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Highlights

What are the main findings?

e  Superior Segmentation Performance: The proposed modified U-Net architecture (with
attention-enhanced skip connections and inception modules) significantly outperforms
three comparative approaches in brainstem parcellation, achieving higher scores across
all substructures (medulla, pons, and mesencephalon) and the whole brainstem.

e  Volume Differences Across Groups: Automated segmentation reveals distinct volumet-
ric patterns, with controls exhibiting larger volumes (whole brainstem: 1.62) compared
to preclinical (1.49) and patient groups (1.12), suggesting potential atrophy linked to
disease progression.

What is the implication of the main finding?

e  C(linical Utility: The method’s accuracy and robustness support its potential for precise
brainstem assessment in neurodegenerative disorders, enabling earlier detection of
structural changes (e.g., reduced medulla volume in patients: 0.26 vs. 0.31 in controls).

e  Technical Advancements: The success of attention mechanisms and inception modules
highlights their value for complex anatomical segmentation, paving the way for similar
adaptations in other small-structure parcellation tasks.

Abstract

Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder marked by progres-
sive brainstem and cerebellar atrophy, leading to gait ataxia. Quantifying this atrophy in
magnetic resonance imaging (MRI) is critical for tracking disease progression in both symp-
tomatic patients and preclinical subjects. However, manual segmentation of brainstem
subregions (mesencephalon, pons, and medulla) is time-consuming and prone to human
error. This work presents an automated deep learning framework to assess brainstem
atrophy in SCA2. Using T1-weighted MRI scans from patients, preclinical carriers, and
healthy controls, a U-shaped convolutional neural network (CNN) was trained to segment
brainstem subregions and quantify volume loss. The model achieved strong agreement
with manual segmentations, significantly outperforming four U-Net-based benchmarks
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(mean Dice scores: whole brainstem 0.96 vs. 0.93-0.95, pons 0.96 vs. 0.91-0.94, mesen-
cephalon 0.96 vs. 0.89-0.93, and medulla 0.95 vs. 0.91-0.93). Results revealed severe
atrophy in preclinical and symptomatic cohorts, with pons volumes reduced by nearly
50% compared to controls (p < 0.001). The mesencephalon and medulla showed milder
degeneration, underscoring regional vulnerability differences. This automated approach
enables rapid, precise assessment of brainstem atrophy, advancing early diagnosis and
monitoring in SCA2.

Keywords: deep learning; brainstem segmentation; medical imaging processing; brain
MRI segmentation; convolutional neural networks; U-Net

1. Introduction

Spinocerebellar ataxia type 2 (SCAZ2) is a rare neurodegenerative disorder characterized
by progressive degeneration of the brainstem and cerebellum. As one of the most prevalent
spinocerebellar ataxias globally [1-4], it exhibits a notably high incidence in Holguin,
Cuba [1,5]. Clinical manifestations include a cerebellar syndrome, slowing of the saccadic
ocular movements, cognitive disorders, sensory neuropathy, etc. [6].

Three patterns of macroscopic atrophy reflecting damage of different neuronal systems
are recognized in spinocerebellar ataxias, named spinal atrophy (SA), olivopontocerebellar
atrophy (OPCA), and cortico-cerebellar atrophy (CCA) [7]. Neuroimaging plays a piv-
otal role in diagnosing neurodegenerative disorders, including modalities like magnetic
resonance imaging (MRI), single-photon emission computed tomography (SPECT), and
positron emission tomography (PET) [8]. Due to its anatomical nature, MRI remains the
gold standard for structural segmentation and volumetrics, allowing visualization of SA,
OPCA, and CCA [9]. According to recent literature [10,11], MRI is one of the most common
biomarker candidates for spinocerebellar ataxias.

Brainstem atrophy has been documented across both symptomatic and prodromal
stages of SCA2 [1-3,12-20]. However, most studies rely on manual segmentation, a method
constrained by time-intensive workflows, inter-rater variability, and scalability limitations
in large cohorts. To address these challenges, this work introduces an automated deep
learning framework for quantifying volumetric changes in SCA2 patients, preclinical
carriers, and healthy controls.

Convolutional neural networks (CNNs) have achieved state-of-the-art performance
across diverse domains, including handwritten digit classification [21], face and contour
detection [22], and automatic video processing [23,24]. In neuroscience, the applications of
CNN s include the classification of electrooculograms and electroencephalograms [25,26],
neurological behavior analysis and prediction [27-29], ataxic gait monitoring and classifica-
tion [30-34], and speech recognition and processing for neurodegenerative diseases [35,36].
However, the atrophy estimation requires structural, anatomical data (e.g., structural MRI).

In neuroimaging, CNNs have become indispensable for brain lesion segmentation [37],
structural parcellation [38—40], and neurological disease classification [41]. The most com-
mon architectures include U-Net [42-45], ResNet [46], and VGG-Net [47], leveraging
adversarial training [48] and hierarchical feature extraction to enhance robustness. Some
important advances in brain structure segmentation include the 3D cerebellum parcella-
tion used by Han et al. [38], highlighting their potential for fine-grained neuroanatomical
analysis, and the 2D approach proposed by Faber et al. [44] and Morell-Ortega et al. [39].
Two-dimensional convolutional models exhibit greater computational efficiency and lower
resource demands by processing individual image slices independently. However, 3D
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convolutional models tend to achieve superior segmentation performance by leveraging
volumetric spatial context, which is critical for accurately analyzing anatomical continuity
and pathological structures across adjacent slices in neuroimaging data.

Recent architectural innovations have significantly advanced CNN-based segmenta-
tion performance in neuroimaging through sophisticated feature refinement and multi-scale
processing. Convolutional Block Attention Modules (CBAM) [49-51] enhance segmentation
precision by sequentially applying channel and spatial attention mechanisms, enabling the
model to focus on diagnostically relevant features while suppressing noise. This approach
has been particularly valuable for heterogeneous tumor regions and subtle subcortical
boundaries. Another key component is the inception module [52-55], which addresses
scale variance through parallel convolutional pathways with differing receptive fields,
capturing both local texture details and global anatomical context essential for brain struc-
tures. The adoption of self-attention for brain structures and lesion segmentation [56,57]
has introduced a powerful mechanism for modeling long-range contextual dependencies
by computing interactions between all pairs of positions in a feature map. It can directly
capture complex, non-local relationships, which are often challenging for local convolutions
to grasp. However, this global receptive field comes at a prohibitive computational cost,
with memory and time complexity rapidly increasing with spatial resolution, making it
often impractical for high-resolution 3D medical volumes.

Building on prior work by Cabeza-Ruiz et al. [54], this study applies CNNs to brain-
stem segmentation in MRI, with a focus on mesencephalon, pons, and medulla volumetric
changes. The main advancement over the previous architecture is the incorporation of
CBAM, which greatly improves the model’s accuracy and allows an accurate segmentation
of brainstem structures while maintaining a small number of parameters. To date, no
studies have employed deep learning to compare brainstem atrophy on SCA2 in Cuba.
This approach aims to establish a scalable, objective tool for identifying early biomarkers of
SCA2 progression.

2. Materials and Methods

The proposed model architecture builds upon the method by Cabeza-Ruiz et al. [54],
which uses a 3D U-Net-like framework to perform volumetric segmentations. This de-
sign processes the input images in their native 3D spatial context, preserving important
anatomical relationships. The core symmetric encoder-decoder structure employs four
downsampling and four corresponding upsampling operations. To enhance feature extrac-
tion, each convolutional layer was replaced with a modified inception module [58]. Our
adaptation of the inception module (IM) simplifies the original design by reducing the four
parallel paths to two core branches. The main branch processes data through a sequence
of three convolutional layers with kernel sizes of (1 x 1 x 1), (3 x 3 x 3),and (3 x 3 x 3),
with the feature maps from each step preserved for later concatenation. Concurrently, a
secondary branch processes the same input through a max-pool layer and a convolutional
layer with a (1 x 1 x 1) kernel. The outputs of these two branches are then concatenated,
and the resulting feature map is normalized using instance normalization. This hierarchi-
cal structure facilitates efficient processing of multi-scale features while maintaining low
memory requirements. The inclusion of (1 x 1 x 1) convolutions within the IM optimizes
the trade-off between computational efficiency and multi-scale feature representation by
dimensionality reduction, a common strategy in modern CNN architectures.

Additionally, skip connections were refined using three consecutive Convolutional
Block Attention Modules (CBAM) [59]. This modification enables the model to focus on
spatially and channel-wise relevant features in skip connections. The CBAM operates
through two sequential sub-modules: a Channel Attention Module (CAM) followed by a
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Spatial Attention Module (SAM). The CAM first applies simultaneous global max-pooling
and average-pooling to the input features. The resulting vectors are separately processed
by a shared multi-layer perceptron, then summed, and passed through a sigmoid activation
function to generate a channel attention vector. This vector is multiplied with the original
input features. The output is then passed to the SAM, which applies channel-wise max-
pooling and average-pooling, concatenates the results, and processes them through a
convolutional layer with a (7 x 7 x 7) kernel and a sigmoid activation to produce a spatial
attention map. For this research, the original convolutional layer with a (7 x 7 x 7) kernel
was replaced by three consecutive convolutions with a kernel size of (3 x 3 x 3), allowing
us to keep the same receptive field while using fewer parameters. The output map of the
SAM is multiplied with the features from the CAM to yield the final weighted output.

Given hardware limitations, the model was designed to balance computational effi-
ciency with performance, ensuring feasibility on available infrastructure while maintaining
robust segmentation accuracy. The inclusion of inception modules and CBAM in the pro-
posed U-Net variant was motivated by the need to address two key challenges in brainstem
segmentation: (1) the multi-scale nature of anatomical features and (2) the subtle intensity
changes between adjacent substructures. Inception modules enable efficient multi-scale
feature extraction, while the stacked CBAM refine the skip connections to prioritize anatom-
ically relevant regions. The overall U-Net model and inception architectures are illustrated
in Figure 1, with detailed schematics of the CBAM provided in Figure 2.

3D U-Net

=

I 1nception I 3x3x3 Conv + ReLU

B 3x3x3 MaxPool Il Instance Normalization
N 3x3x3 TranspConv + ReLU

Concat
[ 1x1x1 Conv+ ReLU

(80, 80, 96)

SoftMax
I cBAM

Figure 1. Basic structure of the 3D U-Net and the inception used.
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Figure 2. Structures of Convolutional Block Attention Module (CBAM), Channel Attention Module
(CAM), and Spatial Attention Module (SAM). For the current research, the convolution with kernel
size (7 x 7 x 7) was replaced by three consecutive convolutions with kernel sizes (3 x 3 x 3).

This study employed a cohort of 42 MRI scans obtained from the Cuban Neurosciences
Center. These scans correspond to 25 individuals, comprising five healthy controls, seven
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preclinical subjects, and 13 SCA2 patients. The participants belong to different ages, SARA
scores, and years of SCA2 evolution (see Table 1). This study was conducted in accordance
with the Declaration of Helsinki and approved by the Research Ethics Committee of the
Cuban Center for Neuroscience in November 2020. Written informed consent was obtained
from all subjects involved in this study. MRI data were acquired using a Siemens 3T
Allegra (Siemens Medical Solutions, Erlangen, Germany) system equipped with an 8Ch
TxRx Head coil and running Syngo MR VA35A software. A high-resolution T1-weighted
MPRAGE sequence was used to acquire anatomical images with the following parameters:
TR = 2400 ms, TE = 2.36 ms, TI = 1000 ms, flip angle = 8°, and slice thickness = 0.8 mm.

Table 1. Demographic information of the cohort’s individuals.

Data Value Range
Age (years) 25t0 72
SARA score (patients and preclinical) 0.0to 39
CAG repeat 36 to 40
Evolution years (patients) 1to 31

2.1. Image Preparation

The full preparation process for one single image can be depicted in Figure 3. All MRI
scans underwent preprocessing to ensure consistency and improve segmentation accuracy.
First, N4 bias field correction [60] was applied to address intensity inhomogeneities, en-
hancing image quality for subsequent analysis. Following this, each scan was registered to
the ICBM 2009c nonlinear symmetric template [61] using Advanced Normalization Tools
(ANTS) [62]. For the registration process, an affine initialization was calculated to find a
good initialization for further refinement, using a search factor of 15. Then, a three-stage
approach was followed: rigid (affine iterations: [1500, 1000, 500, 100], using the full mask
of the MNI template), affine (affine iterations: [1500, 1000, 500, 100], using the brain mask
of the MNI template), and symmetric normalization (SyNOnly) with default parameters.

Figure 3. Full preprocessing routine for a single image. Original image (a), followed by N4
Norm.+MNI Registration (b) and manual label superposition (c). Follows the result of crop operation
(d) and intensity normalization (e). Image (f) shows the manually segmented labels in the cropped
region, and (g) shows a 3D view. Label colors: medulla (red), pons (green), and mesencephalon (blue).

The ICBM 2009c template was selected for its validated ability to represent adult
brain anatomy and compatibility with other neuroimaging studies [63—65]. The described
hierarchical registration pipeline minimizes anatomical mismatch by progressively aligning
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scans to the template’s symmetric space. Figure 3a shows the original image, and Figure 3b
displays the result of N4+MNI registration. To quantitatively evaluate the effectiveness
of the registration phase, we computed the Dice Similarity Coefficient (DSC) between
the brainstem mask of each registered subject MRI and a predefined brainstem mask of
the MNI template. The analysis yielded a mean DSC of 0.92 £ 0.01, indicating excellent
alignment across the cohort. An example of this registration is provided in Figure Al.

To optimize computational efficiency, MRI scans were cropped to focus exclusively
on the brainstem region. Using the segmentations of the training set as reference, a stan-
dardized region of interest (ROI) measuring 80 x 80 x 96 voxels was extracted for each
scan. This approach greatly reduced the computational load, decreasing processed volumes
from approximately 8.5 million voxels (per full scan) to 614,400 voxels. The cropped ROIs
enabled efficient model training and inference while preserving relevant anatomical data
for brainstem analysis. Figure 3d shows the result of the cropping operation. Following the
crop, intensity normalization was applied for every image (Figure 3e). These volumes were
used as inputs to the 3D U-Net. Figure 3f shows one fully preprocessed image overlapping
with its manual segmentations.

2.2. Analysis Description

This study was implemented in Python 3.9, using TensorFlow [66] and Keras [67] for
model development and training. The model was trained over 250 epochs using the Adam
optimizer [68] with default parameters and a constant learning rate of 10~*. To mitigate
overfitting, a dropout rate of 0.2 was applied before the final convolutional layer. The loss
function used was one minus the average Dice score (DSC) across all channels; the DSC is
computed as mentioned by Han et al. [38].

The experiment was conducted on a computer provided with an Intel Core i5-10500H
microprocessor (Intel Corporation, Santa Clara, CA, USA), 16 GB RAM, and an NVIDIA
RTX 3060 6 GB GPU (NVIDIA, Santa Clara, CA, USA) using mixed precision. The dataset
was partitioned into 17 images for training, 3 for validation, and 22 for testing. Careful
stratification ensured representation of all clinical categories (patients, controls, and pre-
clinical carriers) in each subset, with the validation set containing the minimal case of
one scan per category. Subject assignment followed a randomized distribution with no
additional constraints. The final number of images per group in the partitions was: train
(eight patients, seven preclinical, and two controls), validation (one per group), and test
(fourteen patients, six preclinical, and two controls). To enhance model generalization, and
given the small size of the available cohort, data augmentation techniques were applied
to every image in the training set. The augmentation included random rotations (—15° to
15°), translations (415 pixels in each direction), and flipping (probabilistic). For each image
in the train/validation sets, 40 augmented images were generated. The final training set
therefore consisted of 697 MRIs (17 original and 680 augmented), and the validation set
contained 123 MRIs (3 original and 120 augmented). No augmentation was applied to the
images of the test nor validation sets.

The proposed method was evaluated against four U-Net-based approaches: (1) an
upscaled version of the model architecture by Cabeza-Ruiz et al. [54]; (2) the cerebellar
parcellation network by Han et al. [38]; (3) the brainstem parcellation model by Magnusson
et al. [69]; and (4) the whole-brain parcellation model used by Nishimaki et al. [40]. To
ensure a fair and accurate comparison, a rigorous approach was employed for the imple-
mentation of the benchmark models. Wherever possible, the authors’ original code was
used, as was the case for the model by Han et al. [38] and the previous architecture from
Cabeza-Ruiz et al. [42]. For the method by Nishimaki et al. [56], a faithful translation of the
official Torch code into the TensorFlow environment was performed. For the approach by
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Magnusson et al. [55], whose code was not available, the network was implemented based
on the architectural description provided in their original paper.

To ensure a fair comparison, all models were trained under identical conditions, main-
taining consistent training protocols (loss function, optimizer parameters, regularization
strategies, number of epochs, and learning rate). Due to computational constraints, the
model proposed by Nishimaki et al. [40] was impossible to train with the original filter
sizes for each U-Net stage. To overcome this limitation, the number of filters was changed
from [64, 128, 256, 512, 1024] to [32, 64, 128, 256, 512], ensuring a proper fit in our graphics
card. The parcellating model by Han et al. [38] was reduced too, removing one of the
encoder steps. To mitigate the possible negative effects of this reduction, the numbers of
the filters in each encoder step were increased [48, 48, 96, 195, 384, 768] to [64, 64, 128, 256,
512]. Table 2 shows the number of filters used for each model, as well as the total number
of parameters per approach.

Table 2. For each model, the number of filters after each encoder step, and the total number of

parameters.
Approach Number of Output Filters in Number of Parameters
Encoder

This research [32, 64,128, 256, 512] 5,254,266
Cabeza-Ruiz et al. [54] [64, 128, 256, 512, 512] 8,788,376
Han et al. [38] (modified) [64, 64,128, 256, 512] 21,641,792
Magnusson et al. [69] [32, 64,128, 256, 512] 10,796,252
Nishimaki et al. [40] [32, 64, 128, 256, 512] 22,598,862
(modified)

The segmentations generated by the top-performing model were subsequently utilized
for volumetric analyses, with regional volumes normalized as a percentage of total intracra-
nial volume (%TICV). Additionally, we investigated potential clinical and developmental
correlations by examining the relationship between brainstem subregion volumes, Scale
for the Assessment and Rating of Ataxia (SARA) scores, disease duration, and CAG repeat
length. These analyses aimed to elucidate whether volumetric variations in the medulla,
pons, and mesencephalon were associated with the neurological detriment related to SCA2.
The correlation p-values were adjusted via Bonferroni correction (12 tests).

2.3. Ablation Study: Quantifying the Contribution of CBAM

To quantitatively evaluate the contribution of the Convolutional Block Attention
Modules (CBAM), an ablation study was conducted. A version of the proposed architecture
was trained without the CBAM components on the skip connections. This ablated model
demonstrated significantly hampered learning capabilities, with its DSC on the validation
and training sets plateauing below 0.84 throughout 60 training epochs. In contrast, the full
model incorporating CBAM exhibited a rapid improvement in performance, with the DSC
escalating to 0.87 early in training and continuing its upward trajectory. This performance
gap underscores the critical role of attention mechanisms, stabilizing the training process
and enabling the model to achieve high-precision segmentation by effectively focusing on
anatomically relevant features.

3. Results

The evaluation results demonstrate high segmentation accuracy across all regions of
interest. Mean DSC exceeded 0.95 for all structures, with the highest score (0.97) achieved
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for the whole brainstem. The mesencephalon exhibited the lowest mean DSC (0.93), indicat-
ing consistent yet slightly reduced performance in this region. These results highlight the
model’s robustness and reliability in segmenting brainstem subregions. Table 3 shows the
mean DSC for each model evaluated in the test set. The evaluations include all the brain-
stem regions (medulla, pons, and mesencephalon) and the full brainstem. Table 4 shows
the results of the Intersection over Union (IoU), Hausdorff Distance (HD95), Specificity,
Sensitivity, and Precision, calculated for the full brainstem.

Table 3. Mean dice scores and stdev achieved for each model in the test set. The best scores have
been bolded.

Mean DSC =+ stdev

Label This Research  CaPeza-Ruiz Han etal. [38] Magnusson etal. Nishimaki et al. [40]
et al. [54] (Modified) [69] (Modified)
Mesencephalon  0.96 £ 0.022 0.92 £+ 0.019 0.93 £+ 0.019 0.89 &+ 0.031 0.91 £+ 0.022
Pons 0.96 £+ 0.015 0.94 £ 0.014 0.94 £ 0.013 0.91 £ 0.029 0.93 £ 0.014
Medulla 0.95 £ 0.021 0.93 £ 0.020 0.92 £ 0.021 0.91 £0.023 0.93 £ 0.021
Full brainstem 0.96 £+ 0.008 0.95 + 0.008 0.95 + 0.007 0.93 £0.013 0.95 £+ 0.007
Table 4. Mean Intersection over Union (IoU), Hausdorff Distance (HD95), Specificity, Sensitivity, Pre-
cision, Average Symmetric Surface Distance (ASD), and Normalized Surface Dice (NSD). Evaluations
performed using the full brainstem. The best scores have been bolded.
Score (Mean Value)
Measures This Research Cabeza-Ruiz Han etal. [38] Magnusson etal. Nishimaki et al. [40]
et al. [54] (Modified) [69] (Modified)
IoU 0.914 + 0.01 0.904 £ 0.01 0.906 £ 0.01 0.886 + 0.05 0.906 + 0.01
HD95 (mm) 2.71 3.02 2.78 3.29 2.65
Specificity 0.998 £+ 0.0007  0.998 £ 0.0007 0.998 £ 0.0006 0.997 £+ 0.001 0.998 £ 0.0007
Sensitivity 0.949 £+ 0.01 0.938 £+ 0.02 0.941 £+ 0.02 0.928 £+ 0.05 0.947 £+ 0.01
Precision 0.972 £ 0.01 0.963 £+ 0.01 0.950 £+ 0.01 0.939 £+ 0.01 0.953 £ 0.01
ASD 0.052 0.058 0.058 0.079 0.054
NSD 0.993 0.991 0.992 0.985 0.992

Figure 4 presents a qualitative comparison of segmentation results for a single case.
The visual assessment of the segmentations generated by the five models reveals a consis-
tent pattern in the spatial distribution of errors. In some cases, the models do not find the
precise borders between adjacent labels, leaving small holes in segmentations (marked in
yellow in Figure 4). The modification of the model by Nishimaki et al. [40] and the model
by Magnusson et al. [69] also show irregular borders in the pons, producing artifacts in
the 3D view. All models achieve high performance metrics (including DSC, HD95, Sensi-
tivity, Specificity and Precision). Nevertheless, qualitative inspection of the multiplanar
error maps (Figure 5) indicates that discrepancies predominantly occur along the outer
boundaries of the brainstem rather than at the internal interfaces between substructures.
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Figure 4. From top to bottom: original image, ground truth segmentation, and segmentations
produced by this research, Cabeza-Ruiz et al. [54], Han et al. [38] (modified), Magnusson et al. [69],
and Nishimaki et al. [40] (modified). From left to right: axial, sagittal, coronal, and 3D views.
Labels shown: medulla (red), pons (green), and mesencephalon (blue). The yellow ellipses indicate
segmentation errors producing holes in the intersections of adjacent labels.

Figure 6 shows a superposition of the segmentations produced by all the models on
another test image. As the image depicts, all the external borders are very similar, which
means an overall good segmentation for all the models. An artifact produced by the model
of Magnusson et al. [69] formed a small hole in the segmentation. Figure 7 presents the
respective planar errors for each model on that same image. It may be appreciated that
our model and the modification of Han et al. [38] did a better job identifying the correct
borders between the adjacent brainstem regions.
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Figure 5. Multiplanar errors for a representative case. Blue: false negatives; red: false positives.
From top to bottom: multiplanar errors for the segmentation produced by this research, Cabeza-Ruiz
et al. [54], Han et al. [38] (modified), Magnusson et al. [69], and Nishimaki et al. [40] (modified). From
left to right: axial and sagittal views.

As depicted in Figures 5 and 7, the most common segmentation errors are placed in
the outer boundary of the brainstem. This observation suggests that the models excel in
delineating the internal architecture of the brainstem, accurately capturing the transitions
between adjacent subregions, but exhibit minor inaccuracies in defining the precise exterior
margins of the brainstem itself. The concentration of errors along the periphery may reflect
inherent challenges in boundary definition due to partial volume effects at the brainstem’s
interface with surrounding cerebrospinal fluid or adjacent tissues. Additionally, slight vari-
ations in image contrast or resolution near the edges could contribute to this phenomenon.
Importantly, the robustness of internal parcellation underscores the ability of the models to
learn and reproduce the complex anatomical relationships between substructures, which is
critical for clinical and research applications. Future work could explore postprocessing
refinements or targeted training strategies to further improve boundary precision without
compromising the already high accuracy of internal segmentation.
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Figure 6. Original image ((top) row) and the superposition of the segmentation borders by all the
models ((bottom) row). From left to right: sagittal, coronal, and axial views. Red: ground truth
borders, blue: this research, green: Cabeza-Ruiz et al. [54], magenta: Han et al. [38] (modified), yellow:
Magnusson et al. [69], cyan: Nishimaki et al. [40] (modified). The superposition of the lines indicates
an overall good recognition of borders. The model by Magnusson et al. [69] (yellow) produced an
artifact (axial view), creating a small hole in the segmentation.

Based on the information provided in Tables 2—-4 and Figures 4-7, the proposed method
achieves superior performance while maintaining the lowest computational footprint. The
model demonstrates comprehensive outperformance over competing methods. While
all models achieve high DSC, our method consistently delivers the highest scores for the
majority of structures, particularly the full brainstem. More importantly, the analysis of
boundary-specific metrics (ASD and NSD) reveals that our segmentations are not merely
volumetrically accurate but are also precisely aligned with the true anatomical boundaries.
Our best-in-class ASD and NSD scores confirm superior surface accuracy. The HD95 of
2.71 mm indicates precise boundary delineation, comparable to Nishimaki et al.’s [40]
marginally better 2.65 mm, but using a substantially smaller model.

Beyond accuracy, the proposed model stands out for its efficiency. With only 5.25 mil-
lion parameters, it is significantly leaner than competing models, which range from 8.79 mil-
lion to 22.6 million parameters. This efficiency does not come at the cost of performance, as
the model matches or exceeds the scores in secondary metrics such as sensitivity (0.949)
and precision (0.972). In contrast, larger models like Han et al. [38] and Nishimaki et al. [40]
(with 21.64 M and 22.6 M parameters after modification, respectively) offer negligible
improvements while demanding far greater computational resources. This makes the
proposed approach particularly suitable for real-world clinical settings, where hardware
limitations and inference speed are practical concerns.

The implications of these findings are substantial for both researchers and practitioners.
For clinicians, the model’s high accuracy ensures reliable segmentation for diagnostic pur-
poses. For researchers, its parameter efficiency translates to faster inference times and lower
hardware costs, facilitating the deployment in resource-constrained environments. From a
research perspective, this work establishes a new benchmark for balancing performance
and efficiency in medical imaging segmentation. The improvements can be attributed
to the two key architectural changes made to the U-Net: (1) the integration of attention
mechanisms within skip connections to refine feature aggregation and (2) the replacement
of conventional convolutional layers with modified inception modules to capture multi-
scale contextual information more effectively. While future studies will explore further
optimizations, the current model demonstrates that state-of-the-art accuracy does not come
at the expense of larger models.
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Figure 7. Errors in segmentations. From top to bottom: this research, Cabeza-Ruiz et al. [54], Han
et al. [38] (modified), Magnusson et al. [69], and Nishimaki et al. [40] (modified). From left to right:
sagittal, coronal, and axial views. Green: false positives; red: false negatives.

Quantitative evaluation of computational efficiency revealed segmentation times of
<1 s per image on a GPU environment (NVIDIA RTX 3060 MOBILE, 6 GB GDDR6), while
CPU-based processing (Intel Core i3-8145U, 8 GB DDR4 RAM) required 7 £ 0.89 s per
case. These times represent great speed improvement compared to manual segmentation
protocols while maintaining diagnostic-grade accuracy.

Using the segmentation results for all the images of the initial cohort, volumetric
changes were calculated for SCA2 patients, preclinical subjects, and healthy controls. For
this, all the segmentations were uncropped to the original dimensions of the template
and then back-registered to the original space of the MRIs. Volumes were normalized as
a percentage of the total intracranial volume (% TICV). The TICV was computed using
ROBEX [70]. Consistent with prior findings by Reetz et al. [71], the comparison (Table 5)
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revealed a progressive volumetric reduction: SCA2 patients exhibited significantly smaller
brainstem subregion volumes compared to preclinical subjects, which in turn were reduced
relative to healthy controls. These findings validate the model’s ability to detect subtle
neuroanatomical changes, reinforcing its utility in clinical assessment of neurodegenera-

tive disorders.

Table 5. Mean volumes for SCA2 patients, preclinical carriers, and control subjects. P: p-values from
the Kruskal-Wallis test.

Mean Volumes (% TICV)

Brainstem Section Patients Preclinical Controls P
Mesencephalon 0.4 0.44 0.48 0.007
Pons 047 0.76 0.82 <0.0001
Medulla 0.26 0.29 0.31 0.00012
Whole brainstem 1.12 1.49 1.62 <0.0001

The most pronounced differences were observed in the pons, with mean volumes of
0.47% TICV for patients, 0.76% TICV for preclinical subjects, and 0.82% TICV for controls.
Notably, the median volume for controls was nearly double that of patients. Differences
between preclinical subjects and controls were less pronounced. In the mesencephalon,
mean volumes were 0.40% TICV for patients, 0.44% TICV for preclinical subjects, and 0.48%
TICV for controls. The medulla exhibited the smallest volumetric differences, with values
of 0.26%, 0.29%, and 0.31% TICV for patients, preclinical subjects, and controls, respectively.
At the whole brainstem level, mean volumes were 1.12%, 1.49%, and 1.62% TICV for
patients, preclinical subjects, and controls, respectively. This highlights the progressive
nature of brainstem atrophy in SCA2.

The automated segmentations were also used to assess the relationship between
brainstem subregion volumes and clinical measures, including the SARA scores, disease
duration, and CAG repeat length (Table 6). The analysis included eleven SCA2 patients
and eight preclinical carriers (one patient was excluded due to missing data). For disease
duration, correlations were restricted to the patient cohort. All the brainstem subdivisions
showed significant negative correlations with SARA scores (pons: r = —0.69, p < 0.01;
whole brainstem: r = —0.71, p < 0.01), indicating that smaller volumes are associated with
worse ataxia severity. Notably, among the three substructures, the pons demonstrated the
strongest association, aligning with its known role in motor coordination. Disease duration
and CAG repeat length did not correlate prominently with any of the structures, as after
Bonferroni corrections all p-values were greater than 0.05.

Table 6. Correlations of brainstem volumes (%TICV) with clinical measures: SARA scores and CAG
repeats (patients + preclinical; n = 19 total); disease duration (patients only; n = 11). P: p-values
adjusted for multiple comparisons via Bonferroni correction (« = 0.0042).

Brainstem SARA Disease Duration CAG Repeat
Section/Score Corr P Corr P Corr P
Mesencephalon —0.62 <0.05 —0.58 0.72 —0.49 0.36

Pons —0.69 <0.01 —0.35 1.00 —0.56 0.14
Medulla —0.62 <0.05 —0.22 1.00 —0.43 0.72
Whole brainstem —-0.71 <0.01 —0.37 1.00 —0.55 0.15




Sensors 2025, 25, 6009

14 of 20

4. Discussion

This study presented a deep learning-based framework for the quantification of
volumetric changes in the brainstem of SCA2 patients and preclinical subjects compared
to healthy controls. To the best of our knowledge, this represents the first such study
conducted in Cuba, addressing a critical need for accessible and efficient tools to study
neurodegenerative diseases in resource-constrained settings.

The success of the approach stems from the inherent advantages of the 3D U-Net for
medical image segmentation. Unlike classical techniques (e.g., atlas-based or graph-cut
methods) that rely on handcrafted features (which often fail to capture complex anatomical
variability [72]), CNNs automatically learn discriminative hierarchical features, enabling
precise parcellation of challenging structures [73]. The proposed 3D U-Net architecture
incorporates two key changes: stacked attention modules in skip connections and mod-
ified inception modules replacing standard convolutions. The attention modules enable
precise localization of anatomical boundaries by selectively emphasizing relevant spatial
features. On the other side, the inception modules improve the U-Net’s capability to capture
multi-scale contextual information critical for distinguishing between adjacent brainstem
subregions. This advanced and complex architecture achieves expert-level segmentation
accuracy, with DSC > 0.95 for all brainstem substructures.

The results demonstrate that deep learning techniques can effectively characterize
brainstem atrophy on SCA2, enabling rapid differentiation between patients, preclinical
subjects, and controls. The findings demonstrate a robust inverse relationship between pons
volume and SARA scores (r = —0.69, p < 0.01), underscoring the pons’ pivotal role in SCA2-
related motor dysfunction. This correlation suggests that automated brainstem volumetry
serves as a biomarker for clinical trials, enabling early intervention in preclinical carriers.
Future longitudinal studies will validate these associations and explore multimodal imaging
to refine prognostic models. These findings suggest that the proposed framework can be
integrated into larger neuroimaging pipelines to assess volumetric changes in SCA2 patients
and preclinical subjects. The development of user-friendly software based on this approach
could provide clinicians with powerful tools for rapid diagnostics, helping to evaluate
disease progression. The use of such tools could improve the success of patient care and
support early intervention strategies.

The computational efficiency of the proposed method offers significant advantages
for clinical implementation. The brainstem-specific segmentation is completed in under
one second per image on a GPU, representing a substantial reduction in time compared to
manual segmentation. Even when processed on a CPU, a segmentation time of approxi-
mately seven seconds per case remains highly efficient for clinical settings. It is important
to note that these times reflect the brainstem-specific segmentation only, with the full
pipeline (including registration) requiring additional computation. The choice between
GPU and CPU implementation presents practical considerations: GPU acceleration en-
ables real-time processing for clinical workflows, while CPU processing remains viable
for resource-constrained environments at the cost of increased processing time. Impor-
tantly, both approaches maintain equivalent segmentation accuracy, with the computational
differences arising solely from hardware capabilities. For large-scale deployments, GPU
implementations are recommended when available, as they provide the most balanced com-
bination of speed and precision. The method’s memory requirements make it deployable
on most modern medical imaging workstations without specialized hardware.

Limitations and Future Work

The main limitations of the current work can be summarized as follows:
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(@) Registration dependency: While the hierarchical registration pipeline ensures robust
alignment to the ICBM 2009¢ template, this preprocessing step might introduce
critical limitations. A failure in the registration step will inevitably lead to a wrong
segmentation. In addition, the ICBM 2009¢ template may not generalize to other
populations, potentially biasing volumetric estimates.

(b) Regional bias due to dataset homogeneity: All the collected data belongs to Cuban
individuals, which may limit the generalizability to global SCA2 populations with
differing genetic/environmental profiles.

(c) Small cohort size: While the proposed model demonstrates strong performance in
the used cohort, deep learning models typically benefit from larger and more diverse
datasets to ensure robustness across populations and imaging protocols.

(d) Cross-sectional design: Volumetric differences are reported at a single timepoint,
precluding causal inferences about atrophy progression.

(e) Resource-constrained experiments: Due to resource constraints, the models proposed
by Nishimaki et al. [40] and Han et al. [38] had to be reduced to 22.6 M and 21.6 M
parameters, respectively, which surely affected the quality of the segmentations.

To assess these limitations, future research will be mainly oriented to the development
of registration-free pipelines, allowing for enhanced robustness and generalizability. The
use of vision transformers could be a possible path for exploration, but their innate need
for computational resources might negatively impact the processing time. Another way to
avoid registration could be using a cascaded approach, similar to that proposed by Han
etal. [38]. In addition, increasing the size of the dataset will positively influence the model’s
generalizability. For this purpose, new SCA2 patients and preclinical carriers will be added
to the cohort. The extension of the dataset with patients suffering other neurological
diseases (i.e., other types of SCA and Parkinson’s Disease) will be assessed in future
research too, as a way to increase robustness and generalization. Multimodal imaging will
be explored too, taking advantage of the information extracted from multiple modalities
(DT, fMRI, and T2-weighted MRI) to map microstructural degeneration. Furthermore, the
use of longitudinal MRI data will also be explored, aiming for a more intrinsic correlation
between volumetric trajectories and clinical decline. Finally, future work must validate
findings on high-end hardware to isolate architecture-vs.-parameter effects.

5. Conclusions

This study introduced a deep learning-based framework to quantify brainstem atrophy
in SCA2 patients, preclinical subjects, and healthy controls, representing a pioneering
effort in Cuba. By achieving a mean DSC above 0.96 for the whole brainstem and 0.95
for its subregions, the approach demonstrates high accurateness in detecting significant
volumetric differences, particularly in the pons. The experiment showed highly negative
correlations between all brainstem structures and SARA scores. These findings highlight
the potential of deep learning to address critical gaps in neuroimaging analysis. The
method used enables rapid, scalable assessments, reducing reliance on time-intensive
manual segmentations and supporting earlier diagnosis of SCA2. While the framework
demonstrates high accuracy, its reliance on registration and homogeneous data limits
immediate clinical translation. Future work will prioritize registration-free architectures,
multi-center validation, and longitudinal designs to establish causal links between atrophy
and symptom progression. By addressing these limitations, we aim to deploy this tool as a
scalable solution for neurodegenerative disease monitoring.
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Abbreviations

The following abbreviations are used in this manuscript:

SCA2 spinocerebellar ataxia type 2

MRI magnetic resonance imaging

CNN(s) convolutional neural network(s)

SA spinal atrophy

OPCA  olivopontocerebellar atrophy

CCA cortico-cerebellar atrophy

SPECT  single-photon emission computed tomography
PET positron emission tomography

CBAM  Convolutional Block Attention Module

M inception module

CAM Channel Attention Module
SAM Spatial Attention Module

DSC Dice Similarity Coefficient

ROI region of interest

TICV total intracranial volume

SARA Scale for the Assessment and Rating of Ataxia
ToU Intersection over Union

HD95 95th percentile Hausdorff Distance

ASD Average Symmetric Surface Distance

NSD Normalized Surface Dice

Appendix A

Appendix A provides a visual demonstration of the image registration process, a
critical preprocessing step for ensuring spatial normalization across all subjects in the
cohort. The figure below illustrates the successful alignment of a representative subject’s
T1-weighted MRI to the ICBM 2009¢ nonlinear symmetric template.
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Figure Al. Registration of a sample image of the cohort. From left to right: axial, sagittal, and
coronal views.
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