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Abstract

A trend analysis mentioned that the global automotive Vehicle-to-Everything—also called
V2X—market size will be reached at several billions in the near future. This information
clearly highlights the importance of developing V2X communication. Nowadays, auto-
mobile manufacturers have introduced vehicles equipped with driver assistance and even
conditional autonomous driving features. Light detection and ranging (LiDAR) compo-
nents are used in sensor networks to detect objects around. Also, vehicles take advantage
of LiDAR sensors to discover the neighbor cars in cognitive systems for road safety. Car-
rying on from our previous works, we found that organizing vehicles into groups can
enhance the safety of the vehicle networks by LiDAR assistance. However, the success
rate and reliability of grouping vehicles is an important issue. Also, enhancing existing
Vehicle-to-Vehicle (V2V) communication mechanisms remains a key factor in ensuring that
emergency messages can be transmitted both timely and accurately. To address this, in
this research, a method is proposed to make vehicles on the road be self-organized well
for Intelligent Transportation Systems (ITS). Also, we found that before data in each car
is transmitted, the scenario that data is queued for waiting a random time exponentially
distributed outperforms data being sent immediately.

Keywords: V2V communications; self-organized to clusters; LiDAR sensors

1. Introduction
Vehicle-to-Everything (V2X) is expected to reach USD 66.26 billion by 2032; the com-

pound annual growth rate (CAGR) during the forecast period from 2024 to 2032 should
be hit 39.46% [1]. Regarding V2X systems research, most authors in the literature studied
it by using simulation tools such as Network Simulation-2 (NS2), Graphical Network
Simulator-3 (GNS3), Eclipse Simulation of Urban Mobility (SUMO), and so on. In this
paper, we use the programming language C and shell script for implementation to enhance
elasticity and adaptability. First, relevant state-of-the-art standards and specifications are
studied to ensure no violation in the proposed algorithm. Secondly, V2X articles in the liter-
ature are comprehensively read and summarized in the appendix, leading to the proposed
mechanism suitable to most V2X environments. Finally, the detailed steps of the proposed
schema, numerical results, and concluding remarks are also described in this paper.

According to a United Nations (UN) report [2], road traffic accidents continue to be
the leading killer of children, youth, and the elderly, resulting in several deaths daily. Such
incidents are posing severe and increasing mortality risks to pedestrians, cyclists, and other
vulnerable road users. Hence, a method to strengthen the connectivity of vehicles to send
warning messages to each other is crucial. To continue our previous research [3,4], we
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studied the mechanism of cooperation of vehicles nowadays. First of all, we surveyed and
summarized the relevant state-of-the-art standards and specifications in Figures 1 and 2.
To prove that the scheme we proposed is feasible and fulfills the protocol requirement, we
collected and described the relevant research in Section 2.

Figure 1. The related mapping layer for WAVE and OSI.

 

Figure 2. Scope of IEEE 802.11p in the dashed box.

With the development of wireless networks and the rise of V2X, a new concept
of transportation has emerged for humanity. V2X—vehicle-to-everything—refers to the
interconnection of vehicles with everything around them, primarily including V2P (vehicle-
to-pedestrian), V2V (vehicle-to-vehicle), V2I (vehicle-to-infrastructure), and V2N (vehicle-
to-network). In general, vehicles are equipped LiDAR sensors to discover neighboring
cars in cognitive systems for traffic safety [5–12]. By connecting and exchanging informa-
tion between vehicles and pedestrians, other vehicles, and infrastructures, and utilizing
cloud computing to share traffic information, V2X enhances transportation safety and
driving efficiency, and even promotes energy conservation and carbon reduction. Further-
more, it provides a smart and sustainable development of transportation. For brevity and
convenience, we have listed commonly used terms in Table 1 clearly.
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Table 1. Acronyms and abbreviations.

Acronyms and Abbreviations

3GPP Third Generation Partnership Project

AODV Ad Hoc On-Demand Distance Vector Routing

BSM Basic Safety Messages

BSS Basic Service Set

C-ITS Cooperative Intelligent Transport Systems

C-V2X Cellular Vehicle-to-Everything

C2C-CC Car-to-Car Communication Consortium

CAGR Compound Annual Growth Rate

CAV Connected and Autonomous Vehicle

CCAM Cooperative Connectivity and Automated Mobility

CCH Control Channel

CEN Comité Européen de Normalisation

CoAP Constrained Application Protocol

CPU Central Processing Unit

CRL Certificate Revocation List

D2D Device-to-Device

DSR Dynamic Source Routing

DSRC Dedicated Short-Range Communication

DT Digital Twin

DYSCH Dynamic Scheduling

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

ECIES Elliptic Curve Integrated Encryption Scheme

EDCA Enhanced Distributed Channel Access

EPD EtherType Protocol Discrimination

ETSI European Telecommunications Standards Institute

EVE-NG Emulated Virtual Environment Next Generation

HetVNET Heterogeneous Vehicular Networks

ITS Intelligent Transportation System

LiDAR Light Detection and Ranging

LTE-V2X Long Term Evolution-Vehicle-to-Everything

OBU On-Board Unit

PLME Protocol Layer Management Entity

QUIC Quick UDP Internet Connections

RREQ-RREP Route Request-Route Reply

SPDU Security Services Protocol Data Unit

UTC Coordinated Universal Time

VANET Vehicular Ad Hoc Network

WAVE Wireless Access in Vehicular Environments

XGBoost Extreme Gradient Boosting
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Currently, the mainstream communication technologies for V2X are divided into DSRC
(Dedicated Short-Range Communication) and C-V2X (Cellular Vehicle-to-Everything) [13–16].
The former is a mature technology suitable for real-time communication, while the latter
leverages existing cellular network infrastructure to provide great application scalability
and flexibility. The two communication methods have their own advantages and can
be applied according to local conditions. For example, in areas lacking fifth-generation
system (5G) infrastructure, DSRC can be considered, whereas in regions with established
5G networks, DSRC and C-V2X both can be considered simultaneously.

In the world of V2X, DSRC is a service used for V2V and V2I communication. It
enhances public driving safety and can also be used for private or commercial purposes
outside of public utilities. In October 1999, the United States Federal Communications
Commission (U.S. FCC) allocated the 5.9 GHz band for ITS applications based on DSRC and
passed the basic technical rules for DSRC operation [13]. Currently, this band is divided
into seven channels, each 10 MHz wide. The first and last channels are reserved solely for
safety purposes.

The service based on the wireless communication technology is known as WAVE
(Wireless Access in Vehicular Environment), IEEE standards that include IEEE 1609 stan-
dards [17] and the IEEE 802.11p communication protocol. As shown in Figure 1, the WAVE
protocol stack can be divided into two parts: the left half pertains to the management plane,
while the right half pertains to the data plane. When mapping the stack to the OSI model,
it can be observed that IEEE 1609.1 standard corresponds to the application layer, IEEE
1609.2 spans from the data link to the transport layer, IEEE 1609.3 covers the network and
transport layers, IEEE 1609.4 is at the data link layer, IEEE 802.11p corresponds to the phys-
ical and data link layers. WAVE supports IP-based and non-IP-based data transmission,
but individual devices might support only one networking stack.

IEEE 1609 is a standard for V2V and V2I communication; the primary difference from
general network applications lies in the characteristics of vehicle movement. During the
rapid movement of vehicles, the characteristics of time and location should be considered
in security mechanisms to provide comprehensive services within an appropriate time,
ensuring the information security requirements of the Internet of Vehicles (IoV). The packet
transmission length in IoV communication is limited, necessitating the use of shorter
messages to transmit and exchange data (As IEEE 1609.3—WAVE short message protocol
(WSMP) intends). Due to the advantage of ECC (Elliptic Curve Cryptography), with
its shorter key length and certain level of security, the IEEE 1609.2 standard employs
ECC-based signing and encryption methods to ensure information security.

In Figure 2, the work of IEEE 802.11p includes the medium access control (MAC)
and physical (PHY) layers. It is known that the DSRC spectrum is divided into one
control channel (CCH) and six service channel (SCHs) and has short delay transmission
characteristics, and these specific channels in application scenarios will be provided to
multiple users for access. Therefore, different access categories and different priority
management methods need to be considered to avoid channel preemption problems.

To this end, establishing a transportation system based on V2X communication is one
of the development priorities for advanced countries (such as European countries, the
United States, and Japan). In recent years, the flourishing development of the Internet of
Things (IoT) and wireless communication technologies has enabled the Internet of Vehicles
to utilize various communication technologies, such as Cellular Vehicle-to-Everything
(C-V2X), which is defined by third-generation partnership project (3GPP) standards [18], to
integrate information and provide real-time and diverse services.

Taking the development of ITS in Europe as an example, the Car-to-Car Commu-
nication Consortium (C2C-CC) is an organization which was established by automobile
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manufacturers in 2002 [19] to standardize wireless communication between vehicles and
the environment. This allows vehicles from different manufacturers to work together and
communicate with roadside units. The consortium members began developing a mini-
mum set of interoperable cooperative intelligent transport systems (C-ITS) through the
European Telecommunications Standards Institute (ETSI) and International Organization
for Standardization (ISO) [20] standards in 2009. ETSI, as the organization responsible for
standardizing the telecommunications industry, has established multiple standards. For
example, it developed “TS 102 792”, a mitigation technique to avoid disturbance between
European DSRC devices and ITS operating within the 5 GHz frequency range [21]. A
decade later, the development of V2X reached an important milestone with the introduction
of the first vehicles equipped with cooperative V2X in the European market [22]. ETSI
ITS G5 technology is applied to these vehicles for V2X communication [23], including V2I
communication capable of interacting with signal phase and timing (SPaT) [24]. And, in re-
cent years, with the flourishing development of machine learning and artificial intelligence
algorithms, coupled with the application of sensors and multi-access edge computing,
it will be possible to introduce digital twin technology [25] in the future to optimize the
operation strategy of traffic signals to improve the efficiency of transportation. So, this
implies that, in response to the still busy traffic conditions in the future, low packet loss
rates and low latency are the most important issues in vehicular ad hoc networks (VANETs).

With the rise of connected vehicles and older-generation vehicles being intricately
combined on the road, improving the transportation efficiency remains challenging. Due
to vehicles being equipped with hardware devices with limited storage and computing
capabilities, some tasks must be offloaded to mobile edge computing (MEC) to mitigate
delay and security issues effectively. Thus, considering MEC-based C-V2X communication
can cover most of urban traffic scenarios as shown in Figure 3.

Figure 3. C-V2X communication environments. The arrows indicate communication between the
different elements. The dashed lines represent separate stacks.
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To sum up, V2X has experienced exponential growth in market size over the past years.
Carrying on from our previous research [3,4], we found that strengthening the connectivity
of vehicles on a road conduces the collaboration of cars to exchange information with each
other. Thus, several traffic situations can be improved, such as communication performance
and road safety. For now, most traffic incidents are posing severe and increasing mortality
risks to pedestrians, cyclists, and other vulnerable road users. In our past study [3,4], we
proposed a method to send warning messages within elastic coverage to improve road
safety. However, nowadays, LiDAR sensors are usually equipped in cars to detect objects
around. Vehicles usually take advantage of LiDAR sensors to discover neighboring cars
for traffic safety [5–12]. Therefore, in this paper, we proposed a self-organization scheme
to group vehicles into clusters efficiently. The K-means algorithm is a way to solve this
problem but the K value is difficult to be determined [26,27]. Hence, we need to consider
a practical model to organize vehicles on a road successfully. Also, using the mechanism
proposed here, the communication throughput is satisfied. In the study, two simulation
scenarios were considered based on actual traffic conditions and we attempted to find the
most effective configuration method. In order to fulfill many of the specifications for V2X
requirements mentioned above, in this paper, the mechanism we proposed to organize
vehicles into clusters successfully is feasible in most environments in practice.

2. Related Works
With the benefit of clustering, the packet routing stability of vehicle networks can be

achieved, and road safety can be improved [3,4]. However, the two questions here are (1) Is
the grouping concept suitable for most V2X systems? (2) Could the clustering algorithm
be applied to time-limited V2X environments? To answer these two questions, first, we
surveyed several studies on vehicle communication networks in the literature to prove
that the scheme we designed is appropriate. Regarding vehicle networks, we collected
miscellaneous papers in the literature for study. Secondly, the question is, is a clustering
algorithm easy to be realized? Many methods are based on modified K-means approach
for clustering. The authors of some articles mentioned that the K value is usually difficult
to be determined in practice [26,28–30].

In [28], taking the K-means approach as an example, one technique known as “spectral
clustering” transforms the clustering problem into a graph-cut problem in graph theory
and applies the Laplacian matrix’s spectral properties (eigenvalues and eigenvectors) to
achieve clustering. This method integrates the concept of Coulomb force with KNN-
based neighborhood rules, modeling vehicles’ relative motion behaviors (speed, direction,
distance) as virtual attractive and repulsive forces. Vehicles moving in the same direction
with similar speeds generate positive attractive forces, making them more likely to be
grouped into the same cluster. Meanwhile, the KNN constraint limits neighbor relationships
to avoid excessive cluster expansion and to maintain structural stability. However, in large-
scale and highly dynamic vehicular networks, continuous eigenvalue and eigenvector
decomposition of the Laplacian matrix involves O(N3) computational complexity, making
real-time execution difficult.

Furthermore, numerical instability may arise due to sparsity or poor matrix condition-
ing, and when eigenvalues are too close or multiple, it becomes challenging to determine
the number of clusters accurately. In addition, the number of eigenvectors (k) must be
pre-specified, which can lead to unstable results if set improperly. Frequency reconstruc-
tion and decomposition are required as the topology changes rapidly, reducing efficiency
and stability.

In [29], some studies have also proposed a clustering method based on GNN (Graph
Neural Network), which simultaneously considers the graph structure among nodes and
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multi-dimensional feature information (such as speed, position, acceleration, and vehicle
dimensions) to identify behaviorally similar vehicles and form clusters. This approach
constructs a global static vehicle graph at each time snapshot. It uses the graphSAGE
(SAGEConv) model within the GNN to aggregate features from neighbors within two hops,
generating vector embeddings for each node. Finally, these node embeddings are fed into
the K-means algorithm for clustering, mapping the learned behavioral similarities into
actual cluster formations. In the case of same-direction highways and a single vehicle type,
the method based on GNN and K-means improves stability and coverage. Nevertheless,
incorporating static vehicle dimensions in multi-vehicle-type or urban scenarios may bias
the clustering results toward vehicle-type similarity rather than actual behavioral similarity.
At the same time, the hidden-layer learning process of GNN further reduces interpretability,
making it difficult to explain why certain vehicles are grouped.

In [26], the elbow method combines Gaussian similarity with vehicle speed and
position to calculate motion similarity between vehicles. The elbow method is first used
to dynamically determine the optimal K value, addressing the common issue in K-means
where the K value is challenging to set and often leads to poor cluster convergence. Once
the K value is determined, nodes are clustered based on motion similarity to enhance
the stability and accuracy of the clustering. The algorithm calculates a weight for cluster
head selection based on node degree (i.e., the number of adjacent nodes that can directly
communicate with the candidate node) and average link duration. This helps reduce end-to-
end delay and improves node throughput. However, despite these improvements, several
limitations remain. The initial cluster centers in K-means are still randomly selected, leaving
their inherent sensitivity to initialization unresolved and potentially causing unstable
clustering results. The motion similarity metric only considers speed and position through
a Gaussian-based index, which may not fully capture real vehicular behavior since other
critical factors, such as acceleration or directional variation, are excluded. In addition,
the cluster head selection process introduces extra computational and communication
overhead, as it requires continuous calculation of motion similarity, node degree, and
average link duration ratio.

In addition, there is a study that combined K-means and DBSCAN in [30], selecting
the algorithm based on different requirements: when vehicle distribution is uneven and
it is necessary to filter out low-density or safety-zone vehicles, DBSCAN is used to detect
high-density vehicle groups, and the cluster head is chosen as the node closest to the
RSU to implement a far-field communication center technique, thereby reducing channel
load. Conversely, when there is a need to form efficient near-field communication clusters,
K-means is applied to establish centroid structures based on the relative distances between
vehicles, selecting the vehicle closest to the cluster centroid as the cluster head so that
cluster members are concentrated around the center to support high-frequency real-time
message exchange. However, using two different CH selection criteria—RSU proximity in
DBSCAN and centroid proximity in K-means—introduces a fundamental conflict that can
lead to frequent CH re-selection and unstable clusters under high vehicle mobility. Since
the study does not provide a direct evaluation of cluster lifetime, CH switching frequency,
or re-clustering overhead, the actual stability of the clustering process remains uncertain,
making this the method’s most critical limitation.

In [27], as for DBSCAN-based techniques, LEADER is an improved DBSCAN method
(CDS-DBSCAN). This approach applies a sliding time window ∆t, where ∆t denotes a
fixed-length continuous observation interval that captures node mobility patterns over
time rather than relying on instantaneous positions. Within each window, it forms clus-
ters based on the inter-node distance threshold (ε) and the minimum number of points
(minPts ≥ 4), where ε means the maximum spatial radius within which two nodes are
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considered neighbors, and the minimum number of points minPts, where minPts repre-
sents the density requirement by specifying the minimum number of neighbors needed
to qualify a region as a cluster core. It then selects representative cluster heads using
group centrality metrics (such as betweenness and closeness) combined with neighbor
count. In [31], another method is a resource-aware DBSCAN re-clustering technique, which
dynamically adjusts DBSCAN parameters based on RSU resource allocation. This approach
reassigns nodes from overloaded RSU clusters to less-loaded RSUs, resulting in a more
balanced distribution of vehicular nodes within clusters and ultimately achieving RSU
load balancing. However, both methods reveal critical clustering limitations. These global
or semi-global centrality computations in the LEADER algorithm impose significant com-
putational and communication overhead in highly dynamic VANETs, and high-centrality
nodes may still be short-lived due to mobility, leading to frequent leader changes. In
contrast, the resource-aware DBSCAN approach relies solely on positional proximity (ε
tied to DSRC coverage radius) and RSU signal strength for cluster association, which
lacks an endogenous cluster head selection mechanism. As a result, cluster heads may be
positioned at the cluster boundary rather than centrally, leading to inefficient intra-cluster
communication and frequent oscillations when clusters span multiple RSUs. The authors
themselves acknowledge that cluster stability and handover overhead remain unresolved.

In [32], one clustering method integrates the GWO (Grey Wolf Optimizer) with the
AWCA (Adaptive Weighted Clustering Algorithm) regarding bio-inspired optimization
approaches. In this approach, GWO searches for the optimal combination of weights
corresponding to four vehicle node features (residual energy, mobility, node degree, and
communication cost), enabling the scoring mechanism to adjust node role evaluation crite-
ria according to environmental changes dynamically. Each grey wolf represents a candidate
weight vector, and a combination of energy consumption, cluster stability, and commu-
nication overhead determines its fitness. Within the optimizer, the α wolf denotes the
best current solution and leads the search direction, the β wolf represents the second-best
solution providing supporting reference, and the δ wolf represents the third-best solution
that contributes to exploration diversity, while the remaining wolves (Ω) represent other
candidate solutions that adjust their positions according to the α, β, and δ wolves. The final
converged weights are then applied within AWCA to select cluster heads and establish
clusters. Although the proposed GWO-AWCA framework improves adaptability by dy-
namically optimizing clustering weights, several issues may undermine its performance in
highly dynamic VANET scenarios. Since GWO relies on AWCA’s input features (residual
energy, node degree, load, mobility), rapid topology changes can cause these features
to fluctuate significantly, disrupting the optimizer before convergence and resulting in
unstable or inconsistent weight assignments. Moreover, GWO is an iterative metaheuristic
that requires multiple fitness evaluations to update the α, β, and δ wolves; if the network
topology evolves faster than the optimizer’s convergence rate, the computed weights may
already be outdated, leading to ineffective cluster head selection. In extreme cases where
instability dominates, the system may exhibit the practical absence of a well-formed cluster.

To sum up, in [26], the motion similarity between vehicles must be calculated. In [27],
a fog computing layer and leader election were used. In [28], vehicle mobility is modelled
by using the Coulomb law. Furthermore, some clustering methods by machine learning or
neural networks need several iterations of computation [29,30]. In our proposed scheme,
vehicles only need to know the number of the neighbors nearby. Moreover, in [31], the
resource availability of base stations must be computed. In [32], the authors proposed
a metaheuristic-based clustering framework based on real-time metrics such as residual
energy, traffic density, and communication overhead computed in advance. Most elaborate



Sensors 2025, 25, 6037 9 of 23

approaches are comprehensive with complexity, as mentioned in the literature. Here, in the
proposed mechanism, we focus on the algorithm that is feasible and easy to be realized.

In addition, to carry on our previous research [3,4], we found that organizing vehicles
into groups can enhance the safety of the vehicle networks with LiDAR assistance. However,
the success rate and reliability of grouping vehicles is an important issue. Also, enhancing
existing V2V communication mechanisms remains a key factor in ensuring that emergency
messages can be transmitted both timely and accurately. To address this, a study proposed
an innovative strategy that integrates prime number-based lane encoding, hop count
tagging, and message priority control to tackle existing issues such as excessive broadcast
redundancy, high message delay, and difficulty in filtering out irrelevant warnings. In
this approach, each lane is assigned a unique prime number, and the product of the prime
numbers of accident-related lanes is embedded into the broadcast message. This allows
receiving vehicles to quickly determine whether the warning is relevant to them through
a simple divisibility check. Additionally, hop count tags are used to assess the distance
and severity of the event, while the priority control mechanism ensures that emergency
messages are transmitted with minimal interference. Furthermore, the study incorporates
GPS positioning technology to accurately determine the vehicle’s lane location during
startup or lane changes, aligning it with the corresponding prime number encoding. This
enables the system to automatically identify spatial position and contextual relevance
even in complex traffic scenarios (e.g., multilane roads or intersections), significantly
improving the targeting and spatial filtering of warning messages while reducing GPS
usage frequency to save communication and computational resources. Simulation results
show that the proposed mechanism effectively reduces communication load and warning
delay, thereby improving the efficiency and accuracy of message transmission as well as
drivers’ reaction time [3,4].

In order to strengthen the connectivity of vehicles, based many specifications, we
proposed a mechanism to aggregate groups of vehicles to cooperatively communicate with
each other. This method fulfills most of the vehicle system requirements and can be used to
group vehicles on the road briefly.

3. System Architecture
As shown in Figure 4, a model considered here with the condition of a one-way road

with four lanes was proposed where the total length of the road is 250 m, the width of a
single lane is 3 m, the distance between the center points of vehicles on the same lane is
at least 6 m, the distance between the center points of vehicles when running parallel to
each other is 3 m, and the radius of the vehicle communication range is within 10 m. Under
these conditions, we assume that the road length is fixed. The experiments are performed
by adjusting the total number of vehicles. In the network environment, it is assumed that
the greater the number of routers and nodes is, the larger the scale of the network coverage
is. They increase proportionally. In addition, it is also worth noting that many roadside
routers lead to an increase in construction costs. However, low-density-router deployment
is expected to result in limited coverage of communication services.

In addition, within the context of the global network topology, to accomplish the task
of data exchange, there must at least be regular nodes, routers, gateways, and cloud devices.
Therefore, when allocating a cluster of vehicles, one vehicle will serve as the cluster head
acting as the router. After setting the simulation environment conditions, the conditions are
input into the program, and vehicle positions are randomly generated within the defined
range according to the set conditions. Once the vehicle positions are deployed, clusters are
formed in the order of vehicle numbers. If the distance between vehicles is within a radius
of 10 m, they will be grouped into the same cluster.
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Figure 4. The concept of a one way, four lanes road. This is a schematic diagram; the lines in the
middle represent the lane lines.

Since the roles of nodes in the cluster include at least one router and three general
communication nodes, the number of nodes in the cluster should be greater than three. In
the case of randomly deploying nodes, it is possible that the distribution of nodes in certain
areas may be dense or sparse. To determine a reasonable clustering method, the K-means
algorithm is the first clustering method used for evaluation. Taking the two-dimensional
node distribution diagram as an example, the clustering process can be divided into the
following steps:

Step 1: If the total number of nodes is not large, after manually interpreting the visualization
chart, the expected number of clusters can be set to 3, and the K value should be set to 3.

Step 2: The algorithm generates K reference points randomly based on the given K
value to perform the clustering task.

Step 3: After completing the reference point configuration, all nodes are traversed,
and the Euclidean distance formula is used to calculate the distance between each node
and the reference points for clustering. For example, if node 1 is closest to reference point 1
after calculating the distances to all three reference points, it is assigned to cluster 1.

Step 4: Keep adjusting the positions of the reference points. This time, the reference
points are not randomly assigned but calculated by summing the data within each cluster
and dividing by the number of data points in the cluster.

Step 5: Repeat step 4 until the positions of the reference points no longer change.
After going through the steps as mentioned above, we can observe that this clustering

method is not suitable for the scenario in the study. When the number of nodes reaches
hundreds or even thousands, the K value can no longer be determined manually. Therefore, a
more ideal method is needed to determine the K value. In the K-means algorithm, there is a
clustering method called the “elbow method”, and the related steps are described as follows:

Step 1: Set the upper and lower limits for the K value. For example, if the distribution
of nodes suggests that the expected K value might be around 4, then the range for K should
be between 1 and 10.

Step 2: The algorithm generates K reference points randomly based on the given K
value to perform the clustering task.

Step 3: After completing the reference point configuration, all nodes are traversed,
and the Euclidean distance formula is used to calculate the distance between each node
and the reference points for clustering. For example, if node 1 is closest to reference point 1
after calculating the distances to all three reference points, it is assigned to cluster 1.

Step 4: Keep adjusting the positions of the reference points. This time, the reference
points are not randomly assigned but calculated by summing the data within each cluster
and dividing by the number of data points in the cluster.

Step 5: Repeat step 4 until the positions of the reference points no longer change.
Step 6: After completing the above steps, calculate the distance from each data point

in each cluster to the cluster centroid. This distance is the SSE.
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Step 7: By repeating the above steps, you can obtain the SSE corresponding to each K
value. Then, from the relationship between the K values and SSE, identify the point where
the decrease in SSE becomes relatively flat, which is the “elbow point”, this elbow point
indicates the optimal number of clusters. The pseudocodes are listed in Tables 2 and 3.

However, the elbow method still cannot be considered an ideal clustering method.
Because we need to set the communication range for individual nodes, we impose a
minimum distance constraint between two nodes along the Y-axis, and enforce a minimum
number of nodes per cluster for our data. This means that the density of the allocated nodes
will affect cluster assignment. Therefore, the DBSCAN (Density-Based Spatial Clustering
of Applications with Noise) algorithm would be a more ideal clustering method. DBSCAN
has three core concepts: the core point, border point, and noise point. Before clustering, two
important parameters should be set: ε and minimum points, the algorithm clusters based
on these two conditions. For example, if there are five points in a region, and expanding
from point p1 as the center with a radius of ε, four points can be found, and expanding
from point p2 as the center, only two points (including p1) are found, so p1 is the core point
and p2 is the border point. A noise point refers to a node that exists independently in the
data and cannot be assigned to any cluster.

Table 2. Functions of assignment of vehicles on a road.

Pseudocode: GenerateVehiclePositions(point_count, points)

1: possible_y← [LANE_WIDTH/2,
2: LANE_WIDTH/2 + LANE_WIDTH,
3: LANE_WIDTH/2 + 2 × LANE_WIDTH,
4: LANE_WIDTH/2 + 3 × LANE_WIDTH] //Lane center
positions
5: Print horizontal separator
6: for i← 0 to point_count − 1 do
7: valid_position← FALSE
8: tries← 0
9: while valid_position = FALSE and tries < MAX_TRIES do
10: p.x← random value in [0, ROAD_LENGTH)
11: p.y← randomly select from possible_y
12: valid_position← TRUE
13: if i ̸= 0 then
14: for j← 0 to i − 1 do
15: if is_too_close(p, points[j]) then
16: valid_position← FALSE
17: tries← tries + 1
18: break
19: end if
20: end for
21: end if
22: end while
23: if tries = MAX_TRIES then
24: Print “Failed to find valid position for vehicle”, i
25: return FALSE
26: end if
27: points[i]← p
28: points[i].cluster_id← 0
29: Print “NO.”, i, “ (x, y): “, p.x, p.y
30: end for
31: Print newline
32: return TRUE
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Table 2. Cont.

Pseudocode: Clustering with Varying Vehicle Counts

1: for num_pts←min_pts to max_pts do
2: for tries← 0 to max_tries − 1 do
3: points← allocate array of size num_pts
4: initialize points with zeros
5:
6: if generate_vehicle_positions(num_pts, points) = FALSE then
7: free points
8: continue
9: end if
10:
11: sort points by location using qsort
12: Print “List new location info after sorting:”
13: for idx← 0 to num_pts − 1 do
14: Print “NO.”, idx, “(x, y):”, points[idx].x, points[idx].y
15: end for
16: Print newline
17:
18: checkRet← ClusterAssign(points, num_pts, ε, MIN_NEIGHBORS)
19: if checkRet = TRUE then
20: if print_results(points, num_pts) = FALSE then
21: free points
22: continue
23: end if
24:
25: total_conn← total_conn + (conn_pts/num_pts) × 100
26: FindRouterAndBackups(points, num_pts, total_clusters)
27: conn_pts← 0
28: else
29: Print “checkRet = FALSE”
30: end if
31:
32: free points
33: end for
34: end for
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Table 2. Cont.

Algorithm: ClusterAssign(points, point_count, ε, minPts)

Input:
points: a list of points to be clustered
point_count: number of points
ε: distance threshold (epsilon)
minPts: minimum number of neighbors required to form a cluster
Output:
Clusters assigned via cluster_id for each point
Steps:
Initialize cluster_id← 1
Allocate check_points[point_count]← 0
Repeat
For each unclustered point i, do:
Reset has_neighbor← 0
Initialize check_points← 0
For each point j ̸= i and unclustered:
If distance(points[i], points[j]) ≤ ε then
Mark check_points[j]← 1, increment has_neighbor
Assign points[i].has_neighbor← has_neighbor
Allocate and initialize points[i].neighborList of size has_neighbor
Copy marked neighbor indices into points[i].neighborList
End For
Find the point with minimum has_neighbor ≥minPts, call it hasMinNb
If no such point exists, free memory and break
Assign cluster_id to points[hasMinNb] and all its neighbors
For all other points i ̸= hasMinNb:
Remove any assigned neighbors from points[i].neighborList
If neighbors removed:
Recompute has_neighbor, update neighborList
Increment cluster_id
Free all neighborList for all points
Until no more valid clustering possible
Free check_points
Return TRUE

In the study, after randomly deploying the node positions, the algorithm begins
traversing from either the node closest to the origin of the x-axis or the one farthest from
it. During the traversal, neighboring nodes are identified based on the communication
radius ε, along with the condition that each cluster must contain a minimum number of
nodes. After completing the traversal of a node, the total number of its neighbors and
their respective IDs are recorded. The same procedure is then applied to the next node.
This process iterates until all nodes have been traversed. Once the initial traversal is
complete, the algorithm officially begins the clustering process. In this work, the number of
neighboring nodes can be used as a clustering criterion. For example, clustering can start
from nodes with the most neighbors or from those with the fewest. Moreover, nodes that
have already been marked as neighbors in a cluster cannot be assigned to another cluster,
even if they also have neighbor relationships with other nodes. As illustrated in Figure 5,
following the completion of node distribution, Node 3 initially has neighboring nodes 0, 1,
2, 4, 5, and 6. During the actual clustering process, Node 0 is the first to satisfy the clustering
criteria and is selected to initiate the clustering procedure. Given that several of Node 0’s
neighbors overlap with those of Node 3, Nodes 0 through 3 are consequently grouped into
the same cluster. As a result, Node 3’s original neighboring nodes, specifically Nodes 5 and
6, are excluded from this cluster and are thus not assigned to the same group as Node 3.
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Therefore, any node that has already been assigned to a cluster will be removed from the
neighbor lists of other nodes. Additionally, it is worth noting that to ensure continuous
communication within a network topology, the presence of a backup router helps with
this requirement. This way, if the primary router fails, a backup router can promptly take
over, maintaining communication among the cluster nodes and enhancing the reliability of
traffic systems.

Figure 5. Proposed algorithm of nodes allocated to a cluster. The numbers listed are the serial
numbers of the nodes (cars).

Therefore, according to the clustering method as above description, the experiment
is conducted based on the following conditions, and a relatively reasonable number of
clusters will be found as a reference from the experiment result:

• The road length is 250 m.
• The road has 4 lanes in total.
• The road width is 3 m.
• The shortest distance between node centers in the same Y-axis direction is 6 m.
• The communication radius is 10 m.
• The minimum number of nodes required for the cluster should be larger than 4.
• The minimum number of nodes in the road is 3 and the maximum is 250.
• The number of tests for each group of nodes is 1000 times.

In our opinion, the ideal scenario is one in which every vehicle on the road can be
assigned to a cluster. However, this is not always achievable in the real world. Therefore,
we aim to identify the set of nodes for which the clustering assignment rate is no less than
90%. During this process, if the previous set meets the 90% threshold but the next set does
not, the search must continue until a set is found where the assignment rate is at least 90%,
and all subsequent sets also maintain an assignment rate of 90% or higher.
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Table 3. Functions of assignment of cluster heads.

Algorithm: function FindRouterAndBackups(data, num_points, num_clusters)

Input:
data: Array of Points with cluster assignments
num_points: Total number of points
num_clusters: Total number of clusters
Output:
Best router and backup nodes for each cluster
Steps:
For each cluster_id from 1 to num_clusters do:
Initialize count← 0
For i from 0 to num_points − 1 do:
If data[i].cluster_id = cluster_id then
count← count + 1
End For

If count = 0 then
Return FAILURE

Allocate chPoints of size count
ptIdx← 0
For i from 0 to num_points − 1 do:
If data[i].cluster_id = cluster_id then
chPoints[ptIdx]← data[i]
ptIdx← ptIdx + 1
End For

Initialize goodNodes [0..count−1]← 1
For i from 0 to count − 1 do:
For j from 0 to count − 1 do:
If i ̸= j and EuclideanDistance(chPoints[i], chPoints[j]) > 10.0 then
goodNodes[i]← 0
Break
End For

Initialize validNodes as empty list
For i from 0 to count − 1 do:
If goodNodes[i] = 1 then
sumDist← 0
For j from 0 to count − 1 do:
If i ̸= j then
sumDist← sumDist + EuclideanDistance(chPoints[i], chPoints[j])
End For
avgDist← sumDist/(count − 1)
Append (i, avgDist) to validNodes
End For

If validNodes is empty then
Continue to next cluster

Sort validNodes by avgDist in ascending order
Assign first node in validNodes as router
Remaining nodes are backup routers in sorted order

End For
Return SUCCESS
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After completing the exploration for the optimal number of cluster nodes, we can
consider using the EVE-NG network emulator to construct a partial simulation environment
based on the generated network topology. For example, in Figure 6, there are four clusters
shown in the diagram. Each cluster consists of approximately 4 to 5 regular nodes and
one router node. To enable communication between all nodes in a cluster and the cloud,
each regular node first connects to the router, which then connects to a host acting as the
RSU. Once the network topology is configured, we can use iperf to perform traffic testing
in order to evaluate the average data throughput available to each node.

 

Figure 6. Network topology simulation environment established in EVE-NG. Arrows and symbols
are automatically generated by the development tool to represent nodes and interface labels.

To perform random node distribution and cluster assignment, we developed a pro-
gram using the C programming language. The implementation includes three primary
functions, which are responsible for random node placement, cluster allocation, and the
assignment of routers and backup routers within each cluster.

In the process of random node placement, node positions are assigned based on several
parameters, including the total number of nodes, road length, number of lanes, lane width,
and the minimum inter-vehicle distance. If a newly generated position overlaps with an
existing node or the distance to a neighboring node is less than the defined minimum, a
new random position is generated for that node. If repeated attempts fail, indicating that
there is insufficient space to place additional nodes, the program terminates.

At the next stage of the cluster allocation process, the cluster assignment process
begins by traversing all nodes to calculate the number of neighbors and record their IDs.
For each traversed node which has not been assigned to any cluster, the calculation of
the Euclidean distance between the traversed node and the neighbor is performed. If the
distance is within a predefined threshold ε, the node is marked as a neighbor. After the
neighbor discovery process is completed for a node, a neighbor list is constructed based on
the total number of identified neighbors.

Once all nodes have been traversed, the cluster allocation begins. A node is allocated
to the prior cluster based on having either the minimum or maximum number of neighbors,
provided that it has at least three neighbors. After a new cluster is allocated, all nodes
are traversed again to remove the node which has been assigned to a new cluster from
the pool of unassigned nodes. This procedure repeats iteratively until no further cluster
assignments can be made.

After clustering is completed, the next step involves selecting appropriate routers
and backup routers for each cluster. Initially, candidate nodes are identified based on
whether their distances to other nodes in the cluster are not greater than 10. At this point,
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a question may arise as to why some nodes within a cluster may have distances greater
than 10 between them. This is because the clustering process is based on a single node’s
perspective when discovering neighbors, and thus does not guarantee the distance is not
less than or equal to 10 between each node within a cluster. This highlights the importance
of the cluster head serving as the router.

Once the candidate nodes are identified, each of them undergoes an additional round
of Euclidean distance calculations with all other nodes in the same cluster. The average
distance is then computed for each candidate, and the node with the smallest average
distance is selected as the cluster head (primary router). The remaining candidates are
designated as backup routers; the backup priority is determined based on the average
distance between each backup node and the nodes within the cluster, sorted in ascending
order. This strategy helps minimize overall communication distance among nodes, and
ensures that in the event of a primary router failure, a backup router can promptly take over
routing responsibilities. As a result, communication within the cluster can be maintained,
thereby enhancing the overall reliability of the traffic system.

4. Experiment Results
In the experimental section, we first explored the clustering success rate and the

average number of clusters under a fixed road length condition. In Figure 7, the road length
was set to 1000 m, and the total number of nodes ranged from 125 to 500. The results
showed that when the total number of nodes reached 394, a 90% clustering success rate
could be achieved, with an average of 69 clusters formed. However, when the total number
of nodes increased to 481, the clustering success rate reached the highest peak. From that
point onward, due to environmental limitations preventing the accommodation of more
nodes, the failure rate of node deployment increases, which in turn leads to a decrease in
clustering success rate. The parameters are listed in Table 4.

In order to examine the relationships between nodes and the rationality of cluster
distribution, we also adjusted the simulated road length back to 250 m as shown in Figure 8.
Due to the shortened road length, the total number of nodes was reduced to 250. According
to the experimental results, when the total number of nodes was 103, the clustering success
rate reached 90%, with an average of 18 clusters formed. Therefore, we selected a dataset
from the experimental results that contains 18 clusters to generate a visual representation
of the node distribution. It can be observed that most of the cluster head nodes are located
near the central line, which satisfies the requirement for routers to maintain the shortest
communication distance with their cluster members.
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Table 4. Experiment parameters.

Parameters Description

dot11OCBEnabled Outside the Context of a BSS, no BSS mode while it is true.

Ts0Duration The duration of time slot 0, for CCH.

Ts1Duration The duration of time slot 1, for SCH.

ε Communication Radius

λcluster Data transmission frequency of the cluster

λnode Data transmission frequency of the node

Tf Estimated transmission time
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Figure 8. The result of self-organized vehicle nodes and distribution of clusters. The symbols and
colors denoted different clusters.

In addition, we conducted experiments focusing on four clustering directions. Firstly,
the so-called quadrant-based clustering directions refer to clustering the nodes in the
environment from the bottom-left to the top-right, from the top-left to the bottom-right,
from the bottom-right to the top-left, and from the top-right to the bottom-left. The purpose
of the experiment is to determine whether the direction of clustering affects the clustering
success rate and results when the total number of nodes remains the same and when the
number of cluster members varies. The terms “more” or “fewer” cluster members refer to
whether the clustering process begins with nodes that have more neighbors or with those
that have fewer neighbors. By applying these different clustering strategies, we aim to
evaluate the clustering success rate and the average number of clusters formed, in order to
analyze which strategy yields better performance.

Therefore, in this experiment, two cases were designed based on the number of cluster
members—one with fewer and another with more. For each case, four scenario-based
experiments were developed according to four clustering directions. As the experimental
results in Tables 5 and 6 show, it can be observed that regardless of whether clustering
is performed under the condition of fewer or more cluster members, the differences in
clustering success rate and average number of clusters across the four quadrant directions
are not obvious. Therefore, it can be concluded that in practical clustering tasks, using just
one clustering direction is sufficient.

Moreover, from the perspective of cluster member count, under the same road length
and total number of nodes, clustering under the condition of fewer cluster members
consistently achieves a higher clustering success rate, and the average number of clusters
formed is also higher than that under the condition of more cluster members. Thus, whether
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the clustering is performed in a suburban or urban traffic environment, it is recommended
to adopt the strategy of clustering with fewer members. This not only ensures a higher
success rate but also results in a greater number of clusters, which in turn reduces the
load on individual cluster heads and helps achieve load balancing, thereby improving
communication quality.

Table 5. The nodes with fewer neighbors are allocated to a cluster first.

Scenario Total Nodes Success Rate (%) No. of Clusters

1 120 97.50 21

2 120 97.50 21

3 120 94.20 20

4 120 94.20 20

Table 6. The nodes with more neighbors are given prior consideration over those with fewer neighbors.

Scenario Total Nodes Success Rate (%) No. of Clusters

1 120 90.00 12

2 120 90.00 12

3 120 91.70 12

4 120 91.70 12

Based on the aforementioned clustering method that we proposed, data transmission
rate experiments were subsequently conducted. As shown in Figure 9, a network topology
consisted of one server (in the cloud) and three clusters, with each cluster comprising a
cluster head and a total of five nodes in this design. The experiment was conducted using
the EVE-NG platform, where the server refers to the EVE-NG host itself. The cluster heads
of the three clusters were implemented using VyOS, which provides routing capabilities
within the architecture. Each VyOS instance was allocated 2 CPUs and 2 GB of RAM. The
remaining nodes were built using Ubuntu Desktop, with each assigned 2 CPUs and 1 GB
of RAM.

 

Figure 9. An example topology established in EVE-NG for the experiment. Arrows and symbols are
automatically generated by the development tool to represent nodes and interface labels.

In this architecture, regular nodes are equipped with DHCP client functionality, al-
lowing them to obtain an IP address from the router. Therefore, VyOS serves both as
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a router and as a DHCP server/client. In addition to acquiring an IP address from the
server, it also provides IP address assignments to regular nodes for subnetwork. Tak-
ing Cluster 1 as an example, the cluster head can fulfill these requirements through the
following configuration:

• Starting the configuration
Configure

• DHCP get IP from EVE-NG
set interfaces ethernet eth0 address dhcp

• Set Bridge
set interfaces bridge br0 address 192.168.1.1/24
set interfaces bridge br0 description ‘LAN-Bridge’
set interfaces bridge br0 member interface eth1
set interfaces bridge br0 member interface eth2
set interfaces bridge br0 member interface eth3
set interfaces bridge br0 member interface eth4

• DHCP Server for Linux Nodes
set service dhcp-server shared-network-name LAN subnet 192.168.1.0/24 subnet-id 1
set service dhcp-server shared-network-name LAN subnet 192.168.1.0/24 option
default-router 192.168.1.1
set service dhcp-server shared-network-name LAN subnet 192.168.1.0/24 lease 86400
set service dhcp-server shared-network-name LAN subnet 192.168.1.0/24 range start
192.168.1.2
set service dhcp-server shared-network-name LAN subnet 192.168.1.0/24 range 0 stop
192.168.1.200

• OSPF for auto route
set protocols ospf area 0 network 192.168.139.0/24
set protocols ospf area 0 network 192.168.1.0/24
Updating the configuration
commit
save
exit

• For all nodes
ssh-keygen -t rsa
ssh-keyscan -H 192.168.139.129 >> ~/.ssh/known_hosts
ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.139.129First bullet;
Second bullet;
Third bullet.

After completing the network configuration, a priority-based resource allocation
method was proposed to simulate the behavior of nodes transmitting data within the
network. In this method, priorities are classified into three levels: high, medium, and low,
corresponding to the values 3, 2, and 1, respectively. The process begins with assigning
priorities to clusters. The priority of a cluster is determined based on the total number
of nodes it contains: the more nodes in a cluster, the higher its priority. In the proposed
example, each cluster contains exactly five nodes, so all clusters are assigned equal priority.
Next, priority allocation is applied to the nodes within each cluster. It is important to note
that the cluster head serves as the data gateway for all nodes, including itself; therefore,
it must be assigned a high priority, and then assign priorities to the remaining nodes and
perform weighted calculations. In addition to priority assignment, a Poisson distribution
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is used to estimate the transmission time for each node. For example, suppose the five
nodes in a cluster including the cluster head and the related priorities are assigned “High”,
“Medium”, “High”, “Low”, and “Low”, sequentially.

To examine the effectiveness of the proposed method for data packets transmitted,
two schemes are designed for comparison. The first one is the burst transmission test,
in which all nodes attempt to send data to the server at almost the same time, denoted
Case I. The other one is a backoff delay transmission test, where each node transmits data
to the server sequentially with delay time exponentially distributed, named Case II. The
expected backoff delay time for each node in the simulation program is calculated using
the following exponential distribution equation:

Tf = −log(1.0 − (rand()/(RAND_MAX + 1.0)))/λnode

where λnode means the arrival rate of transmitted data bits. The results are shown in Tables 7
and 8 as below.

Table 7. Case I: nodes send data bits immediately as packets arrive, without waiting.

Burst Transmission

Cluster1 Cluster2 Cluster3

KBps MBps Mbps KBps MBps Mbps KBps MBps Mbps

Node1 9909.2 9.7 77.4 Node1 11162.3 10.9 87.2 Node1 12198.6 11.9 95.3

Node2 1969.7 1.9 15.4 Node2 1808.0 1.8 14.1 Node2 1797.9 1.8 14.0

Node3 2116.5 2.1 16.5 Node3 2002.0 2.0 15.6 Node3 1936.9 1.9 15.1

Node4 1940.3 1.9 15.2 Node4 1895.7 1.9 14.8 Node4 1807.6 1.8 14.1

Node5 2140.5 2.1 16.7 Node5 2011.8 2.0 15.7 Node5 1938.9 1.9 15.1

Total 18076.2 17.7 141.2 Total 18879.9 18.4 147.5 Total 19680.0 19.2 153.8

Table 8. Case II: nodes back off a random delay time before sending data bits to the server.

Priority Based with Poisson Transmission

Cluster1 Cluster2 Cluster3

KBps MBps Mbps KBps MBps Mbps KBps MBps Mbps

Node1 16834.2 16.4 131.5 Node1 16599.0 16.2 129.7 Node1 17138.2 16.7 133.9

Node2 9713.6 9.5 75.9 Node2 10057.6 9.8 78.6 Node2 10026.7 9.8 78.3

Node3 9662.5 9.4 75.5 Node3 10169.4 9.9 79.4 Node3 10228.7 10.0 79.9

Node4 10152.6 9.9 79.3 Node4 9970.1 9.7 77.9 Node4 9866.3 9.6 77.1

Node5 9978.4 9.7 78.0 Node5 9863.9 9.6 77.1 Node5 9886.7 9.7 77.2

Total 56341.4 55.0 440.2 Total 56659.9 55.3 442.7 Total 57146.7 55.8 446.5

For information security, in the experiments, all nodes transmit data to the server using
“scp”, which is a data transfer method based on SSH. This method employs asymmetric
encryption and depends on the SSH public key authentication mechanism to complete the
data transmission process. In Tables 7 and 8, kBps denotes kilobytes (packets) being sent,
MBps means megabytes (packets) being sent, and Mbps (with a lower-case “b”) denotes
megabits per second being transmitted. The experiment results show that vehicle nodes
need to wait a delay time before transmission. Case II achieves good performance in
avoiding collisions, especially in congested urban regions.
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5. Conclusions
In this paper, a mechanism to group vehicles into several clusters is proposed. With

the benefit of vehicle connectivity, vehicles are communicate with each other easily and
cooperatively to improve traffic safety. The K-means algorithm is a way to solve this
problem, but the K value is difficult to determine. In the proposed algorithm, vehicles only
need to discover the neighboring cars by using light detection and ranging (LiDAR) sensors.
The limitation of the proposed method here is that some free vehicles (nodes) could not
be assigned to a cluster because of far distance or deep fading of signals. However, the
numerical results revealed that a success rate of over 90% can be achieved. To summarize
the contributions of this paper, the advantages of the proposed mechanism are two-fold.
First, with the experimental platform EVE-NG, the results showed that a clustering success
rate of over 90% could be achieved. Secondly, furthermore, the experiment results reveal
that data packets queued in each car to wait a random time, exponentially distributed,
before transmission outperform data packets sent in a moment, without backoff waiting,
in a short period of time. As shown in Tables 7 and 8, the total throughput in Case II is
more than four times that of Case I. In the future, we will try to organize vehicles using AI
tools if most auto-driving cars are popular and already equipped with high performance
on-board units, (OBUs) on level four.
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