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Abstract

The uplink of 5G networks allows selecting the transmit waveform between cyclic prefix
orthogonal frequency division multiplexing (CP-OFDM) and discrete Fourier transform
spread OFDM (DFT-S-OFDM) to cope with the diverse operational conditions of the power
amplifiers (PAs) in different user equipment (UEs). CP-OFDM leads to higher throughput
when the PAs are operating in their linear region, which is mostly the case for cell-interior
users, whereas DFT-S-OFDM is more appealing when PAs are exhibiting non-linear be-
havior, which is associated with cell-edge users. Therefore, existing waveform selection
solutions rely on predefined signal-to-noise ratio (SNR) thresholds that are computed
offline. However, the varying user and channel dynamics, as well as their interactions
with power control, require an adaptable threshold selection mechanism. In this paper,
we propose an intelligent waveform-switching mechanism based on deep reinforcement
learning (DRL) that learns optimal switching thresholds for the current operational condi-
tions. In this proposal, a learning agent aims at maximizing a function built using available
throughput percentiles in real networks. Said percentiles are weighted so as to improve
the cell-edge users’ service without dramatically reducing the cell average. Aggregated
measurements of signal-to-noise ratio (SNR) and timing advance (TA), available in real
networks, are used in the procedure. In addition, the solution accounts for the switching
cost, which is related to the interruption of the communication after every switch due to
implementation issues, which has not been considered in existing solutions. Results show
that our proposed scheme achieves remarkable gains in terms of throughput for cell-edge
users without degrading the average throughput.

Keywords: deep reinforcement learning; waveform switching; 5G

1. Introduction
The 5G 3GPP specifications have brought a great degree of flexibility to cover a wide

range of use cases, scenarios, and propagation conditions. One of the major enhancements
was the addition of the millimeter-wave band (mmW), which allows increasing bandwidth
and throughput, but it complicates uplink (UL) transmission due to the higher path loss.
The UL power control mechanism aims at compensating for the path loss and shadowing,
guaranteeing a target received power level at the base station (BS). However, the differences
in the path losses of different users involve different power amplifier (PA) operating
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conditions, with some of them working at the linear region and others in the non-linear
region. To handle the diverse PA operating and propagation conditions, 5G considered
two UL waveforms: cyclic prefix orthogonal frequency division multiplexing (CP-OFDM)
and discrete Fourier transform spread OFDM (DFT-S-OFDM), which is also known as
single-carrier frequency division multiplexing (SC-FDM) and as transform precoding in
the literature. This dual-waveform approach allows a dynamic selection of the most
appropriate waveform for the user equipment (UE) working conditions [1]. The former
waveform leads to higher throughput when the PAs operate in their linear region and
better performance of multiple-input multiple-output (MIMO) techniques, whereas the
latter leads to a smaller peak-to-average power ratio (PAPR). This reduction in PAPR is of
paramount importance when non-linear PAs are considered, since it reduces the out-of-
band emission (OOBE) and non-linear distortion. As shown in preliminary studies [2,3],
in the presence of non-linear PAs and UL power control, DFT-S-OFDM leads to higher
throughput compared to CP-OFDM for UEs placed at distant locations from its serving
BS, whereas CP-OFDM offers higher throughput for the rest of UEs. The fact that the
OOBE is smaller with DFT-S-OFDM implies that it is possible to transmit with a higher
power than with CP-OFDM while fulfilling the same transmission spectral mask. This
is especially relevant at mmW bands, where the high path loss significantly reduces the
UL coverage. Hence, the 3GPP NR specifications define a maximum transmit power of
DFT-S-OFDM, which is between 1.5 and 2.5 dB greater than that of CP-OFDM, depending
on the bandwidth and constellation [1]. This higher transmit power extends the cell
coverage when DFT-S-OFDM is used, which can potentially increase the lower percentiles
of the throughput distribution in a cell. In addition, the introduction of reduced-capability
(RedCap) devices for industrial networks exacerbates these aforementioned issues in the
UL due to the related simplifications in their radio frequency and baseband capabilities [4];
therefore, motivating further the need for optimal waveform-switching solutions.

Despite the potential of waveform switching to improve UL performance, only a
few works have investigated this issue. In [2], it was shown that there is a crossing point
between CP-OFDM and DFT-S-OFDM in terms of throughput versus distance when a
non-linear PA is considered. Then, a switching mechanism between both waveforms
based on the distance was suggested to maximize the user throughput under adaptive
modulation and coding (AMC). The performance of DFT-S-OFDM was compared in [5]
with an improved version of CP-OFDM that uses clipping and filtering to reduce its PAPR.
It can be concluded from this work that the optimum switching point depends, among
other factors, on the number of allocated physical resource blocks (PRBs). Another method,
which further reduced PAPR and led to reduced OBBE was presented in [3], which consists
of a modification of the DFT-s-OFDM waveform, adding two blocks to perform frequency
domain spectral shaping and extension. However, this requires changes in the standard,
and does not remove the need to perform a waveform switching. The work presented
in [6] also proposed a switching mechanism, but in this case, the switching is triggered
by the difference between the measured packet error rate (PER) with a non-linear PA and
the ideal PER that is predicted considering a theoretical model with a fully linear PA. If
the difference in these PER measures is above a given threshold, DFT-S-OFDM is selected;
otherwise, OFDM is used. A more feasible switching mechanism, which is based on the
estimated SNR, was proposed in [7]. The received SNR is compared with some thresholds
to select the waveform that maximizes the throughput with AMC under non-linear PA.
Later, in [8], this approach is extended to consider MIMO. Here, depending on the SNR, it
is selected CP-OFDM with either one or two layers, or DFT-S-FDM with a single layer.

All of these aforementioned works compare a given metric, i.e., distance towards
the BS, PER difference between linear and non-linear case, or SNR, with some thresholds
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that are computed offline based on simulations for some specific setting. Therefore, these
methods might fail to adapt to changes in the scenario. In addition, these works do
not consider the penalty that exists in real 5G networks when a waveform switch is
triggered. The 3GPP specifications impose a guard time where the UE cannot transmit after
a waveform switch to allow the device to prepare for this change. Ignoring such guard
time in the switching mechanism might lead to a ping-pong effect that severely degrades
the achievable throughput.

To solve this important issue, a waveform-switching mechanism to optimize the
power consumption of the UE was proposed in [9]. This invention, named dynamic
port and waveform switching (DPWS), relies on the transmission of either radio resource
control (RRC) configuration messages or a bandwidth part (BWP) switch to change the UL
waveform. DPWS implements a mechanism based on thresholds and counters to avoid the
aforementioned ping-pong effect that degrades performance. Nevertheless, the invention
does not specify how to optimize such thresholds to maximize a given metric.

Traditional optimization methods often struggle with the dynamic and complex na-
ture of 5G networks. These networks are characterized by highly variable user behavior,
changing radio channel conditions, and a massive number of interconnected devices. This
complexity creates a system where a single static set fails to maximize performance. Deep
reinforcement learning (DRL) is uniquely suited for this environment because it is designed
to solve problems where an agent must make a sequence of decisions in an uncertain
environment to maximize a cumulative reward. The great potential of DRL for 5G arises
from its ability overcome the complex interplay between network metrics, offering real-time
inference capabilities [10]. Instead of relying on pre-programmed rules, a DRL agent learns
a policy that adapts to a constantly changing network. This allows it to make decisions that
are not only reactive to current conditions but also proactive, anticipating future changes
based on its learned experience. Unlike traditional convex optimization-based approaches,
DRL frameworks optimize a reward function by learning a fitting policy for a specific
problem. Such a reward can be devised to optimize multiple, even competing, objectives
simultaneously. The suitability of DRL for this problem comes from its ability to learn a
policy by interacting with the system, applying changes, and observing the effects, rather
than relying on ground-truth data. In addition, 5G networks generate vast amounts of
data from various sources. DRL can effectively process this high-dimensional input to
extract meaningful insights and make informed decisions, which would be challenging for
simpler algorithms.

Thanks to these benefits, DRL has been recently applied to optimize a wide range of
performance metrics and scenarios. In [11], DRL is applied in energy harvesting device-to-
device communication scenarios to maximize the throughput subject to age of information
(AoI) constraints. The task offloading and resource allocation problem in space-air-to-
ground networks is addressed in [12], where a DRL framework built with graph neural
networks for feature extraction is proposed. A resource allocation problem that considers
the fairness of different users in terms of delay is considered in [13], where a DLR agent
optimally selects the parameters of a modified largest weighted delay first scheduling
algorithm. DRL is also applied to increase the fairness of 5G networks in [14], but in this
case, it is considered the mobility management problem. Due to the aforementioned issues,
the UL optimization of 5G networks has also been a major application scenario of DLR
approaches. In [15] DRL is used to determine an optimal user clustering for non-orthogonal
access that maximizes the throughput, whereas in [16,17], DRL is used to determine the
optimal UL control commands to maximize the throughput and reduce delay, respectively.
Nevertheless, as far as the author’s knowledge the problem of waveform switching as not
been addressed with DRL yet.
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In this paper, we present a novel solution, named artificial intelligence-assisted dy-
namic port and waveform switching (AI-DPWS), whose objective is to find the optimal
values for the SNR threshold and the appropriate SNR hysteresis that maximize the cell’s
performance in terms of UL throughput. Dynamic adjustment is made automatically based
on real-time gNB measurements, thus adapting the optimal thresholds to varying condi-
tions of the environment, which is in clear contrast to existing approaches for waveform
switching in the literature, e.g., [2,6,7].

More specifically, the contributions of the present work can be summarized as follows:

• We propose a DRL-based mechanism named AI-DPWS that selects the optimal values
for the SNR threshold and the appropriate SNR hysteresis that maximize the cell’s
performance in terms of UL throughput. AI-DPWS aims to improve the throughput of
the cell-edge UEs, i.e., those associated with a lower percentile of the cell´s throughput
cumulative distribution function (CDF), without sacrificing the average throughput of
the cell. This is possible thanks to the designed reward function, which encapsulates
such a trade-off. Therefore, this approach increases the system fairness in terms of
throughput, which is a paramount metric [13,14,18], with no penalty in terms of
average throughput.

• The agent is trained using key performance indicators (KPIs) that are available in real-
world networks, such as histograms of the throughput, UL SNR, and timing advance
(TA), which are collected during real-life network operation. The aim of considering
these realistic metrics is to offer a solution that can be deployed in real cells. To
this end, a realistic 5G simulator has been developed. As detailed in Section 2, this
simulator accounts for UL power control, propagation conditions, PA non-linearity,
5G compliant physical layer processing, and switching cost.

• The performance gains of the proposed method are shown with numerical results,
confirming that the proposed method increases the performance of cell-edge users
without sacrificing the average throughput.

2. System Model
Each UL transmission at the mmW band can use either a CP-OFDM or a DFT-s-OFDM

waveform as indicated by the BS either by a BWP switch or a RRC reconfiguration mes-
sage [19]. We investigate a link between a single cell and a single user in the UL direction,
i.e., without interfering with UL transmission, considering the 3GPP specifications for the
physical and medium access control (MAC) layers of 5G.

Figure 1 shows the end-to-end communication system model for both CP-OFDM and
DFT-s-OFDM. The diagram at the top side represents the transmitter (UE) and receiver
(BS) for CP-OFDM with two ports, while the bottom side corresponds to DFT-s-OFDM
transmission. The transmitter chain starts with channel coding and symbol mapping,
followed by waveform-specific processing. In CP-OFDM, symbols are precoded across
ports, transformed to the time domain by an IFFT, and protected with a cyclic prefix.
In DFT-s-OFDM, symbols first pass through a DFT precoder before subcarrier mapping
and time-domain conversion. In both cases, the resulting samples are passed through
the RF front-end, which includes the digital-to-analog converter (DAC), the frequency
up-converter (FUC), and the power amplifier (PA), depicted as a black triangle. The
virtual channel block models the effect of analog transmit and receive beams together with
multi-path propagation. At the receiver side, the RF chain applies analog combining and
down-conversion, after which the corresponding baseband demodulation (CP-OFDM or
DFT-s-OFDM) is performed. This organization highlights that the two waveforms differ in
their baseband processing stages, while they share the same RF and propagation stages. As
it is illustrated in Figure 1, the UE and BS use a hybrid precoding architecture [20] where
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the precoding is divided into base-band (BB)—i.e., digital—and radio frequency (RF)—i.e.,
analog—domains. We consider passive phased antenna array panels at the UE and BS sides,
each able to synthesize an aligned RF beam at the transmit and receive sides, whose gains
are modeled as Gt and Gr, respectively. The transmit and receive beams are synthesized
with analog precoding, WRF ∈ CNt×Np , and combining, CRF ∈ CNt×1 matrices, being Nt

and Nr the number of physical transmit and receive antennas. Np stands for the number
of ports at the transmitter side, which represents the number of RF chains, which are also
called logical antennas. This is due to the fact that the channel matrix that can be estimated
at the receiver using sounding reference signals (SRS) is a virtual channel that includes
the analog precoding and combining matrices, i.e., H(t, f ) ∈ C1×Np , since it is considered
a single-port receiver for the BS in this work. Therefore, MIMO techniques in the digital
domain consider the virtual matrix whose dimension is smaller than the channel matrix.
Both DFT-S-OFDM and CP-OFDM schemes use beamformed demodulation reference
signals (DMRS) to perform channel estimation for symbol detection (i.e., equalization).
DMRS signals are digitally precoded if several ports are considered. Nevertheless, we
also consider the periodic transmission of sounding reference signals (SRS), which are
not digitally precoded, to estimate the SNR for waveform selection over the employed
analog beam.
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Figure 1. Block diagram of the communication system model for CP-OFDM and DFT-s-OFDM
transmission. The diagram at the top side represents the transmitter (i.e., UE) and receiver (i.e., BS)
for CP-OFDM with two ports. The bottom side diagram represents the case of the DFT-s-OFDM
transmission. The transmit RF chain has the digital-to-analog converter (DAC), frequency up-
converter (FUC), and PA. The virtual channel blocks include the effect of transmit and receive RF
beams and multi-path propagation. The PAs are represented as a black triangle.

The BB transmission chain uses the low-density parity-check codes (LDPC) for the
physical uplink shared channel (PUSCH). The proposed system allows selecting between
two different UL waveforms: (i) DFT-S-OFDM waveform with 1 antenna port and 1 data
layer, and (ii) CP-OFDM waveform with 2 antenna ports and 1 data layer. It is worth noting
that the DFT-S-OFDM scheme only makes use of one antenna port. This design decision
was taken due to the moderate to low performance of DFT-S-OFDM with MIMO [21–25] in
the digital domain. Note that DFT-S-OFDM remains compatible with analog beamforming,
benefiting from its directionality and increased link performance.

It is considered adaptive modulation and coding (AMC), therefore information bits are
coded by the LDPC encoder and mapped into constellation symbols according to the MCS
selected by the BS after SRS transmission. The vector of constellation symbols is represented
as d ∈ C1×Nd in Figure 1, where Nd represents the number of allocated resource elements
(RE) in a given slot.
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In the case of CP-OFDM waveform, the constellation symbols are transformed via a
precoding matrix WBB ∈ CNp×1 where Np is the number of antenna ports. This precoding
matrix maps data layers onto the number of antenna ports. After the multiplication with the
matrix WBB, the resulting data symbols are transposed. Then, the precoded and transposed
symbols are passed through a subcarrier mapping matrix T ∈ CN×Nd , being N the number
of subcarriers per OFDM symbol. Finally, the output of the matrix T is converted to the
time domain via FH where FH ∈ CN×N is an inverse discrete Fourier transform (IDFT).
The final signal x ∈ CN×Np in the time domain is generated as following: x = FHT(Wd)T.
Afterward, a CP is added to the resulting time signal before being fed into the non-linear PA.

Regarding the DFT-S-OFDM signal generation (Figure 1), data symbols are mapped
onto a DFT matrix denoted by D ∈ CM×M via a mapping matrix Mt ∈ CM×Nd , where M
is the DFT size. Then, the output of the DFT is mapped onto a set of subcarriers in the
frequency domain through another mapping matrix Mf ∈ CN×M. Finally, the output of the
matrix Mf is converted to time domain via FH , where FH ∈ CN×N is the IDFT matrix and
N is the number of subcarriers. The final signal x ∈ CN×1 in the time domain is generated
as follows: x = FHMfDMtd. Then, a CP is added to the resulting time signal before being
fed into the non-linear PA.

In both cases, output signals are amplified by a non-linear PA, which is assumed
to be memory-less with amplitude-to-amplitude distortion only. In particular, a Rapp
model is considered [26], whose amplitude-to-amplitude conversion function is given by
the following:

g(v, A) = vA

(
1 + abs

(
vA
Asat

)2p
)−1

2p

, (1)

where v is the gain of the small signal, A is the amplitude of the input signal, Asat is the
limiting output amplitude, and p controls the smoothness of the transition from the linear
region to the saturation regime. This model is widely used for OFDM/SC-FDMA systems
to emulate the soft-limiting behavior of solid-state PAs. It captures AM/AM compression
with a smooth transition to saturation. In our study, the Rapp model is applied to the
UL transmitter chain of each UE to account for PA-induced distortion, which impacts the
effective SNR observed at the receiver and, consequently, the performance of dynamic
waveform switching.

A closed-loop power control mechanism is used in the UL [27], which considers that
the BS decides a transmit power, Ptx, to compensate for the path loss, PL. This transmit
power can be expressed in decibels as Ptx = P0 + αPL dB, being P0 a target received power
at the BS, and α ∈ [0, 1] the fractional compensation factor. An urban macro (UMa) model
has been considered for computing the path loss component, PL.

Restrictions on the maximum transmit power supported by the UE and also out-of-
band emissions, impose further limits on the transmitted power. The maximum power
reduction (MPR) [1] specifies the decrease in the maximum power transmitted in order to
enable the device to fulfill the requirements of the transmitter adjacent channel leakage
ratio. This value imposes a maximum transmit power to guarantee that the out-of-band
emission is below a given threshold. Since these out-of-band emissions depend on the
waveform, modulation level and channel bandwidth, the possible MPR values also depend
on such parameters. Finally, the final power transmitted by the UE, Poutput, can be defined
as Poutput = min(Pdecided, P

′
max), where P

′
max = Pmax − MPR.

Table 1 summarizes the power reduction values as per the 5G specs. Notice that a
higher maximum power can be used with DFT-S-OFDM, since its MPR is smaller than with
CP-OFDM. This is an expected result as the former waveform is related to a smaller PAPR.
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DFT-S-OFDM has shown PAPR values between 7 and 8.5 dB while CP-OFDM produced
values between 10 and 11 dB.

Table 1. MPR values [1].

MPR (dB)

Waveform Modulation 50/100/200 MHz
Channel BW

400 MHz
Channel BW

DFT-S-OFDM

Pi/2BPSK 1.5 3.0

QPSK 1.5 3.0

16QAM 3.0 4.5

64QAM 5.0 6.5

CP-OFDM

QPSK 3.5 5.0

16QAM 5.0 6.5

64QAM 7.5 9.0

The SNR is computed as follows:

SNR = Poutput+Gt + Gr − PL + 10 log10

(
Nrx

∑
i=1

|hi|2
)
− N0 [dB], (2)

where Nrx is the number of receive antennas, and hi is the effective channel of the
i-th receiver antenna after precoding (in case of CP-OFDM) and channel estimation.
The thermal noise at the receiver at ambient temperature (i.e., 290K) is expressed as
N0 = −204 + 10 log10(12 × ∆ f × NRB) + Nfig [dBW], where ∆ f is the subcarrier spacing
in Hz, NRB is the number of PRBs assigned to the user and Nfig is the noise figure at the
BS [28].

3. Dynamic Port and Waveform Switching
DPWS feature is targeted to switch between CP-OFDM and DFT-S-OFDM to enhance

the UL coverage. It is designed to counteract the ping-pong effect that can occur when the
signal rapidly switches back and forth, wasting network and device resources. To achieve
that, the feature focuses on counting the so-called switching occasions before triggering the
actual switching. The following parameters are involved:

• Threshold (ζ): it determines switching occasions from CP-OFDM to DFT-S-OFDM
when the following inequality is fulfilled SNR < ζ.

• Hysteresis (ξ): it determines the switching occasions from DFT-S-OFDM to CP-OFDM
as follows SNR > ζ + ξ.

• Counter (C): it counts for the number of switching occasions in order to trigger a
waveform switching.

• Timer (T): it determines the time window to account for switching occasions. This time
window is expressed as a number of SRS receptions.

The switching mechanism is influenced by two key factors: the estimated UL SNR (γ)
per user, which is estimated periodically based on the SRS, and the current waveform, as
follows. At a given time instant, if the transmission is being executed with CP-OFDM, then
a switching occasion is counted if the SNR falls below ζ. However, if the transmission is
being executed with DFT-S-OFDM, then a switching occasion is counted if the SNR rises
above ζ + ξ. To trigger a waveform switch, the number of counted switching occasions
must be equal to C within a time window that is smaller than T. The use of C and T on top
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of the commonly implemented hysteresis ξ offers a great stability against the ping-pong
effect caused by small fluctuations in the signal. The switching mechanism is detailed in
Algorithm 1, which is executed for each SRS reception.

Algorithm 1 DPWS algorithm.
Input: ζ, ξ, C, T, γ, CurrentWaveform
Initialize: c = 0, t = 0

1: if (t < T) then
2: if CurrentWaveform == CP-OFDM and γ < ζ then
3: c = c + 1
4: else if CurrentWaveform == DFT-S-OFDM and γ > ζ + ξ then
5: c = c + 1
6: else
7: c = 0, t = 0
8: end if
9: if c ≥ C then

10: Perform waveform and port switching
11: end if
12: t = t + 1
13: else
14: c = 0, t = 0
15: end if

Once the conditions of the algorithm have been met, the waveform switch is signaled
to the UE via an RRC reconfiguration message, which changes the UL waveform from
CP-OFDM to DFT-S-OFDM and vice-versa. Since the RRC reconfiguration message can
change any parameter of the UL transmission, the 3GPP specifications reserve a guard
time that allows the UE to prepare for transmission according to the new configuration.
According to [27], this guard time depends on the numerology, µ, and on the UE category,
but it ranges from 16.75 ms (µ = 3, type 1 category) to 19 ms (µ = 0, type 2 category).
Therefore, each switch has a cost in performance since it involves an interruption in the UL
transmission, which must be considered by the agent.

4. Proposed Deep Reinforcement Learning Dynamic Switching
Our proposed framework, AI-DWPS, is based on a DRL algorithm. In particular, a

deep Q-learning (DQL) approach is used, where the q-table typically used in classical
RL algorithms is substituted by a neural network called q-network. This q-network is
implemented by a multi-layer perceptron (MLP) with a single hidden layer with nhidden

nodes and ReLU activation. The number of nodes in the input layer matches the cardinality
of the state space, whereas the number of nodes in the output layer matches the cardinality
of the action space. The output layer employs linear activation.

The proposed AI-DPWS framework optimizes the SNR threshold (ζ) and hysteresis
(ξ) to maximize cell performance by means of a DRL-based mechanism. Its goal is to
improve the throughput for cell-edge users, i.e., those with a lower CDF of the throughput,
without reducing the overall average cell throughput. This dynamic adjustment is made
automatically, which allows adapting the optimal thresholds to varying conditions of the
environment. To this end, a reward function that encapsulates such a trade-off is devised.
These parameters, SNR threshold (ζ) and hysteresis (ξ), are controlled by a DRL agent. The
rest of the parameters are assumed to be fixed. The DPWS algorithm controls when and
how the UL waveform and ports of the UE connected to the cell will switch.

The DPWS configuration of each cell can be changed based on the actions suggested
by the DRL agent. The DRL is located in a non-real-time central network element (e.g., op-
erations support systems (OSS) or an external server) and optimizes only the per-cell
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parameters (ζ, ξ). The gNB applies these parameters in its local DPWS loop; hence, the
agent’s placement does not sit on the latency-critical path of per-UE waveform switching.

4.1. States, Actions, and Reward
4.1.1. States

Given the nature of the problem, we have chosen to report statistics about two realistic
uplink measurements available in actual networks: the SNR and the TA distributions. The
throughput metric is defined as the rate of correctly decoded bits per second, whereas the
TA indicates how distant the UE is from the serving BS. Both SNR and TA metrics are not
reported on a per-connection (i.e., per-user) basis but as a histogram of all connections in
a given time window. To ensure a seamless deployment in a real system, the bin´s limits
have been inherited from the corresponding real-world KPIs in ERICSSON´s base stations.
Each histogram is comprised of L = 12 bins delimited to uniformly sample the typical
range of operation of such KPIs. The SNR histogram has the following bins’ limits (in dB):
[−∞,−5,−2, 1, 4, 7, 10, 13, 16, 19, 22, 25, ∞]; whereas, the bins’ limits for the TA histogram
are (in %): [5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, ∞]. Note that the TA bins’ limits are
expressed in terms of percentages, being 100% the TA associated with the propagation
delay at the maximum range of the cell. This cell range is a network parameter representing
the maximum distance (in meters) at which a given BS provides coverage. Due to the
channel delay spread, the instantaneous measurement of the TA may provide a value above
100% for cell-edge users.

To compress the information given by these histograms we define the following
descriptors for the TA and SNR metrics:

Rℓ,Ψ =
∑L

i=ℓ BINSi,Ψ

∑ℓ−1
i=1 BINSi,Ψ

, Dℓ,Ψ =
∑L

i=ℓ BINSi,Ψ

∑L
i=1 BINSi,Ψ

, (3)

where Ψ stands for a given metric, i.e., either the SNR or TA, L is the number of bins, and
BINSi,Ψ stands for the number of UEs whose metric (TA or SNR) falls within the i-th bin
interval, which is expressed as

[
ψ−

i , ψ+
i
]
.

These metrics inform about the SNR and TA histograms while giving information
about their shapes.

On the one hand, Rℓ,Ψ reflects the ratio of users above and below a certain threshold
(bin edge), providing a sense of how many users are experiencing “good” vs. “bad” condi-
tions. That is, Rℓ,metric can be understood as the ratio between the number of occurrences
of the random metric being above the smaller edge of the ℓ-th bin, ψ−

ℓ , and the number of
occurrences below such edge of the ℓ-th bin. Therefore, it can be seen as an estimation of
the following quotient of probabilities, P̂r

(
Ψ ≥ ψ−

ℓ

)
/P̂r

(
Ψ < ψ−

ℓ

)
.

On the other hand, Dℓ,Ψ represents the complementary cumulative distribution func-
tion (CCDF) of the metric, estimating the proportion of users above a certain bin threshold.
The number of bins and their limits determine the granularity of these metrics. For the SNR,
the bins range from poor to excellent signal conditions (e.g., [−∞,−5,−2, 1, . . . ]), while for
TA, bins correspond to proximity to the base station in terms of percentage of maximum
cell range. High Dℓ,TA values indicate many users near the cell edge, where DFT-S-OFDM
might be preferred, whereas high Dℓ,SNR suggests overall strong signal conditions, where
CP-OFDM could be advantageous.

These metrics play a key role in the DRL state representation. For example: D9,TA

indicates the proportion of users near the cell edge. TA and SNR are directly measurable in
real-world networks, making the proposed system deployable without additional hard-
ware or modifications. Furthermore, these metrics help evaluate how well the switching
mechanism adapts to different network scenarios.



Sensors 2025, 25, 5875 10 of 17

Let S be the state space, with s[n] ∈ S the instantaneous state at step n. The instanta-
neous state for the DLR algorithm is defined as

s[n] = {ζ[n], ξ[n], γ̄[n], R6,SNR, R5,SNR, R6,TA, R3,TA, D5,SNR}, (4)

where γ̄ is the average SNR across the cell’s UEs and slots related to a given step, ζ[n] is
the SNR threshold at step n, and ξ is the SNR hysteresis at step n.

4.1.2. Actions

Let A be the action space, with a[n] ∈ A being the action chosen by the agent at step
n. The action defines the decision made for each optimizable parameter: SNR threshold
(ζ) and SNR hysteresis (ξ). Both parameters are subjected to three possible options:
(i) decrease the value of the parameter by a certain step, (ii) keep the existing value, or
(iii) increase value by the same step. The decrease/increase step is fixed to ∆ζ = 1 dB and
∆ξ = 0.5 dB. A is therefore comprised of nine possible actions. Note that the use of small
changes of ζ and ξ reduces the impact of wrong decisions made by the agent and allows the
smooth acquisition of optimal values through several iterations. During training, the action
selection follows a decaying ϵ-greedy policy. The DQN agent selects selects a random
action with probability ϵ and the action associated with the highest value outputted by
the Q-Network with probability 1 − ϵ. As training progresses, the value of ϵ is gradually
reduced from ϵ0 towards ϵmin allowing the agent to exploit the knowledge it has acquired.
During evaluation, ϵ is set to 0.

4.1.3. Reward

To accurately capture the performance of the users in the cell at time step n, the
reward function is composed of a set of K reward factors, Gk[n], k ∈ [1, K] ⊂ N, each one
corresponding to a certain percentile, pk, of the throughput of the cell.

The reward function at step n is given by

rini[n] = θ · B · (∆G1[n], ∆G2[n], ..., ∆Gk[n])
t, (5)

∆Gk[n] =
Gk[n]− Gk[n − 1]

Gk[n − 1]
, (6)

where the superscript t converts the vector formed by the relative gains ∆Gk[n] of the
reward factors k into a column, B = (B1, .., BK) is the vector of weights with length K and
θ is a scale factor meant to expand the value range of the reward to help with training. As
it can be observed, this reward function focus on throughput because it is an end-to-end
metric that determines the quality of service of a given connection. In addition, since the
aim is to improve the performance of cell-edge users, lower percentiles of the throughput
are included in this reward function. Nevertheless, as explained further in Section 5, the
switching mechanism greatly increases the gain of the lower percentiles compared to the
average throughput gain. Therefore, a weighing vector B = (B1, .., BK) is needed to prevent
that the agent takes actions that worsen the average throughput. Additionally, to help
stabilize the training, the reward peak values are limited by the factor rclip as follows:

r[n] = max(min(−|rclip|, rini[n]), |rclip|). (7)

4.2. Deployment Considerations and Latency Budget

We distinguish a slow loop (policy update) and a fast loop (per-UE switching). The
slow loop collects aggregated SNR/TA histograms over a measurement window and
updates (ζ, ξ) per cell; it tolerates transport/processing latencies typical of OSS/edge
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deployments. The fast loop runs at the gNB per SRS occasion (2 ms in our setup) and,
upon meeting the counter condition, commands an RRC reconfiguration that incurs the
standardized guard time (from 16.75 ms to 19 ms).

Centralizing inference reduces per-site computation requirements and eases system-
wide coordination. The signaling overhead is limited to (i) periodic upload of KPI his-
tograms and (ii) infrequent parameter updates consisting of (ζ, ξ) pairs.

Placing the agent at the gNB removes the slow-loop transport latency but increases
processing load at the gNB. It does not change the RRC guard time per switch. Since
(ζ, ξ) evolve more slowly than the SRS-driven dynamics exploited by DPWS, we adopt
centralized inference by default and maintain the latency-sensitive switching logic at
the gNB.

4.3. Adaptation to Non-Stationary Environments and Mobility

The architectural separation between the fast and slow loops is intrinsic to AI-DPWS.
The latency-critical fast loop, executed locally at the gNB on each SRS occasion, bases
its decisions on instantaneous SNR and triggers the corresponding RRC reconfiguration.
The slow loop, in contrast, updates only the cell-level parameters (ζ, ξ) from aggregated
SNR/TA histograms and therefore operates on a non-real-time horizon. While the evalua-
tion in Section 5 focuses on stationary users, this separation remains valid when mobility
induces rapid changes, since the fast loop continues to handle per-UE dynamics while the
slow loop tracks long-term trends.

The DRL state is constructed from histograms of SNR and TA, as defined in Section 4.1,
which are periodically updated at each aggregation window. As such, mobility-induced
shifts in the distributions are naturally reflected in the agent’s input state. In stationary
scenarios, consecutive histograms remain similar, whereas in mobile scenarios they evolve
more rapidly, which the agent can exploit when adjusting (ζ, ξ). As a possible extension,
temporal indicators (e.g., deltas or divergences between consecutive histograms) or adap-
tive window lengths could be introduced to accelerate adaptation, but the baseline design
already provides mobility awareness through its histogram-based representation.

The DPWS mechanism at the gNB incorporates counters and timers that bound the
effective switching rate and prevent ping-pong. These safeguards ensure that the per-UE
switching cost remains dominated by the standardized RRC guard time, regardless of how
often the slow loop may update (ζ, ξ). Thus, even if parameter updates become more
frequent under high mobility, the switching behavior remains controlled.

In the current implementation, the DRL agent is assumed to reside in a central entity
(e.g., OSS). As a deployment option for highly mobile environments, the agent could
alternatively be placed closer to the RAN (e.g., at the edge) to increase the frequency
of (ζ, ξ) updates. The per-UE fast loop and its latency budget remain unchanged. This
flexibility is not part of the present evaluation but represents a practical extension of
the framework.

5. Simulation Results
The environment has been simulated using the 5G toolbox of MATLAB R2024b,

whereas the DRL agent has been implemented in Keras and Tensorflow. The detailed
parameters of the DRL training are summarized in Table 2. During the length of the
transmission, the UEs are bounded to the DPWS following the procedure described in
Algorithm 1 according to the values of ζ and ξ of the step. UEs are also subjected to adaptive
modulation and coding (AMC); therefore, the employed MCS is susceptible to change as
the SNR evolves. At any given slot, UEs reporting SNR values below the threshold of the
lowest MCS will fall into outage. During CP-OFDM transmissions, the precoding matrix W
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is selected by the BS from the corresponding codebook according to the SRS signal received
in order to maximize the received SNR. RL-related parameters can be found in Table 2.
All UEs share the same configuration parameters, which are summarized in Table 3. As
defined in that table, SRS periodicity is set to 2 ms by default. DRL steps correspond to
consecutive windows over which histograms are computed and (ζ, ξ) may be updated;
they are not per-SRS decisions. Per-UE switching continues to be decided at the gNB at
SRS cadence, and any actual waveform change includes the RRC guard time described in
Section 3.

UEs resulting in outage for the complete duration of the transmission were not sched-
uled thus not considered in the derived metrics. Within a given episode, the UEs do not
change across steps and their channel realizations are repeated. Said condition implies
that observed changes in the throughput values can then only be induced by tweaking the
parameters ζ and ξ via the RL agent.

The baseline simulation setup fixes the user speed to 0.4 km/h (stationary), as listed
in Table 3, in order to isolate the effect of learning (ζ, ξ) without confounding mobility
factors. Nevertheless, as discussed in Section 4.2, the fast loop at the gNB executes at
every SRS occasion and remains latency-bounded by the standardized RRC guard time,
independently of where the DRL agent resides. Furthermore, as detailed in Section 4.3,
the use of periodically updated SNR/TA histograms already provides a degree of mobility
awareness in the DRL state, since distribution shifts are naturally reflected across consecu-
tive windows. In scenarios with higher mobility, the same architectural separation, stability
safeguards, and possible extensions (e.g., temporal indicators or adaptive windowing)
enable the framework to adapt to non-stationary conditions.

Table 2. RL parameter settings.

Parameter Value

[ϵ0, ϵmin] [1, 0.01]
Learning rate 0.05
Training steps per episode 75
# of training episodes 43
Evaluation steps per episode 20
# of evaluation episodes 16
UEs per episode 50
nhidden 60
Optimizer Adam
Discount factor 0.01
Batch size 350
Experience buffer size 750
Default threshold, ζ (dB) 0
Default hysteresis, ξ (dB) 5
(θ, rclip) (50, 2)

To accurately capture the performance in the edge cell, the reward includes K reward
factors, Gk, associated with low throughput percentiles and the average throughput. Table 4
summarizes all selected reward factors Gk and their associated weights Bk. It was observed
during training that relative gains in the lower percentiles were disproportionately bigger
compared to those closer to the median. In accordance with Equation (6), small values
of Gk[n − 1] can result in ∆Gk[n] becoming large, even if the particular reward factor K
changes slightly. This is especially true for the lowest percentiles. Such disparity between
different values of ∆Gk[n] resulted in some reward factors dominating the reward while
others became completely obscured, effectively producing no meaningful variations in the
overall reward function r[n]. This over-representation of lower percentiles in the reward
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function caused the agent to bias its behavior towards excessively enhancing the edge users
while seriously damaging mid-tier and average users´ performance. This bias is mitigated
with a vector B that amplifies the ∆Gk[n] of higher percentiles. The final configuration of
linearly increasing weights in Table 4 was selected empirically. Other configurations of
reward factors and weights were also tested with under-performing results.

Table 3. Network parameter settings.

Parameter Value

NRB (RBs) 20
Transmission length (slots) 1000
Carrier frequency (GHz) 28
Subcarrier Spacing (kHz) 15
User speed (km/h) 0.4 (stationary)
Delay Spread (ns) 30
Channel Delay Profile CDL-A
Pathloss model Urban Macro
Gt (dB) 13.7
Gr (dB) 20.6
SRS Periodicity (ms) 2
Min/max UE to BS distance (m) 25/300
(Asat, p) (24 dBm, 2)
Pmax (dBW) −7
RRC3econfiguration delay 19 ms

After the training stage was completed, the agent was evaluated on 15 different
episodes. Given the incremental nature of the action space, the agent was given 15 steps to
reach the solution for each episode.

Table 4. Reward factors and their corresponding weights.

Gk p10 p15 p20 p25 p30 p35 p40 p45 Avg

Bk 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Table 5 summarizes the achieved average throughput gains of the AI-DPWS in contrast
to fixed waveform schemes. Throughput gains are expressed in relative terms for all
reward factors Gk. These results are drawn from the cumulative metrics of all UEs in the
15 evaluation episodes. The proposed scheme consistently outperforms the case of using
any of both waveform schemes. This improvement is remarkable at lower percentiles,
which is related to cell-edge users, achieving gains higher than 30%. Importantly, these
gains at lower percentiles do not detrimentally impact the cell’s average throughput.
Therefore, the fairness in the system is also improved since cell-edge users improve their
performance without any penalty in average throughput.

At the same time, the relative gains in the p25–p45 range are smaller and in some cases
slightly negative compared to CP-OFDM. This behavior is consistent with the design of
the reward function (Equations (5) and (6)), which is formulated to produce larger relative
gains in lower percentiles to explicitly bias the agent towards improving coverage-limited
users. These mid-range trade-offs are bounded, as the inclusion of higher percentiles and
the average throughput in the reward function acts as a safeguard. Median and aggregate
performance values, therefore, remain close to the best fixed waveform scheme, while
fairness is substantially improved by lifting the weakest users.
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Table 5. Evaluation results.

Gains Over: (%)

Gk CP-OFDM DFT-S-OFDM

p10 33.647 7.407
p15 11.023 5.576
p20 3.220 0.675
p25 −2.602 4.220
p30 1.747 4.046
p35 −0.142 4.123
p40 −2.475 9.325
p45 −2.316 5.549
Avg −0.049 3.014

The relative throughput gains drawn as boxplots for the Gk reward factors of the
proposed AI-DPWS framework over CP-OFDM and DFT-s-OFDM are presented in Figure 2
and Figure 3, respectively. The red dots in each boxplot correspond to the average value,
matching the values from Table 5.
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Figure 2. Relative gains of AI-DPWS over CP-OFDM in percentage.
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Figure 3. Relative gains of AI-DPWS over DFT-s-OFDM in percentage.

Finally, to better visualize the impact of AI-DPWS across all UEs in the evaluation,
Figure 4a,b illustrate the achieved throughput of both fixed waveforms and AI-DPWS for
different percentiles. As expected, for the lower percentiles, i.e., the cell-edge UEs, DFT-
S-OFDM outperforms CP-OFDM. However, AI-DPWS outperforms both waveforms by
taking into account the conditions of the channel and switching the waveforms accordingly.
For percentiles closer to the median, CP-OFDM outperforms DFT-S-OFDM and in this case,
AI-DPWS can only match the performance of the best fixed waveform scheme. It is worth
noting that the silence periods caused by waveform switchings resulted in an average loss
of 4.19% throughput across the evaluation episodes. This corresponds with a worst-case of
19 ms reconfiguration delay for µ = 0 and type 2 UE category.
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Figure 4. Achieved throughput with both fixed waveforms and with AI-assisted switching averaged
over all episodes in evaluation for: (a) low percentiles and (b) high percentiles.

6. Conclusions
In this paper, a DRL-based framework is proposed to dynamically select the optimal

threshold and hysteresis for UL waveform selection based on the DPWS scheme. By using a
realistic 5G simulator and realistic measurements available in current networks, it is shown
that the proposed scheme outperforms fixed schemes where the waveforms are selected
in a static manner. Such performance improvements are exhibited across a wide range of
throughput percentiles, showing bigger gains in the lower percentiles, which accounts for the
cell-edge UEs. These improvements come without any harm to the average UEs in the cell.

Beyond this work, several future directions can be envisioned. First, the AI-DPWS
framework could be extended to support reduced-capability (RedCap) devices and mas-
sive machine-type communication (mMTC) user types, which are becoming increasingly
relevant in industrial and IoT applications. These categories introduce distinctive traffic
patterns and constraints, such as sporadic transmissions, energy efficiency requirements,
and limited processing power, which would test the flexibility of the framework in optimiz-
ing (ζ, ξ) under diverse conditions. Second, investigating the scalability of the method in
multi-cell deployments is an important step to assess coordination overheads and system-
wide efficiency. In such scenarios, the interaction between neighboring cells may require
new strategies for distributed learning or parameter sharing to prevent instability while
leveraging spatial diversity. Finally, further exploration of adaptation under mobility and
sudden traffic variations would enhance the robustness of the framework for highly dy-
namic environments. While the current design already benefits from the separation of
fast and slow loops and the use of histogram-based states, future work could evaluate
adaptive windowing or temporal-difference features to improve responsiveness against
abrupt changes in network load or user movement.
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