novel multimodal system for deception detection that integrates

visual, auditory, and generative reasoning components. By combining transformer-based
models such as ViViT and HuBERT with a large multimodal language model (GPT-5
prompt-level fusion (replacing mPLUG-Owl for our final experiments)) guided by chain-
of-thought prompting, we aim to bridge the gap between low-level behavioral signal
processing and high-level, human-understandable inference.

Our preliminary experiments on the DOLOS dataset demonstrate that each modality
contributes complementary information to the deception detection task. The ViViT model,
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trained with LoRA on 32-frame segments using uniform sampling, achieved a classifi-
cation accuracy of 74.4%, marking the highest performance among the tested unimodal
approaches. Audio-based classification with HuBERT also showed promising results,
especially in detecting paralinguistic cues such as pitch variation and speech hesitation.
Although early fusion and late fusion experiments are still ongoing, initial indications
suggest that combining modalities may improve robustness and overall performance.

Notably, the generative reasoning approach using GPT-5 prompt-level fusion provided
not only classification decisions but also transparent, textual justifications for its predictions.
This aligns with growing interest in explainable AI and adds interpretive value beyond
raw model outputs.

While the current system remains in a research prototype stage, the integration of
descriptive behavioral modeling with multimodal sensing paves the way for future systems
capable of real-world deployment in forensic, educational, or security contexts. Future
work will focus on finalizing multimodal fusion pipelines, improving temporal modeling
of behavior over longer sequences, and incorporating additional sensor modalities such
as physiological signals to enhance detection accuracy and cross-domain generalization.
We also plan to investigate domain adaptation and symbolic reasoning methods to further
strengthen robustness and interpretability.

Overall, the findings underscore the potential of combining transformer-based multi-
modal perception with language-guided reasoning to build transparent and effective decep-
tion detection systems. Our approach illustrates how modern AI techniques can be grounded
in psychological theory and applied toward complex behavioral understanding tasks.
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