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Abstract

The Internet of Medical Things (IoMT) is a rapidly expanding network of medical devices,
sensors, and software that exchange patient health data. While IoMT supports personalized
care and operational efficiency, it also introduces significant privacy risks, especially when
handling sensitive health information. Data Identification and Classification (DIC) are
therefore critical for distinguishing which data attributes require stronger safeguards.
Effective DIC contributes to privacy preservation, regulatory compliance, and more efficient
data management. This study introduces SDAIPA (SDAIA-HIPAA), a standardized hybrid
IoMT data classification framework that integrates principles from HIPAA and SDAIA
with a dual risk perspective—uniqueness and harm potential—to systematically classify
IoMT health data. The framework’s contribution lies in aligning regulatory guidance with
a structured classification process, validated by domain experts, to provide a practical
reference for sensitivity-aware IoMT data management. In practice, SDAIPA can assist
healthcare providers in allocating encryption resources more effectively, ensuring stronger
protection for high-risk attributes such as genomic or location data while minimizing
overhead for lower-risk information. Policymakers may use the standardized IoMT data
list as a reference point for refining privacy regulations and compliance requirements.
Likewise, AI developers can leverage the framework to guide privacy-preserving training,
selecting encryption parameters that balance security with performance. Collectively, these
applications demonstrate how SDAIPA can support proportionate and regulation-aligned
protection of health data in smart healthcare systems.

Keywords: data governance; data identification and classification (DIC); HIPAA compliance;
health data privacy; internet of medical things (IoMT); medical data security

1. Introduction
Over the last hundred years, the healthcare industry has undergone a profound shift,

moving from a hospital-focused model to one centered around patients. This evolution has
given rise to smart healthcare systems (SHSs), which leverage cutting-edge technologies like
the Internet of Medical Things (IoMT), cloud computing, and artificial intelligence to make
medical care more efficient and intelligent. The COVID-19 pandemic further accelerated
the adoption of these solutions, as the need for remote patient-doctor interactions surged.
For instance, the global SHS market, valued at USD 153.6 billion in 2021, is projected to
reach USD 461.76 billion by 2029 [1].

Today, the IoMT (or Internet of Health Things, IoHT) stands as a cornerstone of SHSs.
By integrating wearable sensors, mobile devices, and cloud-based analytics, it enables real-
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time patient monitoring, improving care accuracy while reducing costs. Experts predict
that by 2026, there will be over seven million IoMT-connected devices worldwide [2],
highlighting their critical role in remote patient management, emergency response, and
chronic disease control.

Despite its advantages, the IoMT faces serious challenges, particularly concerning
patient data security. The FDA revealed that 82% of healthcare institutions experienced
cyber threats in 2020–2021, with 34% involving ransomware attacks [3]. Given the high
sensitivity of medical data, breaches can erode patient trust and lead to severe consequences.
As a result, the healthcare cybersecurity market is expected to grow to USD 32.9 billion by
2028 [4], underscoring the urgent need for robust data protection measures. In addition, the
distribution of patient information over different systems causes many security and privacy
issues. For medical devices that are intended to be used for remote communications for
healthcare procedures, patients’ privacy is of the utmost importance, but the majority of
IoMT devices are unable to adequately protect sensitive data privacy on their own due to
their limited resources.

The sensitivity of health data and the need for privacy attracted IoMT researchers
during and after COVID-19 for two reasons. First, IoMT users are vulnerable to privacy
threats because of the distributed structure of IoMT systems and the weakness of the access
and modification permissions of stored electronic health record (EHR) data in the shared
central cloud server by unauthorized users. Second, data analysis on the cloud involves
computing on servers owned by third parties who may sell the data to suspicious entities
for several purposes like marketing and advertising.

According to the World Health Organization (WHO) [5], health data privacy refers
to the right to control personal health information and make informed decisions about
its use. Based on this general definition, we can define patient data privacy in IoMT
systems as the patients’ right to control their personal and medical data that is collected,
transmitted, processed, stored, or shared by IoMT healthcare systems. Many nations
currently have laws in place controlling the gathering and storage of sensitive patient
health data to ensure the data privacy, such as the US’s Health Insurance Portability and
Accountability Act (HIPAA) and the EU’s General Data Protection Regulation (GDPR).
In Saudi Arabia, the Saudi for Data and Artificial Intelligence Authority (SDAIA) has
established regulations for data privacy protection [6]. The importance of IoMT privacy
preservation lies in protecting sensitive patient data and maintaining trust within the
healthcare ecosystem. It ensures that individuals have control over their personal health
data and can decide who has access to them. This trust is essential for encouraging the
adoption of innovative healthcare technologies and ensuring that patients are willing to
share their personal health information.

In this paper, we address the privacy preserving challenge by proposing the SDAIPA
(SDAIA-HIPAA) model, a hybrid classification standard designed to enhance IoMT security
through systematic data identification and classification. Our approach aims to safeguard
sensitive health information while ensuring compliance with regulations like HIPAA
and GDPR, thereby strengthening the foundation of future e-healthcare systems. The
contributions of this paper are as follows:

1. Conducting a review of existing methods in IoMT data identification and classification
highlighting critical gaps in data privacy efficiency that motivate our approach.

2. Proposing SDAIPA (SDAIA-HIPAA) framework with two core components:

a. Standard Data Identification—Our model introduces a single and compre-
hensive data identification list to eliminates inconsistencies in detecting
regulated data, ensuring compliance efficiency and interoperability across
heterogeneous systems.
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b. Robust Data Classification—We design a hybrid sensitivity classification model
that integrates quantitative privacy risk assessment in align with HIPPA and
SDAIA regulations to granular IoMT health data protection.

Validating the model’s effectiveness and accuracy through Delphi and expert elicitation
methods and discussing its implications for the healthcare industry. Collectively, these
contributions offer a structured foundation to support risk-aware IoMT data protection
and guide encryption optimization.

A wide range of prior work has investigated IoMT data classification using different
perspectives, including clustering, performance optimization, and detection approaches.
Clustering-based methods have been used to group and analyze health-related data at-
tributes, whereas performance-oriented research has aimed at improving system efficiency,
scalability, and resource allocation in IoMT environments. In parallel, detection-oriented
studies have concentrated on identifying anomalies, intrusions, or irregular patterns to
strengthen IoMT security. Although these works highlight important directions, they do
not directly address the challenge of sensitivity-aware classification, which is central to
safeguarding patient privacy and ensuring compliance with evolving regulations. In con-
trast, the SDAIPA framework introduced in this study explicitly builds on this perspective
by integrating regulatory principles with structured sensitivity scoring to provide a more
privacy-focused foundation for IoMT data management.

The organization of this paper is as follows. Section 2 reviews related work, providing
context for our research. Section 3 presents the SDAIPA (SDAIA-HIPAA) Identification and
Classification Model, including its methodology, implementation and validation. Section 4
highlights practical considerations for implementing the SDAIPA framework in real-world
Smart Healthcare Systems (SHS). Finally, Section 5 concludes the paper with a discussion
of key findings and potential future directions.

2. Related Work
Data identification and classification process are the cornerstone of effective data

management. By categorizing data based on its sensitivity, value, and usage, organizations
can enhance security, improve decision-making, and ensure compliance with regulations [7].
Identifying important data assets, putting them in place with suitable security measures,
and expediting data retrieval procedures can be done easier with proper classification.
Ultimately, this will enhance mitigation of risks, operational effectiveness, and the overall
value obtained from data.

One of the characteristics that can be used for data classification is data sensitivity. The
concept of ‘sensitive’ data was first considered in 1980 by the Organisation for Economic
Co-operation and Development (OECD) Guidelines on the Protection of Privacy and
Transborder Flows of Personal Data [8]. The European Commission defined sensitive
data as ‘personal data revealing racial or ethnic origin, political opinions, religious or
philosophical beliefs, trade-union membership, and the processing of data concerning
health life’ [8].

The regulatory landscape that governs the sensitivity classification of health data is
complex and diverse. One of the most popular organizations that have contributed to
this framework is the United States’ Health Insurance Portability and Accountability Act
(HIPAA) [9], which requires protections for protected health information (PHI). Addition-
ally, A global framework for data protection that includes health data is offered by the
General Data Protection Regulation (GDPR) [10]. Furthermore, technical standards and
recommendations for data interchange and security are developed by standards organiza-
tions like the International Organization for Standardization (ISO) [11] and Health Level
Seven (HL7) [12], respectively. At the national level in Saudi Arabia, to secure citizens’
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health information, Saudi Data Authority (SDAIA) and other data protection bodies estab-
lish specific laws [13]. However, few studies have focused on using these regulations for
healthcare data classification.

2.1. Health Insurance Portability and Accountability Act (HIPAA)

The Health Insurance Portability and Accountability Act (HIPAA) is a U.S. federal law
that sets standards for the privacy and security of protected health information (PHI) [9].
It was enacted in 1996 to improve the efficiency of healthcare delivery and to protect the
privacy of individuals’ health information [14]. Initially, HIPAA focused on standardizing
electronic health transactions and ensuring portability of insurance coverage, but over the
years, its regulatory scope has expanded significantly to address the growing challenges of
digital healthcare. Key updates include the HIPAA Privacy Rule (2003) [14], which defined
patient rights regarding health data, and the HIPAA Security Rule (2005) [14], which
introduced administrative, technical, and physical safeguards for electronic protected
health information (ePHI). More recent developments, such as the Health Information
Technology for Economic and Clinical Health (HITECH) Act of 2009 [14], strengthened
HIPAA enforcement by introducing breach notification requirements and stricter penalties
for non-compliance. Current HIPAA enforcement reflects a new focus on cybersecurity
resilience, risk assessments, and adapting to cloud-based health IT systems, ensuring that
regulations remain aligned with modern healthcare delivery and digital transformation.

HIPAA establishes rules for the use and disclosure of PHI by healthcare providers,
health plans, and healthcare clearinghouses. In addition, it provides individuals with
certain rights regarding their health information, such as the right to access their medical
records and to request corrections to inaccurate information. Protected Health Information
(PHI) refers to “any health information that can identify an individual that is in possession
of or transmitted by a “covered entity” or its business associates that relates to a patient’s
past, present, or future health” [15]. This “covered entity” can be healthcare providers,
insurance companies, and hospitals. PHI includes a wide range of data, such as names,
addresses, Social Security numbers, medical history, diagnoses, treatment plans, and
insurance information. That information is considered highly sensitive due to the potential
for misuse and the significant harm it can cause if compromised. Protecting PHI is a critical
responsibility for healthcare providers, insurers, and other entities that handle medical
information. HIPAA outlines 18 identifiers that can be used to identify an individual [16].
These identifiers are considered protected health information (PHI) and must be handled
with care to maintain patient privacy.

2.2. The Saudi Data and AI Authority (SDAIA)

SDAIA is a government agency in Saudi Arabia that was established in 2019 [17]. It was
created as part of Saudi Arabia’s Vision 2030, a long-term economic and social development
plan aimed at diversifying the Kingdom’s economy and reducing its reliance on oil. This
agency plays a pivotal role in driving innovation and entrepreneurship. Through its various
initiatives, SDAIA supports startups, small businesses, and technology-driven projects,
aiming to foster a thriving ecosystem for innovation and economic growth. This institution
efforts contribute to Saudi Arabia’s vision of diversifying its economy and becoming a
global leader in technology and innovation.

SDAIA has introduced a series of regulatory frameworks, including the Personal Data
Protection Law (PDPL), which was first issued in 2021 and has undergone recent revisions
to align with global standards and to better balance innovation with individual privacy
rights [18]. These updates reflect a transition from general principles of data security toward
a more nuanced regulatory ecosystem that emphasizes lawful processing, cross-border
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data transfers, and accountability mechanisms. SDAIA’s latest initiatives demonstrate
a strategic focus on enabling data-driven innovation while ensuring compliance with
ethical and privacy-preserving practices, particularly within healthcare and AI applications.
The authority has also launched programs and national strategies to support secure AI
adoption, strengthen digital trust, and foster international collaboration. Collectively, these
developments position SDAIA as both a regulatory and an enabling institution, ensuring
that Saudi Arabia’s data governance evolves with technological and societal needs [17].

The National Data Management Office (NDMO) is one of subsidiary SDAIA initiative
that is responsible for monitoring data management practices in Saudi Arabia [18]. It
establishes guidelines, regulations, and best practices for data use, ensuring compliance
and promoting data security. The NDMO aims to optimize data utilization to drive national
development and enhance the Kingdom’s capabilities. NDMO has a specific data classi-
fication framework to categorize data based on its sensitivity, criticality, and regulatory
requirements. This framework consists of four classes [13]:

1. Public: Data that is freely available to the public and does not require any restrictions.
This might include general information about the government, public services, or
weather data.

2. Confidential: Data that is intended for use within the Saudi government or its affiliated
organizations. This might include internal documents, reports, or operational data.

3. Secret: Data that is subject to access controls and requires specific authorization to
view or use. This might include sensitive government information, personal data, or
confidential business data.

4. Top secret: Data that is highly sensitive and requires strict security measures to protect
it from unauthorized access. This might include national security secrets, critical
infrastructure data, or highly confidential government information.

2.3. IoMT Data Identification and Classification

Based on our comprehensive review of existing literature, we identified a significant
gap in research on this topic, with only a handful of studies available. This scarcity served
as a key impetus for the development of our proposed model. A metric sensitivity score
developed by Saha et al. [19] determines how sensitive a dataset’s data properties are.
The authors tried to present the data in a way that maintains a balance between privacy
and utility. In addition, the attributes of a sample healthcare dataset are classified as
sensitive or not using a decision tree-based classifier. Using the same concept, Kalyani and
Chaudhari [20] suggested dividing IoT data into two categories, sensitive and non-sensitive
data, using the structure of a deep learning neural network (DNN) algorithm. This will
help the focus on sensitive data during the encryption process.

Katarahweire et al. [21] proposed a model for classifying the healthcare data collected
in mobile health data collection systems (MHDCSs). This approach was built using case
studies, concerns analysis and interviews with experts. The sensitivity of the data in
MHDCSs was defined through interviews with subject-matter experts. Three levels of
sensitivity based on confidentiality are offered by the suggested data classification model:
public, confidential and critical. The model converts data to sensitivity levels using context
information as well as several parameters as inputs. The data classifications produced aim
to direct users and developers in incorporating security into MHDCSs from the beginning
of the software development life cycle.

To provide a clearer overview of these studies, their methodologies, strengths, and
limitations are summarized in Table 1, which highlights the key differences among existing
health data identification and classification models. It is important to note that the scope of
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Table 1 is intentionally limited to studies that address data classification specifically from a
sensitivity perspective, as this is the central focus of our proposed framework.

Table 1. Comparative Analysis of Existing Health Data Identification and Classification Models.

Ref. Approach Data
Categories Strengths Limitations/Gaps

Saha et al. [19]
Metric

Sensitivity
Score + Decision tree

Sensitive vs.
Non-sensitive

Balances
privacy and

utility

Binary classification
only; limited to
attribute-level

sensitivity

Kalyani &
Chaudhari [20]

Deep Learning Neural
Network (DNN)

Sensitive vs.
Non-sensitive

Scalable,
improves

encryption

Binary classification;
lacks IoMT context

Katarahweire
et al. [21]

Expert-driven (case studies,
interviews)

Public,
Confidential, Critical

Practical,
context-aware
classification

Limited to MHDCSs;
lacks automation and

IoMT validation

In recent years, IoMT data classification has been approached from multiple directions.
Several studies have applied clustering techniques such as k-means, fuzzy c-means, and
hierarchical clustering to group patients or device data for improved feature selection
and analysis [22]. Other research has focused on performance optimization, for example,
by enhancing data transmission efficiency, optimizing gateway placement, or balancing
computational workloads across IoMT networks [23]. Detection-based techniques have
also been widely explored, particularly in the development of intrusion detection and
anomaly detection systems that safeguard IoMT infrastructures against cyberattacks and
data breaches [24]. While these contributions are valuable and demonstrate the breadth
of research on IoMT data classification, our study emphasizes sensitivity-aware classi-
fication, which directly addresses privacy and regulatory compliance concerns. This
focus ensures that the literature review remains closely aligned with the objectives of the
present framework.

In summary, existing studies on health data identification and classification have
provided important foundations, ranging from decision tree–based sensitivity scoring to
deep learning–driven classification and expert-informed multi-level models. However,
as shown in Table 1, these approaches remain limited in several respects: most rely on
binary classification schemes, are tailored to narrow application contexts such as general
IoT or mobile health data collection, and lack validation on large-scale IoMT healthcare
environments. Moreover, they do not fully address how classification outcomes can be
seamlessly integrated into healthcare applications to enhance patient care, monitoring,
and security. These gaps highlight a critical need for a more comprehensive, scalable, and
application-oriented framework. To address this, our proposed SDAIPA model is designed
specifically for IoMT, offering fine-grained health data identification and classification that
bridges the divide between theoretical models and practical healthcare implementation.

3. SDAIPA (SDAIA-HIPAA) Identification and Classification Model
The Internet of Medical Things (IoMT) represents a specialized subset of IoT technolo-

gies tailored for healthcare applications. These devices collect and transmit sensitive patient
data, which is then stored in Smart Healthcare Systems (SHSs) for future use. Despite the
critical nature of this data, there is currently no universal standard defining the specific
attributes that IoMT devices capture. While various industries and organizations have
established guidelines and best practices for IoMT device design, these recommendations
often overlook the nature and sensitivity of the data being acquired. This gap underscores
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the need for a structured approach to identifying and classifying IoMT data to ensure
robust protection against unauthorized access and breaches.

To address this challenge, this paper introduces SDAIPA (SDAIA-HIPAA), a hy-
brid classification model designed to enhance IoMT data protection through a systematic
two-stage process: Data Identification and Data Classification. The first stage focuses on
understanding the nature and characteristics of IoMT data through interviews with domain
experts from hospitals, healthcare providers, and medical device manufacturers. These
experts provide valuable insights into the diverse types of IoMT devices in use and the
data they capture. Additionally, open IoMT datasets are analyzed to supplement expert
knowledge and ensure a comprehensive understanding of the data attributes captured by
these devices. This multi-source approach enables systematic identification of IoMT data
properties before classification.

The second stage implements a hybrid classification scheme that integrates two key
standards: the HIPAA Protected Health Information (PHI) identifiers and the SDAIA
National Data Management Office (NDMO) data privacy classification. HIPAA defines
18 PHI identifiers—such as patient names, medical record numbers, and biometric data—
that require stringent safeguards due to their potential to uniquely identify individuals.
Meanwhile, the SDAIA-NDMO framework categorizes data into four sensitivity levels:
Top Secret, Secret, Confidential, and Public, based on the potential harm resulting from
unauthorized disclosure. The proposed SDAIPA model maps HIPAA identifiers to the
top three SDAIA-NDMO classifications (Top Secret, Secret, or Confidential) depending
on the severity of impact if compromised, while non-PHI data is classified as Public. This
classification directly influences the encryption strategies applied to different data types,
ensuring proportional security measures based on sensitivity.

To implement this classification, a statistical qualitative technique is employed, where
sensitivity levels serve as labels for IoMT data attributes. By combining regulatory compli-
ance (HIPAA) with a structured privacy framework (SDAIA-NDMO), the SDAIPA model
provides a comprehensive and adaptable solution for securing IoMT data, mitigating risks,
and enhancing trust in digital healthcare ecosystems. The integration of expert insights
and empirical dataset analysis in the identification phase further strengthens the model’s
reliability and practical applicability in real-world healthcare environments.

3.1. SDAIPA Data Identification

Data identification in IoMT refers to the process of recognizing different patient data
that can be captured and stored by IoMT devices. This stage is a crucial aspect of ensuring
data security, privacy, and efficient management in IoMT environments. To the best of
our knowledge, there is no single and comprehensive standard that describes the data
attributes that can be captured by those devices for two reasons. The first reason is the
diversity of data. IoMT devices generate a wide range of data types, including patient
health records, device metadata, network traffic data, and more. This diversity can make it
difficult to accurately identify the patient data. Additionally, IoMT environments are often
dynamic, with new devices and data types being introduced regularly. This may make
it challenging to keep data identification processes up to date. In this proposed model,
multiple approaches are employed to recognize and identify the IoMT data and verify its
correctness in order to establish a standard identification list.

3.1.1. Methodology

In this stage, two scientific techniques will be used: First, a comprehensive review of
scientific papers and IoMT datasets has been conducted for the identification. The findings
are amalgamated into a unified taxonomy encompassing all data categories identified
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thus far. These data categories will be used as a raw material for the data classification
process. In this study, 30 scientific papers and 7 IoMT datasets are included to systematically
extract and categorize the used IoMT data, facilitating the development of a standardized
taxonomy for IoMT devices. The second technique is Delphi technique which will be
used for validating the findings to ensure the correctness of this standard list. This Delphi
technique will be conducted with domain experts. Figure 1 illustrates the methodology.
The next subsection will discuss the methodology steps in detail.

Figure 1. Data Identification Methodology.

Scientific Papers

In this step, the research papers mentioning specific types of data extracted from IoMT
devices were searched. These papers are limited to those located via the IEEE Xplore,
ScienceDirect, SpringerLink, MDPI, Hindawi, the ACM Digital Library, and Google Scholar.
We chose the systematic review process PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) to identify suitable studies and reduce the number of results
for this review as shown in Figure 2. In the review process, there are three sequential
steps, which are identification, scanning, and eligibility testing. Papers are identified in the
identification step using a Google Scholar search. To retrieve relevant articles and papers,
following search string is applied: (Data Types OR Data Categories OR Data Identification)
AND (IoMT OR IoHT OR “IoT in Healthcare System”). In total, 70 papers were identified in
total that focus on IoMT healthcare systems. After removing duplicate and nonconforming
papers during the scanning process, 45 papers were chosen. Next, we eliminated the papers
which did not specify any type of IoMT data during the eligibility testing phase. Following
this last stage, we decided to include 30 papers.

IoMT Datasets

Datasets can serve as valuable references for data identification. By analyzing ex-
isting datasets, researchers can gain insights into common data patterns, structures, and
attributes. These insights can be used to develop data dictionaries, classification rules,
and identification algorithms. Additionally, datasets provide a foundation for developing
effective data identification strategies and ensuring data quality.
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Figure 2. PRISMA study selection diagram. N represents the number of papers.

In this step, the relevant open-source datasets closely related to the data extracted
from devices are being sought. The searching of these datasets is limited to those located
in Kaggle, UCI Machine Learning Repository and PubMed. To retrieve relevant datasets,
the following search string is applied: (IoMT OR IoHT) AND (Health data OR Medical data).
After eliminating the duplicate and nonconforming datasets during the scanning process,
7 datasets were chosen. These datasets are BPCO dataset based GANs for IoMT [25], Elderly
Fall Prediction and Detection [26], Human Stress Detection in and through Sleep [27], IoT
Healthcare Security Dataset [28], Maternal Health Risk Data [29], Patient Temperature
and Pulse Rate [30] and Stress-Lysis (Stress Level Detection) [31]. Table 2 presents the
dataset details.

Table 2. IoMT Datasets.

Dataset Name Purpose Size Number of
Columns

BPCO Dataset (GANs for IoMT) [25] Generate synthetic COPD
patient data for IoMT research 4.2 MB 13

Elderly Fall Prediction & Detection [26] Detect/prevent falls in elderly
using IoT sensors 28.5 MB 7

Human Stress Detection in Sleep [27] Classify stress levels during
sleep via wearables 1.2 MB 9

IoT Healthcare Security Dataset [28] Anomaly detection in medical
IoT devices 87.3 MB 32

Maternal Health Risk Data [29] Predict pregnancy-related risks
(e.g., preeclampsia) 0.8 MB 7

Patient Temperature & Pulse Rate [30] Monitor vital signs for early
warning systems 3.1 MB 3

Stress-Lysis (Stress Level Detection) [31]
Predict stress levels

(low/medium/high) from
physiological signals

0.03 MB 4

3.1.2. Finding

As previously stated, data identification is paramount for preserving data security,
privacy, and efficient management in IoT medical systems. This section describes the
findings for the first part of the model. With this part, we are interested in finding out
the type of data collected in IoMT devices. By examining 30 scientific papers and 7 IoMT
datasets, we discovered a pattern of data usage that can be used to develop a standardized
categorization for IoMT devices. This data can be categorized based on OpenMRS concept
dictionary [32]. OpenMRS concept dictionary is a concept dictionary, which defines the
medical concepts (questions and answers) that form the foundation for forms, orders,
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clinical summaries, reports, and virtually all aspects of the data [32]. This dictionary has
been used in some studies for classifying data in different platforms such as mobile health
data collection systems [21]. This dictionary categorized the data based on its similarity,
usage, and purpose. The proposed standard IoMT data categorization scheme consists of 5
categories. These categories are:

1. Demographic Data: This refers to personal information about patients, such as age,
gender, name and contact information [29,33,34]. The demographic data will be
divided into two main types [35]: direct identifiers and indirect identifiers. Direct
identifiers are any data elements that directly and uniquely identify an individual
such as name and ID. Indirect patient identifiers are data elements that, while not
directly identifying an individual, can be combined with other information to uniquely
identify them such as date of birth.

2. Medical Data: This encompasses a wide range of health-related information, including
medical history, diagnoses, symptoms, medications, allergies, vital signs, and lab re-
sults [25–27,29–31,33,34,36–38]. IoMT devices collect and store medical data to enable
remote monitoring, early detection of health issues, and personalized treatment plans.

3. Behavior Data: This includes information about a patient’s lifestyle, habits, and behav-
iors, such as physical activity levels, sleep patterns, diet, and stress levels [27,31,39,40].
IoMT devices can track behavioral data to provide insights into health outcomes and
support behavior change programs.

4. Environment Data: This refers to information about the patient’s surroundings,
including temperature, humidity, air quality, location, and exposure to pollu-
tants [26,31,34,41–43]. IoMT devices can monitor environmental factors to assess
their impact on health and well-being.

5. Device Data: This includes technical information about the IoMT devices themselves,
such as battery life, connectivity status, sensor readings, and device settings [28,37,44].
Device data is used to ensure the proper functioning of IoMT systems and to identify
potential technical issues.

Figure 3 illustrates the IoMT data categories and data attributes.

Figure 3. IoMT Data Categories.

3.1.3. Validation

This section aims to validate the findings of the IoMT data identification step, a critical
phase in establishing a robust data infrastructure for the field of IoMT. In this section, Delphi
method will be employed to achieve this goal. Delphi method is a structured technique for
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eliciting expert opinions on a particular topic [45]. It involves a series of questionnaires,
where experts are asked to provide their views on a specific topic. The responses are then
summarized and shared with the experts, who are given the opportunity to revise their
opinions based on feedback from others. This process is repeated several times until a
consensus is reached.

By engaging a panel of experts in the IoMT domain, this study seeks to:

1. Assess the accuracy and comprehensiveness of the identified data elements.
2. Validate the relevance of the data elements to the overarching goals and objectives of

IoMT research and practice.
3. Identify any additional data elements that may be critical for advancing the field

of IoMT.

Through a series of iterative rounds of expert consultation and feedback, the Delphi
method will provide a rigorous and systematic approach to reaching a consensus on the
validity of the IoMT data identification findings. The outcomes of this study will inform
subsequent steps in the IoMT data management and analysis process, ensuring that the
collected data is relevant, accurate, and aligned with the evolving needs of the field. In this
technique, 5 steps will be conducted:

1. Identify experts: Select a group of experts who have knowledge and experience in the
relevant field.

2. Develop a questionnaire: Create a questionnaire that includes clear and concise
questions about the topic being studied.

3. Distribute the questionnaire: Send the questionnaire to the experts and request
their responses.

4. Analyze responses: Summarize the experts’ responses and identify any areas of
agreement or disagreement.

5. Provide feedback: Share the summary of responses with the experts and allow them
to revise their opinions based on the feedback from others.

6. Repeat steps 4 and 5: Continue this process of iteration and feedback until a consensus
is reached. Figure 4 illustrates the Delphi method steps.

 

Figure 4. Delphi Workflow.
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Delphi Method (Round 1)

Through this process, a survey with 12 experienced medical device engineers selected
for their expertise in IoMT devices and data characteristics as shown in Table 3 was
conducted. This survey was designed to gather feedback on the identified IoMT data
attributes and their classification into sensitivity levels.

Table 3. Experts Information.

Expert # Years of Experience Institution Type
1 8 Medical Devices Company
2 7 Hospital
3 10 Government
4 3 Medical Devices Company
5 9 Hospital
6 12 Hospital
7 1 Medical Research Center
8 4 Medical Devices Company
9 8 Government
10 7 University
11 7 Government
12 5 Medical Devices Company

The survey is divided into six sections: Demographics Data, Medical Data, Behavior
Data, Environment Data, Device Data and IoMT Data Categories. Each section aims to
evaluate data accuracy and completeness of the proposed category. The last section aims to
evaluate data categories relevance and usefulness. In the first five sections, the following
questions have been asked. Each question has been answered by using a scale of 1–5, where
1 = Strongly Disagree, 2= Disagree, 3 = Neutral, 4 = Agree and 5 = Strongly Agree:

• Does the data list accurately represent the IoMT captured data?
• Is the data list comprehensive, capturing all relevant aspects of the IOMT data?
• Is the data list consistent with existing IoMT guidelines?
• Is the data list free from errors and inconsistencies?
• Is the data list commonly or frequently collected in IOMT activities?

The Delphi survey was conducted in two rounds with domain experts to evaluate and
validate the proposed IoMT data identification framework. The process achieved consensus
on the relevance and importance of the identified data attributes. In addition to scoring the
attributes, experts also provided qualitative suggestions, which we incorporated to refine
the framework. Our responses to these suggestions are summarized in the corresponding
tables (Tables 4–8) according to the survey sections.

Table 4. Demographic Data List Comments and Responses.

# Comment Response

1 You should not consider the gander in demographic,
also the SN in device

The list was refined with gender removed
from demographics and device serial number

clarified under device-related attributes

2

Passport number, Driver’s license number, Genetic
information (e.g., DNA sequences), Health insurance
ID, Full face photos and comparable images, Vehicle
identification numbers (VIN), Gender, Race/Ethnicity,
Marital status, educational background (e.g., school

attended), Employment information (e.g., occupation,
job title), Geolocation data, religious affiliation

After some research, it was clear that this
information cannot be collected by IoMT
devices. It can be added manually to the

patient’s record.

3 Gender is not included. I think financial data is not
relevant and not usually captured by IoMT.

The list was refined based on expert feedback,
with gender removed from demographics
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Table 5. Medical Data List Comments and Responses.

# Comment Response

1

Laboratory test results: blood tests, genetic tests,
medication records, allergies, immunization records,
surgical history, mental health data, physical activity
data, sleep patterns, nutrition and diet information,

rehabilitation progress, prosthetic and assistive device
data, drug and alcohol use, pregnancy and fertility

data, microbiome data.

The list was refined to include additional
laboratory and clinical data types

2 You can add nutrients and minerals Same as Blood test

3
Missing other diagnoses instruments data like data

collected in laboratory tests (blood chemistry,
hormones, bathology, Microbiology)

The list was refined to include additional
laboratory and clinical data types

Table 6. Behavior Data List Comments and Responses.

# Comment Response

1 An additional info can be collected such as dietary
habits and social interaction (mental health).

The list was refined to incorporate
mental health

2
You can add physiological disorders such as anxiety,

and depression. Those can even affect
organic diseases.

The list was refined to incorporate
anxiety and depression

3 medication adherence for example should be written
by the physician

The list was refined with medication
adherence removed from behavior

Table 7. Environment Data List Comments and Responses.

# Comment Response

1

Outdoor air quality: pollution levels (e.g., PM2.5, CO2,
ozone), noise levels, weather conditions (e.g.,

precipitation, wind speed, UV index), radiation
exposure, soil quality, water quality (e.g., pH,

contaminants), proximity to green spaces, allergens in
the environment, electromagnetic field (EMF)

exposure, barometric pressure, carbon monoxide
levels, ventilation quality, hazardous material

presence (e.g., chemicals, asbestos).

The list was expanded to explicitly
include the suggested environmental
attributes, ensuring broader coverage
of factors such as radiation exposure,
pollutants, and hazardous materials

2
Some patients, such as Cancer patients, get exposed to

radiation, so it is important to include radiation
exposure within the environmental section.

Radiation exposure was added

Overall, the survey confirmed the validity of the identified IoMT attributes, while
expert feedback further improved clarity, justification, and alignment with standards.
Strong consensus was observed particularly for data accuracy, error-free quality, and
collection frequency, while more varied responses on comprehensiveness and standards
alignment highlighted opportunities for targeted refinement. The categorical organization
of IoMT data also received strong validation from experts, confirming its logical structure
and usability. Detailed distributions of responses and numerical figures for each survey
question are provided in the Appendix A (Figures A1–A5) for completeness.

In the IoMT data categories section, the following questions have been asked. Each
question has been answered by using a scale of 1–5, where 1 = Strongly Disagree,
2 = Disagree, 3 = Neutral, 4 = Agree and 5 = Strongly Agree:

• Are the categories accurately named and reflect their content?
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• Are the categories logically organized and easy to understand?
• Are the categories consistent with established data standards and best practices?

Table 8. Device Data List Comments and Responses.

# Comment Response

1

HIS applicable, serial number, MAC addresses. The
medical devices need to have a property number “the
device belongs to the hospital” and an HTM number

“the device belongs to the healthcare technology
management department ‘HTM’ or you can say the

Biomes in the institution.

The list was refined to include serial number,
MAC address, property number, and HTM

identifiers as device attributes, ensuring
proper traceability and management within

healthcare institutions.

2

Device temperature, charging status, device uptime,
operating system version, firmware version,

peripheral connectivity (e.g., Bluetooth, USB), sensor
data (e.g., accelerometer, gyroscope), app permissions,
app performance metrics, error logs, device location

history, encryption status, data transfer rates, security
features (e.g., firewall, antivirus status), available
updates, backup status, device manufacturer and

model, device warranty information, screen
resolution, touch sensitivity, camera specifications.

They are considered as device
status information

3 Any error of defect should be shown on screen
especially the critical care devices

The list was revised to include error and
defect reporting as an attribute, with

emphasis on visibility for critical care devices.
The list has been updated

Figure A6 in Appendix A illustrates the results. Some of the experts suggested some
modifications as shown in Table 9.

Table 9. IoMT Data Categories: Comments and Responses.

# Comment Response

1
The demographics terminology generally means the

medical information not the personal information.
You can use (PID: patient identification)

The category terminology was revised by
replacing “Demographics” with “Patient
Identification (PID)” to align with expert

clarification

2
Behaviour category needs more investigation. It is not

clear if environment is what is surrounding the
patient or the medical device?

The definition of behavior data is updated to
reflect that (Both are in the same place since

these devices are wearable.)

Delphi Method (Round 2)

After considering the experts’ comments and recommendations, the suggested IoMT
data list has been updated as shown in Figure 5. In round 2, the updated version of the
IoMT data list was presented to the 12 experts, and its accuracy and completeness were
unanimously approved.

3.2. SDAIPA Data Classification

Data classification is a cornerstone of data security and governance. It provides a
structured framework for categorizing data based on its sensitivity, criticality, and regu-
latory requirements, enabling organizations to implement appropriate security measures
and ensure compliance with industry standards. By assigning appropriate labels to data,
organizations can implement robust security measures, ensure compliance with industry
standards, and optimize data storage and retrieval. Effective data classification provides a
structured framework for managing data throughout its lifecycle, safeguarding sensitive
information and minimizing the risk of data breaches.
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Figure 5. The updated IOMT Data Categories after Applying Delphi.

In the era of IoT, healthcare organizations are increasingly adopting connected IoMT
devices to monitor patient health, collect vital signs, and remotely manage care. This
influx of IoMT health data presents both opportunities and challenges. To ensure patient
privacy, data integrity, and compliance with regulatory frameworks, effective data
classification is paramount. For that reason, several institutions are actively involved
in developing standards, guidelines, and best practices for health data classification.
In this proposed classification model, two of these institutions will be considered: the
Health Insurance Portability and Accountability Act (HIPAA) and The Saudi Data and
AI Authority (SDAIA).

In this model, SDAIA-NDMO classification framework will be used, this framework
categorizes data based on its sensitivity, criticality, and regulatory requirements into four
classes: Public, Confidential, Secret and Top secret. By classifying data according to its
importance and potential risks, the framework assists organizations in implementing
appropriate security measures, adhering to regulations, streamlining data sharing pro-
cesses, enhancing their response to security breaches, and making informed strategic
choices. This categorization will be the base that will be used in our model to classify
IoMT collected data.

3.2.1. Methodology

In this stage, a Quantitative Privacy Risk Assessment will be used to design the pro-
posed hybrid classification model SDAIPA (SDAIA-HIPAA). Quantitative Privacy Risk
Assessment is a data privacy evaluation method that assigns numerical scores to measure
the risk of re-identification or misuse of sensitive information [46,47]. In this classification
model, the level of sensitivity should be decided based on the uniqueness and the potential
adverse impact as a result of unauthorized disclosure. Here, NDMO classification frame-
work will be adopted as the underlying framework for the classification procedures. There
will be four classes: Top secret, Secret, Confidential and Public. Each one of these classes
will be assigned to a level of potential adverse impact as shown in Table 10.
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Table 10. Sensitivity Impact Matrix.

Classification Potential Adverse Impact Level Score Range
(Sensitivity Level)

Top secret (TS) High (Catastrophic harm) 4.6–5.0
Secret (S) Medium (Severe harm) 3.7–4.5

Confidential (C) Low (Moderate harm) 2.5–3.6
Public (P) None (Minimal/no harm) ≤2.49

In this proposed model, a comprehensive framework is presented for classifying IoMT
health data into sensitivity levels. To evaluate each data attribute, a practical heuristic, used
in data privacy risk assessments, will be applied. This weighted formula consists of two
main factors: Uniqueness and harm potential. Uniqueness (also known as identifiability)
is defined as the extent to which data can be linked to a specific individual, either alone
or in combination with other data. The harm potential can be defined as the potential for
adverse consequences (e.g., discrimination, reputational damage, or legal violations) if data
is disclosed or misused. The applied formula is shown below.

Sensitivity Level = (Uniqueness × 0.6) + (Harm potential × 0.4) (1)

where

• Sensitivity level: the level of the data type based on the suggested sensitivity
impact matrix.

• Uniqueness: the scored assessment of individual identifiability for the data type based
on HIPAA and SDAIA.

• Harm potential: the scored assessment of potential for adverse consequences for the
data type based on HIPAA and SDAIA.

This formula builds on NIST [48] and GDPR [10] principles, with the 60/40 weighting
reflecting research (like Sweeney’s findings on re-identification [49]) and industry tools
ARX [50] and Presidio [51]. While not regulatory law, it highly operationalizes HIPAA
and SDAIA standards [13] for practical risk classification. However, the model allows
flexibility, and the weights may be adjusted within a reasonable range (e.g., 55/45 to 65/35)
depending on domain-specific requirements. A sensitivity analysis can further validate the
robustness of this assignment.

The uniqueness and harm potential will be ranked based on a scale of 1–5. These
scales align with NIST SP 800-122 [48], HIPAA’s PHI list [47] and GDPR Article 9 [52].
Tables 11 and 12 describe each term scale, respectively.

Table 11. Uniqueness Scale.

Score Definition
1 Non-identifying; common to a population.
2 Low uniqueness; requires combination with other data to identify an individual.
3 Moderate uniqueness; may identify an individual in a small group.
4 High uniqueness; identifies individuals in a small group.
5 Globally unique; directly identifies an individual.

3.2.2. Finding

After applying the proposed SDAIPA model on the data list in Figure 5, the data types
can be categorized, according to sensitivity level, as shown in Figure 6. The completed
sensitivity scoring methodology is detailed in Table A1.
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Table 12. Harm Potential Scale.

Score Definition
1 No realistic harm; No impact to individuals or operations
2 Minor inconvenience; Temporary annoyance or minimal privacy impact
3 Significant privacy invasion; Identity theft risk, personal embarrassment
4 Serious consequences; Financial loss, discrimination, reputational damage
5 Life-altering/criminal impact; Blackmail, life-threatening discrimination, legal violations

Figure 6. IoMT SDAIPA Classification Model.

To examine the robustness of the weighting scheme, we conducted a sensitivity analy-
sis by varying the weights of uniqueness and harm potential from the baseline of 60/40 to
alternative ratios of 55/45 and 65/35. The results showed only minor numerical differences
in the calculated sensitivity levels (typically within ±0.1–0.2 points), and importantly,
the overall classification outcomes remained unchanged. For example, highly sensitive
attributes such as genomic data consistently remained in the “Top Secret” category across
all weighting scenarios, while lower-risk attributes such as device identifiers consistently
remained in the “Low” category. This demonstrates that moderate adjustments to the
weighting assumptions do not materially affect the classification results, confirming the
stability and robustness of the proposed framework. Table 13 presents a sample sensitivity
analysis using selected attributes.

Table 13. Sensitivity analysis of selected IoMT attributes under different weightings.

Attribute Uniqueness Harm
Potential Score (60/40) Score

(55/45)
Score
(65/35) Classification

GPS Coordinates 5 5 5.0 5.0 5.0 Top Secret
Medical History 4 5 4.4 4.45 4.35 Secret

Heart Rate 3 4 3.4 3.45 3.35 Confidential
Device ID 1 1 1 1 1 Public

3.2.3. Validation

This section aims to evaluate the validity of the findings obtained from the IoMT data
classification process, a pivotal stage in constructing a resilient data infrastructure for the
IoMT field. To ensure the validity of the findings, an expert review was conducted involving
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two domain specialists: one technical expert (Associate Professor in IS, KSU; 18 years in
technology, personal communication, 8 May 2025) and one medical expert (Associate
Professor in medicine college, KSU; 10 years in healthcare, personal communication, 15
May 2025). These experts were selected to collectively cover both dimensions of the study.
In this process, the proposed classification was presented, and each expert was asked to
provide feedback. They were instructed to respond with “Correct” if they agreed with
the evaluation; otherwise, they were asked to provide a revised score along with a brief
justification based on their professional expertise. Tables 14–18 present detailed experts’
review findings, including both experts’ scoring and technical justifications.

Table 14. The Experts’ Validation on IoMT SDAIPA Classification Model (Patient Identifications).

Data Type Uniqueness
(1–5)

Expert
Scoring Justification

Harm
Potential

(1–5)
Expert

Scoring Justification

Social Security
Number/National ID 5 Correct 5 Correct

Biometric Data
(fingerprints) 5 Correct 5 Correct

Medical Record ID 5 Correct 4 5 HIPAA PHI
Full Name 5 Correct 3 5

Home/Mailing
Address 4 5 Refer to an

individual 4 5
can help

identify the
individual

Phone Number 4 Refer to an
individual 3 5 HIPAA PHI

Date of Birth 4 Correct 3 5 HIPAA PHI
Email Address 4 5 unique 3 5 HIPAA PHI

Place of Birth 3 4 Refer to group
of people 3 4 HIPAA PHI

Table 15. The Experts’ Validation on IoMT SDAIPA Classification Model (Medical).

Data Type Uniqueness
(1–5)

Expert
Scoring Justification

Harm
Potential

(1–5)
Expert

Scoring Justification

Heart Rate 3 4 4 5
Blood Pressure 3 4 4 5

Respiratory Rate 3 4 4 5
SpO2 3 4 4 5

Medical History 4 Correct 5 Correct
Diagnosis 4 Correct 5 Correct
Treatment

Information 4 Correct 5 Correct

ECG 4 Correct 5 Correct
EEG 4 Correct 5 Correct
EMG 4 Correct 5 Correct

Blood Glucose 4 Correct 5 Correct
Insulin Levels 4 Correct 5 Correct
X-ray imagines 4 Correct 5 Correct
CT Scan images 4 Correct 5 Correct

MRI images 4 Correct 5 Correct
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Table 15. Cont.

Data Type Uniqueness
(1–5)

Expert
Scoring Justification

Harm
Potential

(1–5)
Expert

Scoring Justification

Ultrasound
images 4 Correct 5 Correct

Laboratory Test
Results 4 Correct 5 Correct

Body
Temperature 2 3

May identify
an individual

in a small
group.

3 Correct

BMI 2 3

May identify
an individual

in a small
group.

3 4

may be exploited
to discriminate

against the
individual

Height 2 3

May identify
an individual

in a small
group.

2 3

may be exploited
to discriminate

against the
individual

Weight 2 3

May identify
an individual

in a small
group.

2 3

may be exploited
to discriminate

against the
individual

Table 16. The Experts’ Validation on IoMT SDAIPA Classification Model (Behavior).

Data Type Uniqueness
(1–5)

Expert
Scoring Justification

Harm
Potential

(1–5)
Expert

Scoring Justification

Anxiety 4 Correct 5 Correct
Depression

Level 4 Correct 5 Correct

Stress Level 3 Correct 4 5

may be exploited
to discriminate

against the
individual

Sleep Duration 3 Correct 3 4

may be exploited
to discriminate

against the
individual

Sleep Stages 3 Correct 3 4

may be exploited
to discriminate

against the
individual

Dietary Habits 3 Correct 3 4

may be exploited
to discriminate

against the
individual

Social
Interaction 3 4 specific to an

individual 3 5

may be exploited
to discriminate

against the
individual

Steps 2 Correct 2 Correct
Distance 2 Correct 2 Correct

Calories Burned 2 Correct 2 Correct
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Table 17. The Experts’ Validation on IoMT SDAIPA Classification Model (Environment).

Data Type Uniqueness
(1–5)

Expert
Scoring Justification

Harm
Potential

(1–5)
Expert

Scoring Justification

GPS Coordinates 5 Correct 5 Correct
Environment

Radiation Rates 2 Correct 3 Correct

Weather
Temperature 1 Correct 1 Correct

Weather
Humidity 1 Correct 1 2 physical attacks

Ambient Light
Intensity 1 Correct 1 2 physical attacks

Outdoor Air
Quality 1 Correct 1 2 physical attacks

Pollutants 2 Correct 2 4 This can be used to
kill them

Table 18. The Experts’ Validation on IoMT SDAIPA Classification Model (Device).

Data Type Uniqueness
(1–5)

Expert
Scoring Justification

Harm
Potential

(1–5)
Expert

Scoring Justification

Device Serial
Number 5 Correct 3 4 Device attack

Hospital
Information System

(HIS) Name
3 Correct 3 Correct

Healthcare
Technology

Management
(HTM) Type

3 Correct 3 Correct

Frequency of
device Usage 3 Correct 3 Correct

Duration of
device Usage 3 Correct 3 Correct

Feature Utilization 3 Correct 3 Correct

Software Version 2 1 No realistic
harm 2 4 Software

attack

Processor Type 2 1 No realistic
harm 2 3 Many attacks

Device Memory 2 1 No realistic
harm 2 3 memory

attacks

Storage Capacity 2 1 No realistic
harm 2 3 overflow

attacks)

Signal Strength 2 1 No realistic
harm 2 3 WLAN

attacks

Network Type 2 1 No realistic
harm 2 3 wireless

attacks

Device
Battery Level 1 Correct 1 2 physical

attacks

The evaluation shows that highly unique identifiers like Social Security numbers,
biometric data, and medical record IDs consistently maintain maximum uniqueness and
harm potential scores due to their strong ability to identify individuals and the serious
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consequences of exposure. Other data types, such as full name, phone number, email,
and date of birth, received slightly lower scores, reflecting that while they are somewhat
identifying, their risk is mitigated when combined with other data. Minor adjustments in
scores, such as for home address and place of birth, were made based on expert justification,
emphasizing that these attributes alone are less uniquely identifying but can still contribute
to individual identification in context.

In this category, physiological signals such as heart rate, blood pressure, respiratory
rate, and SpO2 were rated moderately for uniqueness but high for harm potential, reflect-
ing that while they may not uniquely identify individuals, exposure could still impact
privacy or health decisions. Clinical and medical data, including medical history, diagnosis,
treatment information, imaging (X-ray, CT, MRI, ultrasound), lab tests, and specialized
measurements (ECG, EEG, EMG, blood glucose, insulin levels), received high scores for
both uniqueness and harm potential, indicating their critical sensitivity. Basic physical
attributes like body temperature, BMI, height, and weight were scored lower in uniqueness,
as they may identify an individual only within small groups, but still carry moderate risk
if misused.

Behavioral and lifestyle data such as anxiety, depression, and stress levels were rated
high for both uniqueness and harm potential, reflecting their sensitivity and potential mis-
use. Sleep patterns and dietary habits received moderate scores, as they can reveal personal
routines that might be exploited. Social interaction data was considered moderately unique
but high in harm potential due to its ability to identify individuals and be used against
them. Metrics like steps, distance, and calories burned scored lower in both uniqueness
and harm potential, indicating minimal individual risk.

GPS coordinates were rated highest in both uniqueness and harm potential, reflect-
ing their critical role in identifying individuals. Environmental factors such as radiation
rates, pollutants, and outdoor air quality received moderate scores, as they may pose
indirect risks or could be exploited maliciously. Weather-related data, including tem-
perature, humidity, and ambient light intensity, were rated low in uniqueness and harm
potential, though in rare cases they could contribute to physical risks. Overall, location
data and certain environmental measurements carry the greatest sensitivity for privacy
and safety.

Device identifiers such as serial numbers were rated highest in uniqueness, reflecting
their ability to specifically identify a device, though harm potential was moderate due
to targeted device attacks. Information related to hospital systems, device types, and
usage patterns received moderate scores for both uniqueness and harm, as they can reveal
operational insights. Hardware and software attributes—processor type, memory, storage,
signal strength, network type, and software version—scored lower in uniqueness but
moderate in harm potential, reflecting vulnerability to cyberattacks. Device battery level
scored lowest in both categories, posing minimal privacy or security risks.

After considering the experts’ comments and recommendations, we further invited
additional experts to review the final classification scores. Their independent evaluations
confirmed agreement with the proposed sensitivity levels and scoring rationale. This
step ensured that the final classification outcomes were not only informed by expert
judgment but also validated through multi-expert consensus, thereby enhancing the
robustness and generalizability of the results. Finally, the proposed IoMT SDAIPA
classification model has been significantly refined, as shown in Figure 7. The updated
model addresses key gaps identified in previous studies by providing fine-grained
classification of patient, health, behavioral, environmental, and device-related data,
going beyond simple binary schemes.
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Figure 7. Final Version of IoMT SDAIPA Classification Model.

Expert input helped improve the scoring system for uniqueness and harm potential,
ensuring that high-risk data are prioritized for security and privacy measures. Furthermore,
the model integrates context-aware mechanisms to more accurately identify sensitive data,
supporting targeted protection strategies and real-world applicability across diverse IoMT
environments. Additionally, the modifications aim to make the architecture more practical
and easier to implement in real-world clinical environments, bridging the gap between
theoretical design and actual deployment. This not only increases the reliability of the
system but also enhances its potential impact on patient care, safety, and overall healthcare
efficiency. By combining scalability, robustness, and practical relevance, the SDAIPA
framework overcomes the limitations of prior approaches and provides a comprehensive
solution for secure and efficient health data management in IoMT systems.

4. Practical Considerations
The practical application of SDAIPA extends beyond data classification by enabling the

automation of security control mechanisms within Smart Healthcare Systems (SHSs). Once
health data attributes are classified under sensitivity levels, the corresponding security
controls can be triggered dynamically and consistently. For instance, attributes classified as
“Top Secret” can automatically initiate end-to-end encryption and advanced access control,
ensuring that only authorized entities can process or transmit such data. Conversely,
attributes labeled as “Public” may be transmitted with reduced cryptographic overhead,
thereby optimizing system efficiency without compromising essential safeguards. Similar
adaptive approaches have been demonstrated in IoMT and smart healthcare contexts,
where context-aware security frameworks dynamically adjust protection levels based on
situational factors such as patient location, connectivity, or device status [53].

This automation not only minimizes human error in applying security policies but
also allows healthcare providers to scale privacy-preserving practices across diverse IoMT
devices and data flows. Moreover, system administrators and policymakers can align
SDAIPA classifications with existing regulatory frameworks (e.g., GDPR, HIPAA) to ensure
compliance while reducing ambiguity in implementation. Attribute-based encryption
has similarly been applied to automate fine-grained access control and end-to-end secure
communication in smart environments, showing how automated controls can align with
sensitivity levels [54].

From an engineering standpoint, the integration of SDAIPA into middleware or
security orchestration layers enables adaptive encryption, context-aware monitoring, and
proactive policy enforcement. Related blockchain-based approaches further illustrate
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how smart contracts can automate privacy-preserving data sharing while maintaining
compliance with regulatory requirements [55]. Ultimately, this path to implementation
ensures that privacy protection becomes an intrinsic and automated part of smart healthcare
infrastructures, balancing security robustness with operational efficiency.

In addition to this automation layer, SDAIPA offers broader engineering benefits that
further support privacy-aware system design. Healthcare providers can use the classifica-
tion outputs to determine appropriate encryption parameters for different data streams,
ensuring stronger protection for high-sensitivity attributes (e.g., genomic or location data)
while reducing computational overhead for lower-risk attributes. Policymakers and system
designers can leverage the standardized IoMT data list to establish consistent compliance
requirements, reducing ambiguity in privacy regulation. Likewise, AI developers can
apply the framework to guide model training under fully homomorphic encryption (FHE),
ensuring that privacy-preserving analytics remain both secure and efficient. In this way,
the framework not only defines what IoMT data should be protected and why it matters,
but also demonstrates how it can be operationalized to enhance privacy and security in
real-world SHS environments.

Building on this practical applicability, it is equally important to recognize that the
proper utilization of health-related datasets requires a careful balance between data open-
ness for research advancement and the preservation of patient privacy. While openness
promotes reproducibility, transparency, and cross-institutional collaboration, the sensitive
nature of health attributes demands strict privacy safeguards. Inappropriate handling of
such data may lead to risks of re-identification, unauthorized disclosure, or misuse, which
could undermine both patient trust and research integrity [56,57]. Therefore, the responsible
design of frameworks such as SDAIPA must integrate mechanisms for privacy-preserving
data sharing, differential access control, and compliance with regulatory requirements (e.g.,
GDPR, HIPAA). Highlighting this duality ensures that health data classification and sensi-
tivity assessment are not only technically robust but also ethically and socially sustainable
for healthcare and research applications.

5. Conclusions
The proposed SDAIPA (SDAIA-HIPAA) hybrid classification model presents a sys-

tematic approach to enhancing IoMT data protection through its two-stage framework of
Data Identification and Data Classification. By integrating HIPAA’s PHI identifiers with
SDAIA-NDMO’s privacy classification levels, the model provides a robust methodology for
categorizing healthcare data based on sensitivity, ensuring appropriate security measures
are applied. The inclusion of domain expert insights and IoMT dataset analysis during
the identification phase strengthens the model’s practical applicability, while the statistical
qualitative classification technique enables structured labeling of data attributes.

This work addresses a critical gap in IoMT data governance by offering an adaptable
classification framework that aligns with regulatory requirements while accounting for
real-world healthcare scenarios. By systematically categorizing IoMT data types, this paper
provides a foundational IoMT data identification and classification reference for researchers,
healthcare providers, and IoT developers. The proposed framework enables efficient data
management across different stakeholders. For healthcare providers, sensitivity-aware
classification allows prioritization of encryption resources, ensuring that high-risk attributes
(e.g., genomic or location data) receive stronger protection, while routine attributes are
processed with lower computational overhead. For policymakers, the standardized IoMT
data list provides a structured reference that can inform privacy regulations and compliance
standards. For AI developers, the framework facilitates privacy-preserving training by
guiding the selection of encryption parameters based on sensitivity levels, thereby balancing
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security with system performance. Collectively, these applications demonstrate how the
framework can enhance privacy and security in smart healthcare ecosystems.

Future research will focus on implementing and testing the model across diverse
IoMT ecosystems to validate its effectiveness in operational environments. The SDAIPA
model has the potential to significantly improve data privacy compliance and security
enforcement in smart healthcare systems, fostering greater trust in IoMT technologies.
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Figure A1. Demographics Data.
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The expert feedback demonstrates general alignment on key aspects of the IoMT
demographic data list. For Question A regarding data list accuracy, the majority of re-
sponses clustered between 3–5 (neutral to agree), with an average of 3.8, indicating experts
predominantly acknowledge the list’s representative quality. While one outlier response
exists, the central tendency confirms broad acceptance.

Regarding Question B (comprehensiveness), most scores fell within the 2–4 range
(disagree to agree), averaging at 3.0. This suggests experts generally view the list as
moderately comprehensive, with room for expansion rather than fundamental deficiencies.
The spread of opinions likely reflects varying specialist perspectives across IoMT domains.

The results for Question C (standards consistency) show the least consensus, though
the average of 2.0 primarily stems from a single strong disagreement (0). Most other
ratings (2–4) indicate the list partially meets standards, suggesting targeted revisions could
achieve alignment.

Question D (error-free quality) received predominantly positive evaluations (average
3.75), with most experts agreeing that the list is largely consistent. The one anomalous high
score may represent enthusiasm rather than scale misunderstanding.

Strongest consensus emerged for Question E (collection frequency), where the
4.0 average and tight scoring range (4–5 after removing outliers) clearly show experts
agree these data elements are routinely captured in IoMT activities.

 

Figure A2. Medical Data.

The expert evaluation results present a mixed but generally positive perspective on
the IoMT medical data list’s quality. Questions A (accuracy) and E (collection frequency)
received predominantly favourable ratings (4–5), demonstrating expert confidence in the
list’s representativeness and practical utility. Question D (error–free quality) also showed
strong agreement with a median score of 4.

Responses to Question B (comprehensiveness) were more varied but leaned toward
neutral-to-positive, suggesting the list covers most key aspects while potentially needing
minor expansions.

 

Figure A3. Behavior Data.
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The experts’ evaluation results demonstrate strong consensus on the quality and
applicability of the IoMT behavior data list, with particularly encouraging agreement on
key aspects. For Question A (data accuracy), the majority of responses clustered in the
4–5 range (“Agree” to “Strongly Agree”), with an average score of 4.2, indicating experts
overwhelmingly confirm the list’s representative validity. Similarly, Question D (error-
free quality) received consistently positive ratings, with 80% of experts scoring it 4 or 5,
reflecting confidence in the list’s reliability. Question E (collection frequency) showed the
strongest agreement, with all valid responses falling between 4–5, underscoring the list’s
practical relevance in real-world IoMT implementations.

While Questions B (comprehensiveness) and C (standards alignment) showed slightly
more varied responses, the overall tendency still leaned toward agreement, suggesting the
list covers most essential aspects while identifying specific opportunities for refinement.
These results collectively validate the IoMT data list as a robust foundation, with expert
consensus supporting its accuracy, reliability, and field applicability.

The most significant area for improvement appears in Question C (standards consis-
tency), where lower scores highlight a need for better alignment with established IoMT
guidelines. These results collectively validate the list’s foundational structure while provid-
ing clear direction for targeted refinements to enhance its reliability and adoption potential
within the IoMT community. The outlier scores will be investigated to ensure all expert
feedback is properly contextualized in subsequent revisions.

 

Figure A4. Environment Data.

The expert evaluation results demonstrate strong validation of the IoMT environ-
ment data list’s quality and practical utility. A clear majority of responses fall within the
4–5 range (“Agree” to “Strongly Agree”) across all key dimensions, with particularly strong
consensus on data accuracy (Question A, average 4.2) and collection frequency (Question
E, uniformly 4–5). The robust scores for error-free quality (Question D, 80% agreement)
further confirm the list’s reliability. While Questions B and C show slightly more variation,
the predominant positive ratings indicate the list successfully captures essential IoMT
aspects and maintains reasonable standards alignment. These results collectively affirm
that the IoMT data list provides an accurate, reliable, and field-relevant framework for
implementation, with expert consensus particularly strong regarding its representative-
ness, error-free quality, and practical adoption in real-world IoMT activities. The minor
variations in comprehensiveness and standards alignment scores simply highlight valuable
opportunities for incremental refinement.

The expert’s evaluation results present compelling evidence of the IoMT device data
list’s validity and practical utility, with particularly strong consensus emerging around
several key aspects.
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Figure A5. Device Data.

For Question A regarding data accuracy, the majority of responses (83%) fell within
the 4–5 agreement range, with an average score of 4.2, demonstrating expert confidence
in the list’s representational quality. Similarly, Question D on error-free quality received
overwhelmingly positive ratings, with 80% of experts scoring it 4 or higher, indicating
robust validation of the list’s reliability. The most unanimous agreement appeared for
Question E, where all valid responses clustered between 4–5, strongly affirming the list’s
relevance to actual IoMT practices.

While Questions B and C showed more varied responses, the predominant scores
still leaned toward agreement (averages of 3.8 and 3.2 respectively), suggesting the list
successfully captures most essential IoMT aspects while identifying specific opportunities
for refinement in standards alignment.

These results collectively validate the IoMT data list as a well-constructed, field-tested
resource that accurately represents captured data, maintains high quality standards, and
reflects real-world IoMT implementation practices. The minor variations in responses for
comprehensiveness and standards alignment simply highlight valuable opportunities for
targeted improvements in future iterations.

 

Figure A6. IoMT Data Categories.

The experts’ evaluation strongly validates the categorical framework, with most scores
(75–85%) in the 4–5 agreement range across all three criteria. The results show a particularly
strong consensus on accurate naming (avg 4.4) and logical organization (avg 4.2), while
standards compliance (avg 4.1) also received substantial endorsement. These findings
confirm the categories are well-designed, intuitive, and aligned with professional prac-
tices, with only minor opportunities for refinement in standards alignment. The high
agreement rates demonstrate the framework successfully balances technical precision with
practical usability.
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Appendix B

Table A1. IoMT SDAIPA Classification Model.

Data Type Uniqueness (1–5) Harm Potential
(1–5) Total Risk Sensitivity Level

Social Security
Number/National ID 5 5 5 Top Secret

Biometric Data
(fingerprints) 5 5 5 Top Secret

GPS Coordinates 5 5 5 Top Secret
Medical Record ID 5 4 4.6 Top Secret

Medical History 4 5 4.4 Secret
Diagnosis 4 5 4.4 Secret

Treatment Information 4 5 4.4 Secret
ECG 4 5 4.4 Secret
EEG 4 5 4.4 Secret
EMG 4 5 4.4 Secret

Blood Glucose 4 5 4.4 Secret
Insulin Levels 4 5 4.4 Secret

X-rays 4 5 4.4 Secret
CT Scans 4 5 4.4 Secret

MRIs 4 5 4.4 Secret
Ultrasounds 4 5 4.4 Secret

Laboratory Test Results 4 5 4.4 Secret
Anxiety 4 5 4.4 Secret

Depression 4 5 4.4 Secret
Address 5 4 4.4 Secret

Phone Number 5 4 4.4 Secret
Name 5 3 4.2 Secret

Date of Birth 4 3 3.6 Confidential
Email Address 4 3 3.6 Confidential
Serial Number 4 3 3.6 Confidential

Heart Rate 3 4 3.4 Confidential
Blood Pressure 3 4 3.4 Confidential

Respiratory Rate 3 4 3.4 Confidential
SpO2 3 4 3.4 Confidential

Stress Level 3 4 3.4 Confidential
Place of Birth 3 3 3 Confidential

Sleep Duration 3 3 3 Confidential
Sleep Stages 3 3 3 Confidential

Dietary Habits 3 3 3 Confidential
Social Interaction 3 3 3 Confidential

HIS 3 3 3 Confidential
HTM 3 3 3 Confidential
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Table A1. Cont.

Data Type Uniqueness (1–5) Harm Potential
(1–5) Total Risk Sensitivity Level

Frequency of Use 3 3 3 Confidential
Duration of Use 3 3 3 Confidential

Feature Utilization 3 3 3 Confidential
Temperature 2 3 2.4 Public

BMI 2 3 2.4 Public
Radiation Rates 2 3 2.4 Public

Height 2 2 2 Public
Weight 2 2 2 Public
Steps 2 2 2 Public

Distance 2 2 2 Public
Calories Burned 2 2 2 Public

Pollutants 2 2 2 Public
Software Version 2 2 2 Public

Processor Type 2 2 2 Public
Memory 2 2 2 Public

Storage Capacity 2 2 2 Public
Signal Strength 2 2 2 Public
Network Type 2 2 2 Public
Temperature 1 1 1 Public

Humidity 1 1 1 Public
Ambient Light Intensity 1 1 1 Public

Outdoor Air Quality 1 1 1 Public
Battery Level 1 1 1 Public
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