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Abstract

Respiratory infectious diseases, such as COVID-19, influenza, and tuberculosis, continue
to impose a significant global health burden, underscoring the urgent demand for rapid,
sensitive, and cost-effective diagnostic technologies. Integrated microfluidic platforms
offer compelling advantages through miniaturization, automation, and high-throughput
processing, enabling “sample-in, answer-out” workflows suitable for point-of-care appli-
cations. However, their clinical deployment faces challenges, including the complexity of
sample matrices, low-abundance target detection, and the need for reliable multiplexing.
The convergence of artificial intelligence (AI) with microfluidic systems has emerged as
a transformative paradigm, addressing these limitations by optimizing chip design, au-
tomating sample pre-processing, enhancing signal interpretation, and enabling real-time
feedback control. This critical review surveys AI-enabled strategies across each functional
layer of respiratory pathogen diagnostics: from chip architecture and fluidic control to
amplification analysis, signal prediction, and smartphone/IoT-linked decision support. We
highlight key areas where AI offers measurable benefits over conventional methods. To
transition from research prototypes to clinical tools, future systems must become more
adaptive, data-efficient, and clinically insightful. Advances such as sensor-integrated chips,
privacy-preserving machine learning, and multimodal data fusion will be essential to
ensure robust performance and meaningful outputs across diverse scenarios. This review
outlines recent progress, current limitations, and future directions. The rapid development
of AI and microfluidics presents exciting opportunities for next-generation pathogen diag-
nostics, and we hope this work contributes to the advancement of intelligent, point-of-care
testing (POCT) solutions.

Keywords: respiratory pathogens; artificial intelligence; integrated microfluidics; POCT;
intelligent diagnostics

1. Introduction
Respiratory infectious diseases, including COVID-19, influenza, and tuberculosis, con-

tinue to pose a significant threat to global public health due to their high incidence, ability
to spread rapidly, and potentially severe clinical consequences [1–4]. Timely and accurate
pathogen diagnosis is essential for effectively interrupting the chain of transmission, opti-
mizing patient management and improving prognosis [5–7]. However, current mainstream
diagnostic techniques, such as polymerase chain reaction (PCR), mass spectrometry, and
microbial culture methods, generally face limitations in addressing respiratory pathogen
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detection in terms of sensitivity, assay throughput, and operational costs. PCR is susceptible
to primer design limitations (especially for highly mutated viruses), sample contamination,
and low viral load, and the process is cumbersome and time-consuming [8–11]. Mass
spectrometry techniques are inadequate for the detection of low-abundance proteins, com-
plicated pre-treatment and limited throughput [12–16]. The culture method, which is the
gold standard, is difficult to meet the demand for rapid diagnosis of acute respiratory
infections due to low sensitivity (especially for caustic bacteria and antibiotic-exposed
samples) and being time-consuming (days or even weeks) [10,17–20]. Therefore, there
is an urgent need to develop next-generation diagnostic technologies to break through
the existing bottlenecks and achieve rapid, sensitive, high-throughput and cost-effective
detection of respiratory pathogens.

Microfluidics offers a promising solution for building sample-in answer-out fully
integrated diagnostic platforms due to its miniaturization, integration, low sample/reagent
consumption, and potential high-throughput processing capabilities [21–30]. This tech-
nology is expected to significantly simplify operational processes, shorten testing time,
and reduce costs. However, it still faces multiple challenges in the clinical translation of
respiratory pathogen detection: the high viscosity or heterogeneity of complex biologi-
cal samples (e.g., sputum, saliva, aerosols) can easily lead to microchannel clogging or
interfere with target capture [27,31,32]; the difficulty in efficient enrichment and detection
of low-abundance targets (especially in large-volume primary samples) in a microscale
environment [31,32]; the complexity of microfluidic chip design and optimization; limited
automation and integration of critical steps such as sample lysis and nucleic acid extrac-
tion [29,32]; and the challenge of efficiently analyzing high-dimensional, multimodal data
(e.g., fluorescence images, electrical signals) generated by microfluidic systems, which calls
for more efficient and intelligent approaches [33].

In recent years, the deep integration of Artificial Intelligence (AI), especially Ma-
chine Learning (ML) and Deep Learning (DL), with microfluidics has opened up new
opportunities to address the above challenges and revolutionize the paradigm of respi-
ratory pathogens detection (Figure 1). AI is able to optimize the hydrodynamic design
and structure of microfluidic chips through data-driven modeling; empower intelligent
pre-processing and target enrichment of complex samples; enhance the performance and
reliability of platforms for highly sensitive detection based on nucleic acid amplification
(e.g., digital PCR, LAMP, CRISPR) and biosensing (e.g., antigen–antibody, nucleic acid hy-
bridization) high sensitivity assay platforms with high performance and reliability; enable
intelligent analysis and interpretation of signals in high throughput multiplexed assays;
and drive the development of portable, smartphone-integrated, POCT systems [33–43].
This synergistic effect is driving the birth of smarter and more powerful fully integrated
microfluidic detection systems.

In contrast to previous reviews, which have either emphasized the application of
AI in pathogen infection diagnosis and treatment from epidemiological and therapeutic
perspectives [44], or focused on how AI enhances analytical and bioanalytical performance
in general microfluidic systems [45,46], this review addresses a specific clinical application
scenario. We present a comprehensive overview of the microfluidic technologies and AI
for respiratory pathogen detection. Specifically, we highlight advances in microfluidic-
based sample pre-processing, diagnostic approaches, and high-throughput multiplexed
detection, which collectively enable automated, miniaturized, and sensitive POCT. In
addition, we highlight AI-driven innovations—including chip design optimization, real-
time signal interpretation, and intelligent control via smartphones or IoT frameworks—that
significantly enhance system precision, throughput, and turnaround time. Future progress
will depend on the development of adaptive computational frameworks that account for
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biological variability, the adoption of data-efficient and privacy-preserving learning models,
and the integration of multimodal diagnostic data to support more robust and clinically
actionable decisions.

Figure 1. AI-enabled microfluidics for respiratory pathogen detection.

This schematic illustrates an integrated framework of AI-enhanced microfluidic di-
agnostics for respiratory pathogen detection. The central goal is to achieve POCT with
high sensitivity, rapid response, and multiplexing capability. Surrounding this core are
three essential microfluidic modules: sample pre-processing, nucleic acid amplification and
biosensing, and high-throughput detection units. Artificial intelligence is embedded in the
outer layer, empowering three key aspects: chip design and performance optimization, tar-
get identification and signal prediction, and the development of IoT-based smart diagnostic
devices, thereby enhancing system intelligence, throughput, and diagnostic accuracy.

2. Microfluidic Technologies in Respiratory Pathogen Detection
Microfluidics, with its unique miniaturization, integration, and precise fluidic manip-

ulation capabilities, is becoming a central platform for the paradigm shift towards fully
integrated, automated sample-in answer-out detection of respiratory pathogens. Accord-
ing to the main workflow stages of nucleic acid testing, this chapter focuses on two key
domains—pre-processing and target enrichment of complex biological samples (Section 2.1)
and microfluidic diagnostic approaches integrating nucleic acid amplification and biosens-
ing (Section 2.2)—while Section 2.3 illustrates how integrated microfluidic platforms build
upon these advances to achieve high-throughput and multiplexed detection. To address the
complexity of respiratory samples such as viscous sputum or low-abundance aerosols, mi-
crofluidic platforms integrate chemical modification, magnetic bead manipulation, droplet
microreactors, and physical separation to enable efficient lysis, purification, and target
enrichment. In the core detection process, nucleic acid extraction is seamlessly combined
with sensitive amplification techniques (e.g., digital PCR, LAMP, RPA, CRISPR-assisted
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assays) within miniaturized reaction units to achieve rapid and specific signal amplifica-
tion, meeting POCT demands. Biosensing modules incorporating antigen–antibody or
nucleic acid probes convert molecular recognition into real-time electrochemical, optical, or
mechanical signals. Furthermore, high-throughput and multiplexed detection is achieved
through parallelized designs such as centrifugal chips, droplet arrays, and spatially en-
coded microbeads, supported by modular architectures and advanced manufacturing.
These integrated strategies collectively underpin the advancement and clinical translation
of microfluidic-based respiratory pathogen detection.

2.1. Microfluidic Pretreatment for Complex Samples

Respiratory pathogen detection begins with processing complex biological samples
(e.g., saliva, aerosols, sputum) that pose unique challenges: saliva contains inhibitors (e.g.,
mucins) that interfere with nucleic acid extraction, aerosols have ultra-low pathogen loads
(<100 copies/mL), and sputum’s high viscosity risks microchannel clogging. Microfluidic
pretreatment addresses these issues by integrating selective target capture, automated pu-
rification, and anti-interference design—with technologies tailored to the physical/chemical
properties of each sample type. The following subsections detail sample-specific solutions,
including magnetic bead-mediated nucleic acid extraction for saliva, inertial/electrostatic
enrichment for aerosols, and inhibitor-removal strategies for sputum—all designed to
ensure high-purity, high-yield target preparation for downstream detection.

2.1.1. Saliva Sample Processing

Microfluidics has formed a multi-dimensional technology system for automated pre-
processing and target enrichment of complex samples (e.g., saliva, aerosols) in respiratory
pathogen detection. In saliva sample processing, integrated microfluidic systems use Virus
Imprinted Polymer (VIP) technology to achieve target-specific enrichment. For example,
Khan et al. [47] developed a six-channel microfluidic sensor using VIP(2-amino-1,3,4-
thiadiazole) for selective H1N1 virus. The system integrates on-chip lysis and mixing for
saliva detection with a low limit of 9 TCID50/mL. Fang et al. [48] designed a microfluidic
cartridge system (Cartridge) to achieve efficient enrichment of salivary nucleic acids by
magnetic nanoparticles (MNPs). After the sample and lysis buffer were injected into
the microfluidic chip, the magnetic rod sleeve was vibrated and mixed at a frequency of
6 times/second to bind the MNPs to nucleic acids. The magnetic bar then transfers the
MNPs to the wash buffer chamber, ultimately releasing the nucleic acids in an elution
buffer at pH 10.4. This system can process 500 µL of saliva and complete nucleic acid
extraction within 10 min with a sensitivity of 50 IU/mL (Figure 2a). It is worth noting
that automated magnetic bead-based processing techniques are undergoing continuous
innovation. The Integrated Microfluidic System with Electromagnetic Actuation (IMS)
developed by Chiu et al. [49] represents a higher level of automation. The system utilizes
aptamer-coated magnetic beads and electromagnetic actuation for virus capture, lysis,
nucleic acid extraction, and RT-PCR. With only 50 µL of sample, SARS-CoV-2 and Influenza
A/B viruses can be detected in 2 h with a detection limit as low as 200 copies/mL.

In addition, in saliva sample processing, the magnetic bead-mediated closed nucleic
acid purification technique achieves fully closed operation through an oil phase environ-
ment to effectively avoid aerosol contamination. Specifically, the magnetic beads are driven
by negative pressure to sequentially traverse the lysate, wash solution and eluent droplets
to complete the capture and purification of nucleic acids [50]. In addition to magnetic
beads, novel nanostructured materials have shown excellent enrichment potential. Jeon
et al. [51] developed a microfluidic system with integrated biporous silica nanofilm that
enhances nucleic acid enrichment via nano-vortices. The dual-pore structure boosts surface
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area and capture efficiency, enabling PCR-free detection with a 100-fold detection limit
than conventional methods. For high viscosity samples such as mucin-containing sputum,
the integrated Chelex-100 microfluidic thermal lysis method offers efficient nucleic acid
extraction by chelating metal ions and inhibitors, followed by 95 ◦C lysis for 8 min. It
significantly improves sample purity (OD260/280 from 1.18 to 1.79; OD260/230 from 0.77
to 2.17) and achieves high yields for both Gram-positive and Gram-negative bacteria (up to
196.96 ng/µL), with 98% concordance with the off-chip method [52].

Collectively, these studies demonstrate the rapid progress of saliva-based microfluidic
pretreatment, spanning virus-imprinted polymers, magnetic bead actuation, nanostruc-
tured membranes, and chemical lysis methods. Their major advantages lie in reduced
sample-to-extraction time, improved nucleic acid yield, and minimized operator inter-
vention. However, the approaches remain challenged by variability in saliva viscosity
and inhibitor content, as well as the difficulty of standardizing magnetic or nanomaterial
performance across different clinical settings. Moreover, most systems have been validated
only on limited sample volumes and selected viral targets, leaving questions about scalabil-
ity and robustness for broader respiratory panels. To overcome these limitations, future
strategies may integrate AI-driven real-time quality assessment to dynamically adjust
microfluidic parameters (e.g., flow rate, channel geometry, mixing intensity) in response
to saliva viscosity and inhibitor content. Hybrid enrichment schemes, such as combining
magnetic nanoparticles with nanostructured membranes, could further enhance nucleic
acid yield and purity. At the same time, machine learning models can be employed to
compensate for batch-to-batch variability of magnetic or nanomaterials, enabling adaptive
calibration across diverse clinical environments. Finally, modular chip designs that accom-
modate larger sample volumes and flexible respiratory pathogen panels will be essential
for ensuring scalability and clinical robustness.

2.1.2. Aerosol Sample Processing

Aerosol samples require a combination of efficient sampling and anti-interference
techniques due to low viral loads and environmental interferences. For low concentration
samples such as aerosols, Koo et al. [53] proposed a helical microfluidic preconcentration
platform for respiratory pathogens (COVID-19, influenza A, RSV) in low-abundance aerosol
samples. The APDMS-silanized channel enables ADH immobilization for efficient pathogen
capture, processing up to 2.5 mL of aerosol samples with multi-step fluidic control to
enhance enrichment. The RIAMs system developed by Liu et al. [54] utilizes a 400 L/min
high-flow cyclone aerosol sampler to capture particles with a size > 0.8 µm by centrifugal
force with a collection efficiency of nearly 100%. The sampler can be directly connected to
the sample tube of the microfluidic chip to achieve “zero-cap” operation, avoiding cross-
contamination, and the addition of filtering cotton significantly reduces the false-negative
rate in response to environmental impurities (e.g., particulate matter in parking lot samples).
Recent studies have further improved the sensitivity and applicability of aerosol sampling
(Figure 2b). In addition, Jeon et al. [55] developed a microfluidic bioaerosol sampler with
integrated inertial impact and electrostatic deposition, which was able to collect influenza
A virus particles with an efficiency of up to 95%. Yang et al. [56] designed a Y-shaped
sheath-flow microfluidic structure leveraging Dean vortex and inertial forces to efficiently
separate 2 µm viral particles (95.99% efficiency) at 115 mL/min, avoiding protein oxidation
inherent in electrostatic methods.

Microfluidic systems offer powerful capabilities for processing complex respiratory
samples by integrating chemical modifications (e.g., VIP, ADH) for selective target capture,
automated control via magnetic actuation and valve-piston mechanisms, and enhanced
fluid handling through helical channels and vibratory mixing. The key innovation lies
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in their closed, contamination-free design with optimized inhibitor removal, enabling
high-throughput, multiplexed analysis. However, variability in sample viscosity, inhibitor
content, and pathogen abundance still pose significant challenges to pretreatment robust-
ness and standardization. The application of AI, particularly in real-time quality assess-
ment, adaptive parameter control, and automated workflow optimization, offers promising
avenues to further improve the reliability and efficiency of this critical diagnostic step.

2.2. Microfluidic Diagnostic Approaches for Respiratory Pathogen Detection

After sample pretreatment, microfluidic diagnostic approaches convert pathogen-
specific biomolecular interactions (nucleic acid, antigen–antibody) into measurable signals—
with core goals of sensitivity, speed, and multiplexing. These approaches are catego-
rized by recognition mechanism: nucleic acid amplification (the most sensitive, e.g., dig-
ital PCR, LAMP, CRISPR), molecular hybridization (enzyme-free, rapid), and antigen–
antibody immunoassays (no amplification, POCT-friendly). Subsections below detail
how each approach is optimized via microfluidic miniaturization, parallelization, and
signal transduction—with emphasis on clinical applicability for respiratory pathogens (e.g.,
SARS-CoV-2, influenza A/B, Mycoplasma pneumoniae).

2.2.1. Nucleic Acid Amplification-Based Detection

Microfluidic systems integrate biochemical reactions and signal detection into minia-
turized, closed-form platforms, enabling rapid, sensitive, and multiplexed diagnostics for
respiratory pathogens. According to their distinct biomolecular recognition mechanisms,
these microfluidic diagnostic approaches can be classified into nucleic-acid amplification
(e.g., digital PCR, loop-mediated isothermal amplification), molecular hybridization, and
antigen–antibody immunoassay techniques.

Microfluidics provides an ideal platform for nucleic acid amplification by leveraging
miniaturized reaction chambers, precise fluidic control, and efficient thermal management,
enabling rapid, sensitive, and multiplexed detection of respiratory pathogens. Huang
et al. [57] presents an integrated microfluidic PCR-array platform, which automates nucleic
acid extraction and real-time PCR for multiplex detection of 21 respiratory pathogens.
The system achieves high-throughput, contamination-free diagnostics with a detection
limit of 103 copies/mL, marking a key innovation in microfluidic–PCR integration for
syndromic respiratory testing. Additionally, digital PCR combined with microfluidics
further enhances detection sensitivity. Malic et al. [58] presents an innovative centrifugal
microfluidic RT-ddPCR platform that enables fully automated, sample-to-answer detection
of SARS-CoV-2 RNA. It achieves a detection limit of 0.1 copies/µL and 100% accuracy
in clinical samples. Isothermal amplification technology (e.g., LAMP) shows significant
advantages in paper-based microfluidic systems, which is especially suitable for multiple
pathogen detection scenarios. The porous fiber structure of the paper-based material
provides a specific surface area of up to 1.59 m2/g, which significantly enhances the nucleic
acid adsorption efficiency [59]. Yin et al. [60] further utilized a 3D-printed microfluidic chip
to integrate Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) to
detect SARS-CoV-2 in wastewater as low as 100 GE/mL within 60 min.

High-throughput nucleic-acid amplification combined with CRISPR technologies has
been demonstrated by the mCARMEN platform, integrating Cas13 (RNA targets) and Cas12
(DNA targets) in spatially separated 192 × 24 reaction units, achieving 99.5% accuracy
for SARS-CoV-2 variants in 2088 clinical samples, with a detection limit of 500 copies/µL
(Figure 2c) [61]. In parallel, the MiND-DMF platform combined digital microfluidics and
RPA-CRISPR-Cas12a to achieve automated, multiplexed detection of bacterial pathogens
with a sensitivity of 100 CFU/mL within 60 min (Figure 2d) [62].
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Centrifugal microfluidics provides a powerful platform for efficiently integrating
and optimizing isothermal amplification of nucleic acids through its unique rotational
dynamics and precise fluidic manipulation, significantly enhancing multiplexed detection
capabilities. Suarez et al. [63] developed an injection-molded centrifugal chip integrating
optical pH sensing for simultaneous RT-LAMP detection of SARS-CoV-2 and influenza
A/B viruses, achieving detection limits down to 38 copies/reaction in under 48 min.
The air-insulated microfluidic chip further takes the advantage of centrifugal control by
accurately driving the sample distribution into 24 independent reaction chambers (volume
of only 1.45 µL) by centrifugal force. It achieves rapid and sensitive detection (limit
of 10 copies/reaction) for low-abundance pathogens, including Staphylococcus aureus,
methicillin-resistant Staphylococcus aureus, and Mycoplasma pneumoniae, demonstrating
99.56% concordance with clinical qPCR results [64].

Nucleic acid amplification remains the backbone of microfluidic diagnostics, with
PCR, digital PCR, isothermal methods, and CRISPR-based assays each contributing unique
strengths. Integration with microfluidics has markedly improved throughput, automation,
and sensitivity, with some platforms achieving near-single-copy detection and robust
multiplexing. Nevertheless, these systems often face trade-offs between sensitivity and
assay complexity, and are susceptible to inhibition from unprocessed clinical matrices.
Additionally, the reliance on predefined primer sets or CRISPR guides raises concerns about
adaptability to rapidly evolving viral genomes. While centrifugal and paper-based devices
highlight the feasibility of low-cost and portable formats, their quantitative precision
and robustness under real-world conditions require further validation. Incorporating AI-
enabled primer/probe optimization and signal interpretation could help address these
limitations, paving the way toward more resilient and adaptive amplification workflows.

2.2.2. Biosensor-Based Microfluidic Diagnostics

Molecular hybridization diagnostics leverage sequence-specific recognition between
nucleic acid probes and target genetic sequences, converting hybridization events into
measurable electrochemical or optical signals, providing enzyme-free, rapid, and specific
pathogen detection. Linear probes (LP), stem-loop probes (SLP), and stabilized analogs
(locked nucleic acids, peptide nucleic acids) enhance specificity and stability. Hybridization
signals are detected by electrochemical impedance spectroscopy (EIS), Förster resonance
energy transfer (FRET), or voltammetry. Graphene oxide (GO)-mediated FRET sensing
utilizes fluorescence quenching and recovery upon aptamer-target binding [65]. Integrated
microfluidic systems achieve multi-channel and multiplexed detection through spatially
separated hybridization sites, sample transport, temperature control, and on-chip detection
electrodes. Liu et al. [66] demonstrated real-time fluorescent LAMP hybridization on a
10-channel microfluidic chip, detecting influenza A (H1N1), Mycoplasma pneumoniae,
respiratory syncytial virus, and SARS-CoV-2 with sensitivity down to 103–104 copies/mL
within 40 min.

Microfluidic antigen–antibody immunodiagnostics convert high-affinity immune bind-
ing events into measurable electrical, fluorescent, or colorimetric signals, providing rapid
pathogen detection without nucleic acid amplification. Microfluidic nano-immunoassay
(NIA) systems immobilize viral antigens (e.g., SARS-CoV-2 spike proteins) on electrodes,
capturing specific antibodies in patient serum. Fluorescence amplification using secondary
antibody conjugates (anti-human IgG-PE) achieves high sensitivity (98%) and specificity
(100%) (Figure 2e) [67]. Molecularly imprinted polymer (MIP) sensors, exemplified by
the H1N1 virus-imprinted polymer (VIP) sensor, generate shape-complementary binding
cavities that alter electron-transfer resistance, detectable by electrochemical impedance
spectroscopy [47]. Platinum nanoparticles (PtNP)-labeled immunocomplexes catalyze the



Sensors 2025, 25, 5791 8 of 36

generation of gas bubbles that form a visible light signal. Colorimetric assays achieve
semi-quantitative detection by enzyme-catalyzed substrate chromatography (e.g., alka-
line phosphatase-catalyzed BCIP/NBT) in combination with smartphone RGB analy-
sis [65,67,68]. Emerging fabrication strategies also broaden the scope of microfluidic
biosensors. Rolling microneedle templating [69] and photonic crystal–based flexible mem-
branes [70] enable pump-free fluid transport, optical enhancement, and wearable integra-
tion. While originally applied in wound care or biochemical monitoring, these approaches
highlight the potential of low-cost, customizable platforms for future POCT for respiratory
pathogen detection.

In summary, microfluidic platforms have significantly advanced nucleic acid ampli-
fication and biosensing technologies through engineering innovations such as droplet
encapsulation, spatial compartmentalization, and centrifugal fluid control. These strategies
enable rapid, sensitive, and multiplexed detection of respiratory pathogens within fully
integrated “sample-in–result-out” diagnostic systems. Nonetheless, several challenges re-
main, including primer interference in multiplex isothermal amplification (e.g., LAMP) and
reaction inhibition caused by complex biological matrices such as saliva and sputum, which
may compromise assay sensitivity and increase the risk of false-negative results [63]. More-
over, variability in pathogen characteristics necessitates precise adjustment of amplification
parameters and biosensing thresholds. To address these limitations, algorithm-driven
optimization—such as reaction curve prediction and kinetic modeling—holds promise
for customizing amplification workflows to accommodate target-specific dynamics. Addi-
tionally, integrating multimodal signal outputs from electrochemical and optical sensors
through computational analysis may improve result interpretation and enhance diagnostic
accuracy, particularly in heterogeneous clinical samples.

2.3. Integrated Microfluidic Platforms for High-Throughput Pathogen Detection

To address the diagnostic challenges posed by pathogen diversity and mixed infections
in respiratory diseases, integrated microfluidic systems have been developed to enable
high-throughput, multiplexed detection. These platforms combine automated sample
processing with parallel nucleic acid amplification and signal readout, offering rapid, sensi-
tive, and contamination-free analysis. 96-channel microfluidic chip described by Zhang
et al. [71] was fabricated through a molding process to achieve batch detection of pathogens
using the magnetic bead method. The chip enables nucleic acid extraction within 10 min
with tube-level efficiency, while its preloaded oil phase prevents aerosol contamination,
supporting downstream high-throughput detection of 21 respiratory pathogens. A Cen-
trifugal Microfluidic Disk (CMFD) is a typical example of a high-throughput assay that
distributes samples to multiple independent reaction pools by centrifugal force-driven fluid
flow in preset channels. Nguyen et al. [46] reported an advanced centrifugal microfluidic
platform designed for high-throughput diagnosis of pandemic respiratory viruses, includ-
ing influenza A H1N1, H3N2 subtypes, influenza B and SARS-CoV-2. Its core innovation is
the zigzag aliquot structure on the chip, which realizes ultra-fast and equal distribution of
reagents to 30 chambers in a single addition, accelerating high-throughput RNA extraction
(Figure 2f). The system performs up to 150 RT-LAMP reactions in parallel using lyophilized
reagents and primers, enabling multiplexed detection of 30 clinical samples within 1.5 h.

Microfluidic systems enable simultaneous typing detection of multiple respiratory
pathogens by integrating the differences in physical properties of magnetic/non-magnetic
microbeads. For example, Microbead-encoded chips introduced by Hong et al. [72]
achieved multiplexed influenza subtype detection (H1N1, H3N2, H7N3) by encoding beads
with magnetic and size differences and reading results via quantum dot fluorescence, with
limits of detection as low as 2.2–3.4 ng/mL. This technique avoids the dependence of tradi-
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tional multiplex PCR on expensive equipment and professional personnel, and increases
the degree of automation by means of a miniaturized detection device with integrated
computer control interface and bidirectional syringe pump [73]. The MONITOR system and
the Onestart system [74] further demonstrate seamless integration of real-time PCR arrays
within microfluidic chips, offering “sample-in–result-out” detection for 8–21 respiratory
pathogens within 85–90 min, with high accuracy, sensitivity, and full process automation.
Digital microfluidic (DMF) platforms have also emerged as powerful tools for multiplex
testing. One system [75] enabled simultaneous detection of 11 respiratory pathogens (My-
coplasma pneumoniae, Chlamydia pneumoniae, respiratory syncytial virus A, adenovirus,
coronavirus HKU1, coronavirus 229E, human metapneumovirus, SARS-CoV-2, influenza
virus A/B, and others) with a detection limit of 12–150 copies/test and achieved 99.85%
accuracy, 93.33% sensitivity, and 100% specificity in clinical validation. In addition, Bai
et al. [76] developed a DMF-based POCT platform for 15-pathogen syndromic testing from
untreated respiratory samples, achieving 200–628 copies/mL sensitivity across 32 replicates
within 80 min.

Modular and interchangeable microfluidic architectures improve flexibility and scal-
ability. The modular “Sticker Toolbox” microfluidics supports mass production while
reducing costs through standardized template patch combinations and user-defined flow
channel structures [77]. The NanoPEIA (Nano Plasma Enhanced Isothermal Amplification)
technology combines a nano plasma sensor with isothermal amplification to complete the
SARS-CoV-2 detection within 6 min, with sensitivity up to a Ct value of <25 for clinical
samples [78]. In addition, Mesa Biotech’s Accula platform [79] utilizes an “instrument +
disposable kit” model, which is pre-packed with lyophilized reagents and multiplexed
primers, allowing users to automate nucleic acid extraction, amplification, and detection
by simply adding samples. The platform can detect influenza virus, respiratory syncytial
virus and SARS-CoV-2 by replacing different kits.

However, current chip-based high-throughput multiplexed detection systems still
face several key challenges that constrain their clinical translation and performance limits.
The first is the contradiction between detection throughput and flexibility. The physical
isolation of reaction chambers (e.g., centrifugal disks) and fixed coding strategies reduce
cross-talk but also limit the upper limit of the number of targets that can be detected at
the same time, making it difficult to flexibly respond to the need for rapid adjustments
of emerging/variant pathogens or personalized test combinations. Models relying on
pre-positioned lyophilized kits also sacrifice some of this flexibility. The second challenge
is the complexity of clinical samples. The non-homogeneity and matrix effect of real-world
respiratory samples (e.g., high-viscosity sputum, inhibitor-containing aerosol-enriched
fluids) can easily lead to reduced efficiency of the reaction within the microfluidic chip
(e.g., enzyme inhibition, primer interference), which significantly increases the risk of
false-negativity, especially for low-abundance targets. Existing systems lack the ability
to sense and adapt to abnormalities in sample quality and reaction process in real time.
The third is the bottleneck of multiple signal resolution. With the increase in the number
of targets in the co-test, the kinetic differences between multiple amplification reactions,
non-specific signal crossover, and complex background noise (e.g., bubble interference,
autofluorescence) make the accuracy and specificity of the result interpretation face a severe
test. Traditional thresholding methods or simple image processing are difficult to efficiently
mine the effective information in high-dimensional data, which can easily lead to misjudg-
ment or loss of sensitivity. These challenges essentially stem from the lack of intelligence
in the “design-sample adaptation-signal analysis” process, which makes it difficult to
realize dynamic optimization and closed-loop control. Artificial intelligence technologies,
especially machine learning (ML) and deep learning (DL), provide revolutionary tools to
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overcome these bottlenecks through a data-driven approach, empowering microfluidic
systems to realize intelligent reconfigurable design, real-time sensing and feedback control
of sample processing, and high-precision parsing and early prediction of complex multi-
modal signals, thus breaking through the existing performance ceiling. This breakthrough
will promote the existing performance ceiling and promote the establishment of a truly
intelligent, robust and clinically practical high-throughput multiplexed assay platform.

 

Figure 2. Microfluidic contributions at every stage of the respiratory-pathogen diagnostic. (a,b) Intel-
ligent sample pre-processing cartridges integrate collection, lysis, purification, and metered transfer
within a sealed chip, minimizing contamination and hands-on time. (a) shows the integrated cartridge
structure with (I) magnetic-controlled nucleic acid extraction, (II) valve–piston fluidic control, and
(III) a PCR chip; steps I–IV illustrate the valve–piston actuation enabling sealed and metered transfer.
(b) shows three airborne-virus monitoring systems. Copyright 2023, Elsevier [48]. Copyright 2024,
Nat. Commun. [54]. (c,d) On-chip nucleic-acid amplification and real-time detection architectures
confine reactions to nanoliter volumes, accelerating kinetics and reducing reagent use. Copyright
2022, Nat. Med. [61]. Copyright 2025, American Chemical Society [62]. (e) Multiplexed biosensing
and signal-transduction arrays route fluids through thousands of addressable microchambers,
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enabling parallel antigen/antibody or nucleic-acid assays with high analytical sensitivity. The two-
layer chip contains 1024 unit cells, each with an immunoassay chamber (top) and a spotting chamber
(bottom). Fluid control is achieved by button (1), sandwich (2), and neck (3) valves. Copyright 2021,
PNAS [67]. (f) High-throughput read-out modules merge microfluidic partitioning with automated
fluorescence acquisition, providing quantitative, multi-target results suitable for clinical decision-
making. Copyright 2024, Elsevier [46].

The diverse microfluidic strategies presented in this chapter, ranging from automated
sample pretreatment to nucleic acid amplification, biosensing, and high-throughput multi-
plexed detection, are systematically summarized in Table 1. This comparative overview
highlights representative technologies and their performance indicators, providing a clear
perspective on the current state of microfluidic approaches for respiratory pathogen detection.

Table 1. Performance indicators of representative microfluidic technologies for respiratory pathogen detection.

Technical Domain Main Technology/System Performance Indicators Reference

Pretreatment—
Saliva Magnetic nanoparticle cartridge 500 µL sample; nucleic-acid extraction in 10 min;

LOD 50 IU/mL [48]

Electromagnetically actuated IMS 50 µL sample; detection in 2 h; LOD 200 copies/mL [49]

Biporous silica nanofilm enrichment 100× enrichment over conventional methods;
PCR-free detection enabled [51]

Chelex-100 thermal lysis for viscous
sputum

Improved nucleic-acid purity (OD260/OD280:
1.18→1.79; OD260/OD230: 0.77→2.17); 98%
concordance with off-chip

[52]

Pretreatment—
Aerosols Helical pre-concentration microfluidics LOD 10× lower than conventional methods; 1–1.5 mL

samples robustly processed; [53]

RIAMs high-flow cyclone sampler
LOD 10 copies/mL; integrated with 400 L/min
aerosol sampler achieving 0.83 copies/m3 resolution

[54]

Inertial–electrostatic bioaerosol sampler Influenza A collection efficiency up to 95% [55]

Y-shaped sheath-flow inertial separator 95.99% separation for 2 µm particles at 115 mL/min [56]

Nucleic Acid
Amplification Microfluidic PCR-array platform LOD 1000 copies/mL; fully automated,

contamination-free [57]

Centrifugal RT-ddPCR LOD 0.1 copies/µL; 100% clinical accuracy [58]

3D-printed RT-LAMP LOD 100 GE/mL; detection in 60 min [60]

mCARMEN (CRISPR-Cas12/13) 192 × 24 reactions; LOD 500 copies/µL; 99.5%
accuracy [61]

MiND-DMF with RPA-CRISPR Sensitivity 100 CFU/mL; 98–100% specificity [62]

Centrifugal RT-LAMP disk LOD 38 copies/reaction; detection in 48 min [63]

Air-insulated centrifugal chip LOD 10 copies/reaction; 99.56% concordance with
clinical qPCR [64]

Biosensing 10-channel LAMP-hybridization chip LOD 103–104 copies/mL; detection in 40 min [66]

Nano-immunoassay (serology) Sensitivity 98%; specificity 100% [67]

VIP-based six-channel sensor LOD 9 TCID50/mL for H1N1; detection in 2 min [47]

High-throughput
Detection 96-channel magnetic-bead chip Nucleic-acid extraction in 10 min; downstream

21-pathogen panel [71]

High-throughput centrifugal RT-LAMP 30 chambers; 150 parallel RT-LAMP; detection in
1.5 h; [46]

Microbead-encoded multiplexing Influenza subtypes (H1N1/H3N2/H7N3); LOD
2.2–3.4 ng/mL [72]

MONITOR real-time PCR array LOD 0.78–6.25 copies/µL for eight pathogens [74]

DMF multiplexed PCR 11-pathogen panel; LOD 200–628 copies/mL;
accuracy 99.85%; specificity 100% [76]

Nanoplasmonic enhanced isothermal
amplification (NanoPEIA)

96-sample throughput; LOD 23.3–28.3 copies/mL;
sensitivity 100%; specificity 92% [78]
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3. AI-Enhanced Microfluidic Detection Workflow
AI emerged as a formal research field in the 1950s, with the term coined at the 1956

Dartmouth Workshop, where John McCarthy defined it as “the science and engineering
of creating intelligent machines” [80,81]. Early research focused on rule-based systems
and symbolic reasoning, yielding seminal works like the Logic Theorist and Samuel’s
checkers-playing program—the first publicly recognized machine learning system [82].
Over subsequent decades, AI experienced cyclical phases of optimism and stagnation,
marked by breakthroughs in expert systems and machine learning interspersed with two
“winters” [83]. The past decade has witnessed exponential growth in deep learning, particu-
larly in self-supervised algorithms, recurrent neural networks, reinforcement learning, and
pre-trained models [84]. While recent advancements in natural language processing (e.g.,
GPT models) have demonstrated unprecedented capabilities, achieving strong AI remains
elusive due to fundamental limitations [85]. Current research now focuses on developing
advanced systems, including artificial consciousness and general intelligence.

Machine learning (ML) encompasses techniques that autonomously identify patterns
in data to predict outcomes or inform decisions under uncertainty [86]. Its three primary
paradigms are supervised learning, unsupervised learning, and reinforcement learning.
Supervised learning algorithms train on labeled datasets to map inputs to outputs, with
well-known examples including decision trees, random forests, and support vector ma-
chines [87]. Unsupervised learning, conversely, discovers hidden structures in unlabeled
data through clustering, topic modeling, and anomaly detection, offering advantages in re-
duced reliance on labeled data and automated feature engineering [88–90]. Reinforcement
learning (RL) distinguishes itself through an agent’s trial-and-error interaction with an en-
vironment to maximize cumulative rewards, making it ideal for developing self-improving
intelligent systems with minimal human intervention.

Deep learning (DL), a subset of ML, employs artificial neural networks to model
complex patterns. Architectures such as convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and generative adversarial networks (GANs) have been widely
applied in bioinformatics, intelligent control systems, and other domains [91,92].

In healthcare, AI has revolutionized diagnostics, drug discovery, patient monitor-
ing, and clinical decision-making [93,94]. Notably, in respiratory medicine, AI addresses
the global burden of diseases like COPD and tuberculosis (TB) by enhancing early detec-
tion and management [95–97]. AI algorithms now analyze chest radiographs, CT scans,
pulmonary function test data, and even respiratory audio signals to improve diagnostic
accuracy [98–100]. Large language models (LLMs) have shown promise in medical docu-
mentation, record summarization, and educational tools, though concerns persist regarding
accuracy, interpretability, and ethical implications [37].

The integration of AI with microfluidic technologies has revolutionized respiratory
pathogen detection, enabling rapid, accurate, and automated workflows. This section
categorizes advancements in AI-enhanced microfluidic systems into three critical domains.

3.1. AI-Driven Chip Design and Performance Optimization

As a miniaturized platform for manipulating fluids at microliter to milliliter scales,
microfluidic chips, whose channel design directly affects the fluid flow pattern, mixing
efficiency, and reaction kinetics, are the core foundation for determining the performance
(e.g., sensitivity, throughput, and stability) of the detection system [101]. Traditional chip
design is highly dependent on empirical knowledge and iterative prototyping, which is a
time-consuming and labor-intensive process and difficult to globally optimize [35,102]. The
introduction of AI, especially machine learning and deep learning, provides a powerful
data-driven approach to chip design and realizes the paradigm shift from empirical to
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intelligence-driven. In terms of performance prediction and optimization, machine learning
significantly improves design efficiency and accuracy.

3.1.1. AI-Driven Sample Pretreatment Structure

Microfluidic chip technology has demonstrated significant advantages in miniatur-
ization and integration in sample pretreatment, providing a new paradigm for rapid and
accurate detection. The design of microfluidic chips aims to precisely control fluids at the
microliter or even nanoliter level, such as controlling the flow rate, direction and volume
of the fluid, while integrating multiple functions such as mixing, separation and reaction.
A reasonable design of the channel can help shorten the sample processing time, reduce
the sample usage, and enhance the detection signal, etc., thereby improving the overall
efficiency and sensitivity of the analysis. However, the optimization of channel structure
relies on trial-and-error experiments, which leads to the problem of low efficiency.

Zhang et al. [103] employed machine learning techniques and interpolation algorithms
to design inlet structures capable of generating custom concentration gradients with ar-
bitrary properties. These methods help achieve more precise control over concentration
distribution and hold significant potential for reducing labor and experimental costs. Hong
et al. [104] introduced an inverse design method based on deep neural networks (DNN).
This method aims to establish a mapping relationship between channel geometries and
concentration gradients, where simulated concentration gradient values are input, and inlet
pressure and sample concentration serve as output variables. These works demonstrate the
potential of intelligent data sampling to improve deep learning model performance and
suggest that similar approaches could be valuable for addressing inverse problems in mi-
crofluidics. These works demonstrate the potential of intelligent data sampling to improve
deep learning model performance and suggest that similar approaches could be valuable
for addressing inverse problems in microfluidics. However, Zhang et al.’s approach [103]
requires retraining when the geometry is modified and becomes unreliable under high
Reynolds number conditions, while Hong et al.’s method [104] is highly data-intensive
and entails elevated experimental and computational costs. These limitations also reflect
common challenges currently faced in applying AI-based inverse design to microfluidics.

3.1.2. AI-Driven Micro-Droplet Generation

Microdroplet generation, as the core technology of microfluidic chips, provides an
ideal platform for achieving ultra-high-throughput analysis (such as single-cell sequencing
and drug screening), high-sensitivity detection with extremely low reagent consumption
(such as digital PCR), and integrated control of multi-step complex reactions by dividing
continuous liquid phases into discrete, picolitre-nanoscale microdroplet units. Garstecki
et al. [105] conducted an in-depth discussion on the formation process of droplets and bub-
bles in microfluidic T-junctions, such as the rupture mechanisms of droplets and bubbles,
the causes of pressure drop, and the prediction of the proportional relationship between
droplet and bubble sizes. Menech et al. [106] describes the results of a numerical investi-
gation on the dynamics of immiscible fluid stream breakup in a microfluidic T-junction’s
confined geometry. It identifies three droplet formation regimes (squeezing, dripping, and
jetting) for microfluidic emulsification processes. The squeezing mechanism is unique
to microfluidic systems due to fluid confinement affecting interfacial dynamics, with the
breakup process mainly driven by pressure build-up and weakly influenced by the capillary
number. The dripping regime, though seemingly similar to the unbounded situation, is
affected by the constrained geometry which modifies the droplet size scaling law. The
jetting regime occurs at high flow rates or with low interfacial tension (high capillary num-
ber), similar to the unbounded case. However, the on-demand generation of high-quality
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(monodisperse, highly stable, and specific-sized) droplets highly relies on precise fluid
control and an in-depth understanding of complex multiphase fluid dynamics. The main
challenges currently faced include: the difficulty in real-time and precise control of droplet
generation (extremely sensitive to changes in flow rate, viscosity, and interfacial tension);
During the generation process, heterogeneous droplets or agglomeration phenomena are
prone to occur. Customized droplet parameter design for specific applications (such as
encapsulating single cells or specific biochemical reactions) is inefficient and costly to trial
and error. In the process of cell encapsulation, the initial cell concentration plays a crucial
role. Since cells are randomly distributed within the encapsulation system to a certain
extent, Poisson distribution can well describe such a random distribution pattern. For
example, when we are encapsulating cells in microgels or other carriers, knowing the
initial cell concentration allows us to apply the Poisson distribution model to predict the
probability of finding a specific number of cells in a given volume or area of the encapsula-
tion matrix. This, in turn, helps us to optimize the encapsulation conditions to achieve a
more uniform and desirable cell distribution, which is essential for subsequent applications
such as cell-based therapies or tissue engineering studies. These challenges stem from
the nonlinear and multi-parameter strong coupling characteristics of physical processes,
which make traditional modeling and control methods inadequate and urgently require the
introduction of AI technology. AI can predict and dynamically optimize control parameters
in real time by learning from massive experimental or simulation data to stably generate
target droplets. Intelligently identify and generate defects and automatically adjust them;
Efficiently assist in exploring the optimal design solution, thereby pushing micro-droplet
technology towards higher precision, greater intelligence and broader application space.

Agnihotri et al. [107] observed the droplet formation kinetics of T-junctions under
different flow conditions under the extrusion mechanism (capillary number Cac < 0.015)
by changing the agarose gel concentration, temperature (40, 50, 60 ◦C), and the flow rate
ratio of the continuous phase to the dispersed phase (ϕ). Numerical simulation shows that
the formation process of agarose droplets includes five stages: filling, necking, breaking,
threading, and rupturing. Among them, the threading stage is an additional stage that
occurs when there is a non-Newtonian dispersed phase. Furthermore, numerical simulation
shows that the threading length is proportional to the flow velocity ratio ϕ, and has a
complex relationship with agarose concentration and temperature [108].

To achieve optimal droplet generation rates and sizes, Siemenn et al. [109] com-
bined Bayesian optimization with computer vision to automatically identify stable droplet
formation regions (Figure 3a). Deep learning iterated over 60 samples, converging on
user-defined performance criteria, with the optimization process completed in just 2.3 h.
This streamlined approach greatly enhanced the efficiency and accuracy of droplet behav-
ior optimization. Raymond et al. [110] utilized deep neural networks (DNN) to design
channel geometries capable of generating specific acoustic fields, enabling precise manipu-
lation and arrangement of microparticles and cells, thus advancing research in the field
(Figure 3b). Mahdi et al. [111] performed experimental studies and modeling on micro-
droplets generated in microfluidic systems using artificial neural networks to predict the
dimensionless size of oil-in-water emulsion microdroplets. The “flow sculpting” technique
involves shaping fluids into various geometries using columnar structures [112]. Different
column arrangements alter fluid flow, creating a complex mapping relationship between
fluid behavior and microfluidic design [113]. Yang et al. [114] developed an AI-enabled
framework that integrates hierarchically assembled obstacles with the CEyeNet model
to achieve programmable microchannel design. This approach broadened the range of
attainable flow patterns, improved predictive accuracy, and significantly reduced compu-
tational cost, highlighting the role of AI in optimizing microfluidic chip architecture and
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performance. However, the method still relies on large-scale simulated training datasets,
and its generalizability to more complex geometries and biological conditions requires
further validation (Figure 3c). In other applications, Mekki-Berrada et al. [115] proposed a
two-step framework for a machine learning-driven high-throughput microfluidic platform.
This framework combines Gaussian process-based Bayesian optimization (BO) and deep
neural networks (DNN), trained on 120 conditions of silver nanoparticle synthesis, to
optimize synthesis performance. The approach remains constrained by the limited size
and representativeness of the initial dataset, and its generalizability to other nanomaterial
systems or more complex chemistries requires further validation.

Lashkaripour et al. [38] developed a tool named DAFD (Dynamic Design Automation
of Fluids) to automate the design of flow-focusing droplet generators using machine
learning. By analyzing 43 droplet generators, they studied the effects of different orthogonal
dimensions and flow rates on droplet size and generation frequency. A neural network
model, trained on a dataset of 998 data points, accurately predicted channel designs based
on user-defined performance criteria. This method allowed for the estimation of droplet
diameter and production rate errors to be within 10 µm and 20 Hz, respectively.

3.1.3. AI-Driven Bubble Elimination

The ultimate goal of chip design is to realize high-performance and stable detection
functions, and the stability of fluidic control (especially the bubble problem) is a key bot-
tleneck to ensure that the design performance can be realized in actual operation. In such
systems, fluid stability (absence of bubble interference) directly determines the accuracy,
reproducibility and reliability of the assay. Bubbles are almost inevitable during sample
loading, line connection or continuous operation, and their formation stems from hydro-
dynamic effects (e.g., negative pressure from rapid sample injection, high shear stress in
narrow/curved flow channels to reduce gas solubility), precipitation of dissolved gases
due to temperature variations, and the gas permeability of commonly used materials (e.g.,
PDMS) [116–118]. Gas bubbles can trigger localized pressure fluctuations, incomplete re-
sponse, signal drift, false negative/positive results, and even blockage of the flow channel
leading to equipment failure [43,116]. Traditional passive strategies mitigate the bubble
problem by optimizing the flow channel structure and material properties, such as: increas-
ing the inlet pressure [119], adding bubble capture traps [120], and modulating the surface
wettability [121].

Artificial intelligence methods—including computer vision, machine learning, and
deep learning—have begun to fill this gap [122]. Doganay MT et al. built a single-channel
microfluidic model using transparent 3D microspheres to simulate bubbles, then bench-
marked six ML and nine DL algorithms under varied imaging conditions [43]. Among ML
models, random forest achieved 95.52% sensitivity, 82.57% specificity, and 97% AUC, while
among mobile-compatible DL models, DenseNet169 reached 92.63% sensitivity, 92.22%
specificity, and 92% AUC—maintaining accuracy above 0.84 on a smartphone-based POCT
system—demonstrating AI’s potential for highly accurate bubble detection. Nizovtseva I
et al. implemented a YOLOv9-based deep learning pipeline with high-speed video capture
for real-time bubble segmentation and trajectory tracking in multiphase flows [123], and
constructed a non-invasive platform to characterize gas–liquid mass transfer coefficients
(Figure 3d). Beyond bubble detection, Xiao et al. [124] combined fuzzy logic, support
vector machines, and principal component analysis to classify four canonical two-phase
flow regimes (bubbly, slug, churn, and annular) in vertical microchannels by extracting
texture features from dynamic images, enabling rapid and stable flow-pattern recognition
for microscale fluid monitoring and control. AI has also been applied to fully automate
fluid handling and bubble removal in immunoassays. Bhuiyan NH et al. developed
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a smartphone-operated, AI-controlled microfluidic immunosensing platform that uses
lightweight ROI-cascading and conditional-activation algorithms to classify fluid states (in-
cluding bubble presence and filling defects) in real time, then actuates on-chip micropumps
and valves for precise liquid management [125]. An embedded bubble trap, triggered by
AI-detected bubble locations, increases antigen–antibody contact area by 30–40%, greatly
reducing false signals.

In summary, AI is deeply reshaping the core aspects of microfluidic chips from design
to operation. On the design side, AI significantly improves design efficiency, accuracy
and reduces the professional threshold through data modeling, performance prediction
and reverse automation, promoting chip design from experience to intelligence. On the
operation side, AI-driven bubble detection and intelligent fluid control solve the key
stability problems in practical applications, forming a closed loop through real-time sensing,
decision-making and execution, ensuring that the chip design performance can be stably
realized under complex operating conditions, and improving the automation level and
reliability of the system. The close integration of the two—i.e., using AI to optimize
the design to improve the basic performance, and using AI to ensure the stability of the
operation to realize the potential of the design—forms a complete closed loop of “AI-
enabled chip performance optimization”. Together, they form a complete closed loop of
“AI-enabled chip performance optimization”, which lays a solid foundation for building a
high-performance and highly robust microfluidic system for respiratory pathogen detection.
However, AI-driven design approaches still face challenges, with their model generalization
capabilities limited by significant component differences and manufacturing lot fluctuations
between laboratories [126]. Both Dressler et al. [127] and Hadikhani et al. [128] reported
degradation in the accuracy of their predictive models across devices, which stemmed from
manufacturing tolerances, PDMS aging, surface finish variations, connectivity methods,
and even environmental factors (e.g., changes in fluid properties) have a significant effect
on complex hydrodynamic behavior [35]. Models trained using a single laboratory data are
prone to overfitting and it is difficult to build high-quality cross-organizational datasets,
which constrains the generalizability of the models for application.

3.2. AI-Enabled Microfluidic Detection Methods

The on-chip respiratory tract pathogen detection technology based on microfluidic
chips mainly includes signal generation and signal recognition. Among them, the gen-
eration of signals mainly relies on colorimetric, fluorescence or electrochemical methods.
For instance, when metal ions produced in a reaction react with reagents to form colored
compounds, a visible color change will occur. The target object is labeled with markers
(such as fluorescent dyes, fluorescent proteins, quantum dots, etc.). When the target object
exists and is subjected to specific excitation conditions (such as laser irradiation of a specific
wavelength), it will emit a fluorescence signal of a specific wavelength. Or based on electro-
chemical processes, the target substance participates in REDOX reactions on the electrode
surface, causing changes in electrical parameters such as current and potential, thereby
generating detectable electrical signals, etc. For the different types of signals generated,
corresponding detection equipment and technologies are adopted for detection. For optical
signals, commonly used devices include fluorescence microscopes, photomultiplier tubes,
charge-coupled device (CCD) cameras, etc. These devices analyze the condition of the
target object by detecting parameters such as fluorescence intensity, color depth, and the
wavelength of light absorption or emission. When detecting electrical signals, instruments
such as electrochemical workstations are used to precisely measure the changes in electri-
cal indicators like current, potential, and conductance, thereby determining the content,
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properties, and other information of the target substance. As an efficient tool, AI can play a
significant role in the generation and detection of signals.

 

Figure 3. AI-Enabled Chip Design and Performance Optimization. (a) Fluid flow before and after
control parameter optimization to form droplets. Copyright 2022, American Chemical Society [109].
(b) Deep learning-enabled acoustic field customization in microfluidic channels. (1) A shape library
of thousands of acoustic field geometries is used to train a deep neural network, and (2) a target
acoustic field is then defined as the input for design. Based on this, (3) the trained DNN outputs
Fourier coefficients that determine the corresponding channel geometry, and (4) the modeled acoustic
field in this geometry reproduces the desired focusing region and particle pattern. Copyright 2020,
Sci. Rep. [110]. (c) AI-driven flow programming methodology developed to facilitate the design of
microchannels that shape fluid materials into specific morphologies and combinations. (A) shows the
microfluidic system, where core and sheath flows pass through sequential hierarchically assembled
obstacles (HAOs) to achieve flow transformation. (B) shows the CEyeNet neural network with
compound-eye modules for predicting outlet flow profiles in HAO-embedded channels. (C) shows
human-guided iterative design, and (D) shows automated inverse design, together demonstrating the
versatile flow programming capability of CeyeHao. Copyright 2025, the authors [114]. (d) Real-time
computer vision feedback controls droplet/bubble dynamics and valve actuation, safeguarding
fluidic reliability. The two images on the right illustrate the raw input (before processing) and the
algorithm-processed output (after processing). Copyright 2024, Mathematics [123].

3.2.1. AI-Enabled Bioinformatics Database

In actual testing samples, such as respiratory samples collected through throat swabs,
nasal swabs, or other samples like blood and feces, the nucleic acids of pathogens (such as
viruses and bacteria) often exist in extremely low copy numbers. Take the novel coronavirus
as an example. In the early stage of infection or in the bodies of asymptomatic carriers, the
viral load may be relatively low. It is extremely difficult to directly test such a trace amount
of nucleic acid, and it is very easy to fail to detect it, that is, false negative results. Therefore,
amplifying nucleic acids during nucleic acid testing is an extremely crucial step, which can
ensure the accuracy and sensitivity of the test results as well as the effective quantification
of target nucleic acids. It plays an indispensable role in numerous application scenarios
such as disease diagnosis and pathogen monitoring.
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In nucleic acid amplification, efficient primer design plays a decisive role in the
detection results. At present, a variety of primer design algorithms have been developed
for different isothermal amplification techniques.

The one-stop EasyDesign network design platform developed by Huang et al. in-
tegrates the design of recombinant polymerase amplification (RPA) primers [129]. RPA
technology mainly relies on three key enzymes, namely recombinase, single-stranded
binding protein and strand displacement polymerase, as well as a pair of specific primers,
to achieve nucleic acid amplification. Recombinase can recognize and bind primers, and
then search for complementary sequences in double-stranded DNA, promoting strand
displacement reactions in the homologous regions of primers and template DNA, and
forming local hybrid double-stranded structures. The single-stranded binding protein
immediately binds to the single-stranded DNA that has been displaced, keeping it in a
stable single-stranded state and preventing it from re-annealing into a double-stranded
state. Strand displacement polymerase takes primers as the starting point and, based on the
sequence of the template strand, continuously synthesizes new DNA strands along the tem-
plate strand at around room temperature (typically with the optimal reaction temperature
ranging from 37 ◦C to 42 ◦C) to achieve the amplification of the target nucleic acid. The team
prepared a dataset containing 11,496 Cas12a detection data [130–133]. This dataset includes
data from viral and bacterial sources with basically the same volume, involving zoonoses,
human pathogens and animal pathogens. The data in the dataset can also be classified
into mismatched, single-base mismatched and double-base mismatched data. Through the
training and optimization of the CNN model, a high-performance CNN12ae model was
obtained [133,134]. CNN12ae has demonstrated outstanding predictive performance in the
design of crRNAs for various pathogens compared to traditional experimental methods,
effectively reducing the workload of candidate crRNA screening.

In addition to the platforms mentioned above, there are also various software devel-
oped based on the principles of bioinformatics. PrimerExplorer V5 [135,136], developed by
Eiken in Japan, is an online free loop-mediated isothermal amplification (LAMP) primer
design software. Based on the LAMP reaction principle, it generates primer sets according
to the input target sequence information [137]. NUPACK, developed by the Niles A. Pierce
research group at the California Institute of Technology in the United States, is a software
tool specifically designed for the design and analysis of nucleic acid structures, devices, and
systems [138]. It can be used for structural analysis of nucleic acid complexes, nucleotide
ensemble analysis, and nucleic acid structure design, etc. These tools facilitate primer
design and nucleic acid research, and also lay the foundation for the development of AI
algorithms and training data based on bioinformatics. By leveraging the vast amount of
nucleic acid sequences and reaction data accumulated in bioinformatics, AI algorithms can
be trained to enhance their performance in aspects such as the accuracy of primer design
and the precision of nucleic acid structure prediction, thereby promoting the in-depth
application of AI in microfluidic detection and broader biological detection fields.

3.2.2. AI-Enabled Result Interpretation

In target identification and signal processing, AI algorithms extract pathogen-specific
patterns from diverse microfluidic outputs (fluorescence, electrochemical, Raman). For
instance, Khor et al. [39] employed a self-encoder to extract features of droplet deforma-
tions, combining it with a classifier to predict emulsion stability in confined channels with
91.7% accuracy. This capability is exemplified in flow-dynamics-based SARS-CoV-2 detec-
tion [139], where a Python algorithm (Python 3.7.4 and 3.8.2, Windows OS using Visual
Studio) analyzes antibody-mediated immunoclustering effects on capillary flow kinetics.
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Real-time video processing via Otsu thresholding quantifies flow velocity changes, defining
“time to constant flow rate” as a diagnostic parameter with 89% clinical accuracy [139].

Sun et al. [59] have addressed the application bottlenecks of POCT diagnosis in
resource-limited regions, especially the time-consuming nature of traditional NAAT and
its reliance on Cq value interpretation. The core of the research lies in the innovative
combination of µPADs microfluidic chips and AI. The AI model section requires a key
analysis: Transformer, as the core algorithm, takes in time-series fluorescence data collected
by the chip (divided into raw gray values and G-channel values), and outputs the complete
amplification curve of the prediction and the final value ratio. Here, it is necessary to
emphasize the breakthrough of predicting 40 min results in 9 min and the high-precision
indicators verified in clinical practice, slashing detection time by 78% while achieving 98.6%
accuracy in clinical qPCR validation. However, the robustness of the model still depends
on sufficient high-quality training data, may over-predict in low-copy or inhibited samples,
and its generalizability across diverse pathogens and real-world clinical settings remains
to be fully validated. Jiang et al. [40] leveraged optofluidic time-delay microscopy with
CNN models to distinguish platelet aggregates from leukocytes at 10,000 cells/sec (96.6%
specificity), while Muñoz et al. [41] applied random forests to identify fractal structures in
LAMP reactions for label-free DNA quantification in sub-nanoliter droplets.

Artificial intelligence-driven design optimization addresses the detection challenges
posed by viral mutations. Deep learning models, image-recognition techniques, and com-
binatorial optimization algorithms accelerate amplification prediction, simplify signal
read-outs, and enhance target-sequence design precision: machine learning–based design
automation tools like DAFD leverage neural networks trained on large-scale experimen-
tal data to predict droplet size and rate with high accuracy, enabling rapid, iteration-
efficient stabilization of flow-focusing droplet generation (Figure 4a) [38], while CapsNet-
augmented CNN models achieve robust classification of microfluidic cell division images
by capturing both local features and spatial relationships. (Figure 4b) [140]. Gao et al. [141]
presents an advanced machine-learning-assisted microfluidic nano plasmonic digital im-
munoassay designed for rapid, high-throughput cytokine profiling in COVID-19 patients.
A key innovation is the CNN-based AI image processing, which enhances the speed and
accuracy of nanoplasmonic signal detection by identifying individual silver nanocube
(AgNC) scattering signals. Yang et al. [56] developed a rapid pathogen detection method
by integrating microfluidic separation with spectroscopic analysis and machine learning
(PCA and SVM). This AI-enhanced system processes high-dimensional spectral data to
identify viral aerosols with 97.87% accuracy in under 30 min, comparable to PCR results.

Tran et al. [142] proposed a rapid phenotypic drug susceptibility detection (pDST)
method that combines microfluidic chips, time-lapse phase contrast microscopy obser-
vation, and deep neural network (DNN) image analysis, targeting Mycobacterium tu-
berculosis bovine BCG (M. bovis BCG) and Mycobacterium smegmatis (M. smegmatis).
Detection of anti-tuberculosis drugs such as rifampicin (RIF) and isoniazid (INH) can
identify sensitive strains (slow-growing M. bovis—BCG) within 12 h, and for fast-growing
M. smegmatis, growth rate differences can even be detected within 1 h. This method can
also detect heterogeneous drug-resistant bacteria as low as 1%.

Sun et al. [143] combined a deep neural network (GRU model) with a paper chip
to predict Ct values in only 20 PCR cycles (average error of 2.1%); Building on this con-
cept, their subsequent study further advanced paper-based microfluidics by integrating an
attention-based GRU network with real-time pixel-level fluorescence data. This approach
exploited hidden reaction dynamics to predict amplification results after just 22 cycles,
achieving over 97% accuracy, sensitivity, and specificity. The attention mechanism allowed
the network to focus on relevant time-series features, outperforming conventional GRU and
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LSTM models and demonstrating robust cross-platform adaptability to clinical datasets.
This highlights a powerful synergy of microfluidics and deep learning for portable, in-
telligent, and fast nucleic acid diagnostics [144] (Figure 4c). Wang et al. [145] developed
the Fractal LAMP algorithm to achieve label-free detection by recognizing amplification
by-products through bright-field microscopic images. The ADAPT (Activity-informed
Design with All-inclusive Patrolling of Targets) system developed by Metsky et al. [146]
utilizes a convolutional neural network (CNN) to predict CRISPR-Cas13a activity combined
with a combinatorial optimization algorithm to design a guide RNA (gRNA) to maximize
detection coverage of viral variants. Experimental validation shows that the gRNA de-
signed by ADAPT improves the detection coverage of enterovirus type B (EVB) by >40%
with zero cross-reactivity compared to the traditional conserved region design strategy.
The system selects gRNA combinations through a submodular maximization algorithm,
which ensures coverage of >95% of viral genome variants with 1–3 gRNA constraints.

Baltekina et al. [147] proposed a rapid antibiotic susceptibility detection (fASTest)
method based on microfluidic chips, time-lapse phase contrast microscopy and single-cell
imaging, which can complete the detection of common pathogenic bacteria causing urinary
tract infections (UTI), such as Escherichia coli UPEC, within 30 min (including sample
loading). This method monitors the growth rate of individual bacteria by customizing
microfluidic chips (containing double-row cell traps that can capture bacteria as low as
103 CFU/mL), and compares the differences between the drug treatment group and the
control group. The response time to 9 anti-UTI antibiotics (such as ciprofloxacin CIP,
ampicillin AMP) is the shortest, only 3 min. This method is also applied to detection of rare
antibiotic susceptible bacteria in mixed sampled [148], blood infections [149] and clinical
microbiology [150].

3.2.3. AI-Enabled High-Throughput Detection

The breakthrough in the direction of high-throughput immunoassay is reflected in the
synergistic innovation of microfluidic nano-chip and deep learning. The platform triggers
fluorescence signals by antibody–antigen binding, and uses a custom Python algorithm to
achieve 1024-cell parallel imaging analysis: firstly, the cell region is segmented to eliminate
background noise, and the antibody titer (EC50) is calculated by fitting a saturation binding
curve after intensity normalization [67]. An alternative technological path to feature ex-
traction of sensing signals with a parallel strategy, Bae et al. [151] developed an integrated
microfluidic system based on indium gallium zinc oxide (IGZO) field effect transistors
(bio-FETs) for biosensors. The system utilizes Artificial Neural Networks (ANNs) to extract
features directly from the raw output signals of the bio-FETs and perform accurate classifi-
cation to achieve simultaneous discrimination of viral antigens (e.g., SARS-CoV-2 spike
proteins) and antibodies in a single assay within 20 min. The method uses a pre-trained
neural network and is fitness-trained with experimental data. The classification accuracies
of antibody and spiny protein detection reached 98.85% and 93.22%, respectively, and the
system detection limits were 1 pg/mL for antibody and 200 ng/mL for spiny protein. The
technology significantly simplifies the process and reduces time and energy requirements
compared to traditional complex methods such as PCR. In the COVID-19 assay, mass
spectral data generated by MALDI-TOF-MS (>600 peaks in the range of 2000–20,000 Da)
were processed by an automated machine learning platform, MILO. The platform employs
ANOVA F-selector with Random Forest feature importance analysis to screen key mass
spectral peaks, and combines Deep Neural Network (DNN) and Gradient Boosting Ma-
chine (GBM) models to achieve accurate classification of viral features. The optimal DNN
model utilizes 487 mass spectral peaks (75% of the total number of features) to achieve
98.3% accuracy, while the GBM model achieves 96.6% accuracy with only 166 features
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(25%), which validates AI’s ability to reduce the dimensionality of the data while main-
taining a high sensitivity (Figure 4d) [152]. Nevertheless, the approach inherently requires
access to MALDI-TOF-MS hardware and associated sample preparation infrastructure,
and its robustness may be compromised by domain shifts across laboratories or instru-
ments, underscoring the need for broader cross-center validation before clinical translation.
To address the problem of background noise and signal drift in microfluidic detection,
a convolutional neural network (CNN) is used for data repair. For example, numerical
discretization of fluorescence curves by Total Variation Regularization (TVR) algorithm
eliminates signal discontinuities due to bubble motion or equipment fluctuations [63].

The above technological evolution shows that AI-driven signal processing is trans-
forming from traditional endpoint detection to dynamic process resolution. The real-time
data generated by microfluidic systems are transformed into early diagnostic indicators
through three major technological routes: computer vision (flow pattern analysis), temporal
modeling (amplification prediction) and image algorithms (fluorescence resolution). This
paradigm change significantly improves detection efficiency—e.g., nucleic acid detection
time is reduced by 78%—but clinical translation still needs to break through bottlenecks
such as sample matrix interference (e.g., turbidity affecting flow pattern) and model gen-
eralization capability (e.g., low Ct sample prediction bias). Notably, these technological
advances provide a technological foundation for the development of a distributed diagnos-
tic model of home-based self-sampling and central laboratory analysis, which is expected
to reshape the future surveillance system for respiratory infectious diseases.

3.3. AI-Empowered Integrated Portable Detection Device for Diagnostic Applications

Portable detection devices (POCT) are critical for resource-limited settings (e.g., rural
clinics, field surveillance), but face challenges: smartphone camera variability, ambient light
interference, and remote data management. AI addresses these by enabling smartphone-
compatible signal analysis, IoT-based real-time control, and cross-device consistency—with
two core integration paths: smartphone-integrated systems (low-cost, user-friendly) and
IoT-linked platforms (remote monitoring, epidemiological tracking). Subsections below
detail document-cited innovations.

3.3.1. AI-Empowered Image Analysis for Smartphone-Integrated Diagnostic

The ubiquity and portability of contemporary smartphones enable microfluidic-based
diagnostic platforms to transcend traditional spatial constraints. Their high-resolution
digital imagers function as sensitive optical detectors, directly capturing colorimetric, flu-
orescence, or luminescence signals generated on-chip. Leveraging powerful embedded
processors, smartphones can execute bespoke algorithms for real-time image processing,
feature extraction, and quantitative analysis without the need for external hardware. An
intuitive touch-screen interface further reduces the operational learning curve, while native
wireless connectivity supports seamless data upload to cloud repositories, remote consulta-
tion, and integration with electronic medical records. Collectively, these features transform
smartphones into compact, cost-effective, and user-friendly analytical hubs, extending
POCT capabilities to resource-limited and field settings.
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Figure 4. AI-Enhanced Pathogen Detection. (a) The machine learning enabled automated microfluidic
design and control. User-defined performance targets are translated into channel geometry and flow
rates, while the tool also predicts tolerance-induced deviations. The white pentagram indicates the
nominal design condition (suggested design values) used as the reference point for tolerance analysis.
Copyright 2021, Nat. Commun. [38]. (b) Image-based classification of cells captured in a microfluidic
device with traps using deep learning. Copyright 2021, PLoS One [140]. (c) Neural Network-
assisted target recognition and signal processing. (i) shows WHO-recorded disease outbreaks and the
schematic of the proposed workflow. Step 1 to 5 describes the process: sample collection, RT-qPCR
in µPADs, model training and validation, early time-series prediction, and final output. (ii) shows
the attention-based GRU framework combined with µPAD and system integration, achieving higher
accuracy, sensitivity, and specificity for real-time data interpretation. Copyright 2022, Fundamental
Res. [143]. Copyright 2023, Elsevier [144]. (d) Conceptual model for near patient ML-enhanced
MALDI-TOF-MS COVI D-19 testing. Copyright 2021, Sci. Rep. [152].
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Smartphones for microfluidic testing have challenges such as camera localization,
model differences, image distortions, and illumination condition variability, which con-
strain their clinical applicability. Deep learning (DL) models can overcome these technical
bottlenecks by processing complex image features such as bubble morphology, size and
distribution. For example, Wang et al. [153] developed a microfluidic dPCR system com-
bined with smartphone imaging to detect SARS-CoV-2 RNA down to 3.8 copies/µL in
a 20 µL reaction system, and its ellipsoidal pipette design generates a single, dispersed
droplet to avoid cross-contamination, and the system is compatible with conventional
PCR instruments. The ellipsoidal pipette design generates a single dispersed droplet to
avoid cross-contamination, and the detection limit is one order of magnitude lower than
that of traditional qPCR. The centrifugal microfluidic platform further integrates nucleic
acid extraction and dPCR, realizing the closed-loop detection of “sample in—result out”.
The SPyDERMAN system utilizes adversarial neural networks to process microfluidic
chip images captured by smartphones for high-precision pathogen detection. The solution
translates non-enzymatic signals (bubbles) into quantitative diagnostic results through
end-to-end image analysis [154]. Traditional Convolutional Neural Networks (CNNs) rely
on a large amount of expert labeled data and the model is severely restricted to a specific
detection domain (domain-dependent). SPyDERMAN introduces the Adversarial Domain
Adaptation (DA) strategy, which jointly optimizes the feature space and the classifier pre-
diction to achieve fast system reconstruction across pathogens. The core of SPyDERMAN is
to combine the limited labeled data The core of the approach is to reduce the inter-domain
distribution difference by fusing limited labeled data (Source domain, e.g., specific virus
images) with large-scale unlabeled data (Target domain, including simulated samples and
synthetic images) for training. The method can achieve 100% detection accuracy when only
a small amount of target pathogen data (e.g., SARS-CoV-2) is required.

By integrating high-resolution cameras and ambient light adaptation algorithms,
smartphones can directly capture the physical or optical signal changes in microfluidic chips
and realize real-time analysis using embedded AI models. For example, the VISTA system
developed by Hardie et al. [155] uses an anti-neural network (SPyDERMAN) to process the
image of oxygen bubbles generated by platinum nanoparticles in the microfluidic chip to
realize the simultaneous detection of SARS-CoV-2 and HCV, and the detection accuracy
of clinical samples is 93.3–95.45%. The system eliminates ambient light interference by
optimizing the built-in light source of the smartphone and correcting the white balance
of the image to ensure that the bubble morphological characteristics can still be stably
identified in the non-laboratory environment.

Kim et al. [156] proposed a strategy for capillary flow analysis of peptide-modified
particle-bacteria interactions, using flow rate variations within paper-based microfluidic
channels to characterize the specific binding of different bacterial species. The video of
capillary front movement was recorded by smartphone, and the flow rate parameters
were extracted by customized Python script, which was combined with a support vector
machine (SVM) classification model to achieve the identification of six bacterial species. This
technique breaks through the limitations of traditional optical detection and only requires
2–6 s of flow rate data to be analyzed for classification. Kim et al. [157] further simplified
the reagent system by adopting a “mix-and-use” strategy, whereby capillary flow rate is
altered by the competitive binding of bacteria to lipopolysaccharide (LPS)/peptidoglycan.
The smartphone video stream was processed by SVM to generate a multidimensional
feature spectrum, and the mixed samples containing Gram-negative/positive bacteria
were successfully differentiated. However, its performance remains limited by moderate
accuracy in mixed samples, potential cross-reactivity of reagents, and the lack of mechanistic
insight into the classification process, which restricts its clinical interpretability and broader
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applicability. Lu’s team [158] designed a microsphere encoding-decoding system (MMIP),
which used multi-sized polystyrene microspheres as the signal carrier, and the smartphone
was equipped with a Mobile Multi-Sphere Net (MMSN) deep learning model to realize
multi-target detection of respiratory and viral viruses. virus multi-target detection. The
model was optimized for microsphere classification and counting based on the YOLOv5
architecture, and the simultaneous quantification of FLUA, FLUB, and HPIV was completed
in 30 min, with a detection limit as low as 0.14 pg/mL. Validation showed that the imaging
differences between different brands of smartphones (iPhone/Motorola/Samsung) had no
significant effect on the consistency of the model identification.

3.3.2. AI-Empowered Image Analysis for IoT-Based Diagnostic

The integration of Internet of Things (IoT) technology serves as a critical enabler
for intelligent, real-time pathogen detection across the entire diagnostic workflow. By
seamlessly incorporating sensor nodes, wireless communication, cloud computing, and
microfluidic platforms, IoT facilitates real-time monitoring of assay parameters, precise
control of automated processes, instant transmission of diagnostic data, and cloud-based
intelligent analysis. Furthermore, remote triggering of alerts or feedback mechanisms
becomes possible, supporting proactive decision-making. This comprehensive integration
not only enhances detection efficiency and system automation, but also reduces operational
complexity and human error. Importantly, it overcomes spatial and temporal constraints,
enabling POCT, large-scale data acquisition, and real-time analysis for population-level
screening. Such developments mark a significant step toward a new paradigm of net-
worked, intelligent, and highly responsive “smart healthcare” in pathogen diagnostics.

The computing power of smartphones further automates the control of the detec-
tion process. Yin et al. [159] designed a centrifugal microfluidic platform, called Mobile
Multi-Sphere Net (MMSN), which is used for the microfluidic immune detection platform
(MMIP) assisted by smart phones. SEDphone, to coordinate multitasking via an Android
application: a Bluetooth temperature control module maintains dual temperature zones in
the amplification and CRISPR detection zones, and a built-in CMOS sensor collects fluores-
cence signals generated by Cas12a cleavage, which is used by a machine learning algorithm
to Automatic interpretation of five influenza virus subtypes (sensitivity 10 copies/µL).
Clinical sample validation shows 100% positive/negative predictive value. This integrated
design significantly improves operational efficiency, reducing time by 50% compared to
traditional step-by-step testing.

Recently developed integrated platforms further combine artificial intelligence with
Internet of Things (IoT) technology to automate and remotely monitor the entire process
from sample to result. Nguyen et al. [160] developed a standalone microfluidic chip that
integrates an Internet of Things (IoT)-based POCT device for efficient and cost-effective
detection of respiratory viruses. The system automates the execution of RNA extraction,
RT-LAMP amplification, and fluorescence detection, completing the sample-to-result di-
agnostic process in less than 70 min. The IoT-POCT module integrates a Raspberry Pi
4 computing unit for control and analysis, a CMOS sensor for fluorescence signal acqui-
sition, an Arduino Nano microcontroller for temperature regulation mechanisms, and a
solenoid valve for precise fluid control. Its core strength lies in its robust connectivity:
wireless connectivity supports real-time data monitoring and remote results transmission,
enhancing accessibility for telemedicine applications. A built-in touch screen allows users
to view results instantly, and results can also be uploaded to a medical database for epi-
demiologic monitoring. Clinical validation showed that the platform has high sensitivity
and specificity in detecting SARS-CoV-2, Influenza A and Influenza B without cross con-
tamination. In summary, this IoT-POCT diagnostic platform provides a portable, smart and
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scalable solution for POCT and public health surveillance, especially in resource-limited
settings. As illustrated in Figure 5, AI algorithms enable end-to-end microfluidic optimiza-
tion through smartphone-integrated fluidic control, automated image-based diagnostics,
and cloud-connected epidemiological forecasting, creating an intelligent workflow that
bridges POCT with population-level pathogen surveillance.

 

Figure 5. Smartphone and IoT-based applications. (a) AI algorithms integration and the tested
microfluidic model system. Copyright 2024, Lab Chip. [43]. (b) an overview of the recognition
patterns of liquids by the AI. Copyright 2022, American Chemical Society [125]. (c) A dual-modal
immunochromatographic rapid detection system based on a deep learning strategy for smartphones.
(1) illustrates fluorescent and colorimetric modes for preliminary sample assessment, (2) depicts
qualitative and semi-quantitative visual analysis, and (3) shows smartphone-based quantitative
detection with deep learning. Copyright 2025, Elsevier [161]. (d) Cloud-connected analytics fuse
assay results with epidemiological engines, enabling POCT decision support and early outbreak
forecasting. On the smartphone display, the four colored curves correspond to fluorescence signals
from reaction chambers C1–C4, while the horizontal lines indicate the temperature profiles for lysis,
wax sealing, and LAMP reaction. Copyright 2022, Elsevier [162].
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The AI-driven innovations discussed throughout this chapter, spanning chip optimiza-
tion, intelligent detection, and IoT integration, are systematically consolidated in Table 2 to
provide a comparative overview of technical approaches and performance breakthroughs.

Table 2. Comparative Overview of AI-Enhanced Microfluidic Innovations in Respiratory
Pathogen Detection.

Technical Domain Core Innovation AI Method Performance Advantages Limitations Reference

AI-Enabled Chip
Design and

Optimization

Chip-design
automation

DAFD workflow
for flow-focusing

droplet
generators that

predicts optimal
channel geometry
from user-defined

specs

Feed-forward
neural network
trained on 998

data points

Diameter
error ≤ 10 µm;

frequency
error ≤ 20 Hz

Rapid inverse
design; reduces
trial-and-error

and prototyping
cycles

Trained on limited
datasets;

transferability across
materials/fabrication

lots uncertain

[38]

Bubble detection &
control

Real-time
identification of

bubbles in
single-channel

chip

Random Forest
classifier on video

frames

Sensitivity 95.5%,
AUC 0.97;

smartphone
AUC > 0.84

Lightweight
model deployable
on phones; robust

accuracy

Requires labeled
videos; performance

can degrade with
lighting/optics

changes

[43]

Gradient-generator
design

Inverse mapping
of channel layout

to arbitrary
concentration

gradients

Machine-learning
regression +

interpolation

93.71% accuracy;
300× acceleration

effect than
conventional

Arbitrary
gradient design;

accelerates
optimization of
mixers/reactors

Needs retraining with
geometry changes;

interpolation fails at
high Re

[103]

Multiscale droplet
optimization

Automated
search for stable
droplet regimes

Bayesian
optimization +

computer vision
feedback

Converged in
60 iterations; 8×

faster than
manual tuning

Sample-efficient
tuning; minimal

experiments

Setup-specific; may
require retuning
when fluids or

geometry change

[109]

Acoustic field
sculpting

Channel
geometries that

create
user-specified
standing-wave

patterns

Deep neural
network (DNN)
inverse design

Programmable
manipula-

tion/assembly of
particles & cells

Non-contact
actuation; gentle

handling of
bio-samples

Sensitive to
fabrication tolerances

and acoustic
hardware calibration;
Requires specialized

acousto-fluidics
equipment

[110]

Flow design and
inverse optimization

Programmable
microchannel
architectures

using
hierarchically

assembled
obstacles (HAO)

CEyeNet with
receptive-field
augmentation

Expanded
diversity of flow

patterns; high
accuracy between

simulation and
experiment;
significantly

reduced
computational
cost vs. FEM

Coupling
physical design

rules with AI
enables efficient,

accurate, and
scalable chip
optimization

Requires extensive
training datasets;
generalization to

unseen geometries
and conditions
remains limited

[114]

High-throughput
synthesis

Two-step
Gaussian-process

BO + DNN for
nano-particle
microreactor

BO (global search)
+ DNN (local
refinement)

Optimal silver-
nanoparticle yield

after 120
experiments

Efficient
exploration of

high-dimensional
parameters;

Demonstrates
closed-loop

optimization
paradigm

Application-specific
(nanoparticles)—
indirect clinical

relevance; Requires
sufficient

data/computation

[115]

Bubble segmentation
& flow metrology

High-speed
YOLOv9 pipeline

for bubble
tracking

YOLOv9 deep
learning object

detector

Non-invasive
mass-transfer

coefficient
estimation

Real-time
quantification of
bubble dynamics;
supports process

modeling

Needs high-speed
imaging + compute;
heavier deployment

footprint

[123]

Closed-loop fluid
automation

Smartphone-
operated

immunoassay
with on-chip

pumps/valves

Lightweight CNN
+ fuzzy logic
decision layer

cTnI LoD
0.98 pg/mL;

30–40% reduction
in false signals

On-device QC
and actuation
reduce human

error and artifacts;
Demonstrates

end-to-end
sensing, decision,

actuation

Adds
actuator/firmware

complexity;
calibration required

[125]
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Table 2. Cont.

Technical Domain Core Innovation AI Method Performance Advantages Limitations Reference

AI-Enhanced
Pathogen Detection

Single-cell image
analysis

On-chip CNN
segments &

classifies
captured cells

Convolutional
neural network

95% accuracy in
cell-type

identification

Label-free
morphology-

based analysis;
integrates with
microfluidics

Dataset/lab specific;
generalization to new

cell types limited
[33]

Real-time intelligent
cell sorting

iIACS
dual-membrane

push-pull
microfluidic

sorter

CNN image
classifier

2000 events s−1

with high purity

Real-time
cytometry-like
performance

on-chip; Reduces
manual gating

Specialized
dual-membrane

hardware;
maintenance burden

[34]

Label-free droplet
LAMP quantification

Detects fractal
precipitate

patterns in sub-nL
droplets

Random Forest
on bright-field

images

Digital, dye-free
DNA

quantification at
sub-nL scale

Eliminates
fluorescent

dyes/optics;
reduces reagent

cost

Pattern morphology
sensitive to

imaging/chemistry
variations; Requires

robust image
standardization/pre-

processing

[41]

Early amplification
prediction

Forecasts
PCR/LAMP

endpoints from
first 9 min of

signal

Transformer with
multi-attention

78% reduction in
assay time; 98.6%
clinical accuracy

Shortens
turnaround time;

earlier triage

May over-predict in
low-copy or inhibited

samples; Needs
continuous,
high-quality
time-series

fluorescence

[59]

Paper-based
microfluidic nucleic

acid testing

Early prediction
of RT-LAMP
results using

real-time
fluorescence on

µPAD

Attention-based
GRU network

Predicts 40-cycle
results at 22

cycles with 98.1%
accuracy

Low-cost paper
platform with

faster calls;
Minimal
hardware

Paper wicking
variability can affect

signals;
Smartphone/ambient

conditions add
variance

[144]

Variant-resilient
CRISPR design

gRNA sets that
keep coverage as
genomes mutate

CNN activity
predictor +

sub-modular
optimiser

>95% variant
coverage

(≤3 gRNAs);
>40% gain vs.

baseline

Compact,
mutation-tolerant

assays for
evolving viruses;

Cuts wet-lab
screening burden

Depends on
up-to-date genomes;

off-target risks persist
[146]

Simultaneous viral
antigen/antibody

assay

IGZO bio-FET
array with

on-chip
microfluidics

Artificial neural
network feature

extractor

1 pg/mL Ab LoD;
200 ng/mL Ag;
98.9%/93.2%
classification

accuracy

Multi-modal
serology on-chip;
electronic readout

Microfabrication
complexity;

calibration drift
[151]

High-dimensional
MALDI-TOF

screening

AutoML selects
key peaks for

COVID-19 triage

DNN + Gradient-
Boosting (MILO

platform)

98.3% accuracy
(487 peaks); 96.6%

(166 peaks)

Leverages widely
available MS

platforms;
Automated

feature selection
reduces manual

curation

Requires MS
hardware + sample
prep infrastructure;
Domain shift across

labs/instruments can
reduce accuracy

[152]

Smartphone-
Integrated and

IoT-Based Diagnostic
Applications

Smartphone
imaging—cross-

pathogen

SPyDERMAN
adversarial DA
converts bubble
images to results

Domain-
adaptation CNN

100% accuracy
with few

SARS-CoV-2
labels

Data-efficient;
robust to

cross-domain
differences

Adversarial training
can be unstable;
requires careful

tuning

[154]

Microfluidic
Immunoassay

Platinum
nanoparticle-

catalyzed bubble
signal readout

+ Ambient light
adaptation
algorithm

Adversarial
Neural Network
(SPyDERMAN)

Dual SARS-CoV-
2/HCV detection:
Clinical accuracy

93.3–95.45%;
LOD:4000 copies/
mL (SARS-CoV-2)
LOD:2200 copies/

mL (HCV)

Commodity
cameras; resilient
to ambient-light

changes

LoD higher than
PCR/CRISPR; relies
on bubble kinetics

[155]
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Table 2. Cont.

Technical Domain Core Innovation AI Method Performance Advantages Limitations Reference

Paper-based Capillary
Flow

Peptide–particle
interaction-

induced flow
velocity changes

SVM
classification

Six-bacteria
identification;
detection time

2–6 s

Ultrafast,
equipment-light;

no fluores-
cence/labels

Semi-quantitative;
sensitive to viscos-
ity/temperature

[156]

Competitive Binding
Assay

LPS/peptidoglycan-
bacteria

competitive
binding

+
“Mix-and-match”
immobilization-

free strategy

SVM multivariate
analysis

Gram-
negative/positive

bacteria
differentiation;
mixed sample
accuracy 75%

Reagent-sparse,
rapid workflow;

minimal
immobilization

Moderate accuracy in
mixtures;

cross-reactivity
possible

[157]

Microsphere
Encoding-Decoding

Polystyrene
microsphere

signal carriers +
Cross-platform

smartphone
compatibility

design

Mobile
Multi-Sphere Net

(YOLOv5
architecture)

Triplex
(FLUA/FLUB/

HPIV) in 30 min;
LoD 0.14 pg/mL;
cross-smartphone

consistency

High multiplex
scalability via

bead codes; very
low LoD

Requires precise bead
fabrication and
optical setup;
Potential code

collisions/bleed-
through in larger

panels

[158]

Centrifugal
Microfluidic-CRISPR

Bluetooth-
controlled

dual-temperature
zones

+ Real-time
CMOS

fluorescence
sensing

Machine learning
classifier

Five influenza
virus subtypes;

sensitivity
10 copies/µL;

100%PPV/NPV;
50% time
reduction

End-to-end task
orchestration on

phone; fewer
steps

Requires custom
electronics and power

management;
regulatory and
cybersecurity

considerations for
connected devices

[159]

IoT-linked POCT
platform

Edge-AI
Raspberry-Pi
device drives

RT-LAMP
cartridge

Embedded ML
and cloud sync

3-virus panel in
<70 min; >98%

concordance

True sample-to-
answer

automation;
remote QA and

data aggregation

Depends on
connectivity;

privacy/security and
device upkeep

[160]

4. Conclusions and Future Perspectives
In this review, we have systematically examined the synergistic integration of artificial

intelligence and microfluidics, which is catalyzing a paradigm shift in respiratory pathogen
detection. Conventional diagnostic methods are frequently hampered by limitations in
speed, sensitivity, cost, and throughput. Microfluidic platforms offer a compelling solution
by miniaturizing and automating complex laboratory procedures, enabling sample-to-
answer systems with reduced reagent consumption and faster turnaround times. However,
the full potential of microfluidics has been constrained by persistent challenges, including
the processing of complex biological samples, the detection of low-abundance targets, the
intricate process of chip design, and the analysis of high-dimensional data. Our analysis
demonstrates that AI, particularly machine and deep learning, provides the critical tools
to overcome these bottlenecks. AI-driven approaches are revolutionizing the diagnostic
workflow by enabling the inverse design and performance optimization of microfluidic
chips, enhancing the accuracy and speed of pathogen detection through intelligent signal
processing, and driving the development of smart, connected POCT systems via smart-
phone and IoT integration. This convergence of AI and microfluidics is not merely an
incremental improvement but represents a foundational leap towards creating diagnostic
systems that are not only rapid, sensitive, and high-throughput but also intelligent, adap-
tive, and robust, providing powerful technological support for future clinical diagnostics
and public health surveillance.

The future of AI in microfluidics will depend on the development of advanced algo-
rithms capable of managing the complexity of biological data and adapting to emerging
pathogens. While current AI-driven design approaches excel at optimizing fixed geome-
tries for predefined conditions, their performance often declines in the face of the inher-
ent variability of clinical samples—such as fluctuations in sputum viscosity or inhibitor
concentrations—as well as manufacturing tolerances across devices. Future progress lies in
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creating truly “sample-aware” systems that integrate on-chip sensors to deliver real-time
feedback on fluidic dynamics and sample properties. This data can power reinforcement
learning algorithms to dynamically adjust fluidic parameters during operation, enhancing
robustness across diverse sample conditions. At the same time, design optimization engines
will autonomously select primers, guide RNAs, and probe sets that preserve detection
coverage as viral genomes mutate. Together, these innovations will advance sensitivity,
specificity, and generalizability across pathogen variants, paving the way for resilient and
adaptive diagnostic platforms.

Second, a critical bottleneck in deploying AI-powered diagnostics is their reliance
on large, high-quality labeled datasets for model training. The next frontier will move
beyond conventional supervised learning toward data-efficient and privacy-preserving
AI frameworks. Future research should prioritize the development of few-shot and zero-
shot learning models, enabling rapid classification of novel threats without the need for
extensive retraining. In parallel, implementing federated learning will be essential: this
approach allows AI models to be collaboratively trained across multiple institutions on
decentralized data, addressing the challenge of building high-quality, cross-organizational
datasets while preserving patient privacy and data security. (e.g., a network of rural clinics
sharing anonymized respiratory sample data without centralizing patient records) Such
advances will help foster a more responsive and resilient diagnostic infrastructure, capable
of supporting timely outbreak detection and coordinated clinical decision-making across
diverse healthcare settings.

Third, the ultimate goal of diagnostic technology extends beyond simple pathogen
identification toward delivering actionable clinical insights. The future lies in multimodal
data fusion for predictive diagnostics. Current microfluidic platforms typically depend
on a single data modality, such as fluorescence amplification curves or electrochemical
signals. A next-generation AI-enhanced microfluidic system could capture and integrate
multiple streams of information simultaneously—for instance, nucleic acid amplification
kinetics, host immune-response biomarkers from immunoassays, and cellular morpho-
logical changes via on-chip microscopy. Advanced fusion models, such as Transformer
architectures or graph neural networks, could analyze this high-dimensional data to not
only detect co-infections with higher certainty but also predict disease trajectory, assess
severity, and recommend optimal therapeutic strategies. By linking these multimodal out-
puts to clinical data through secure IoT frameworks, POCT devices could be transformed
from simple detection tools into powerful platforms that assist clinicians in triaging pa-
tients during outbreaks, tailoring antiviral or antibiotic therapies, and monitoring recovery
trajectories. For example, a portable microfluidic-IoT system deployed in a community
clinic could automatically flag high-risk patients for hospital referral and simultaneously
share diagnostic data with specialists for remote treatment planning.

In summary, the integration of AI and microfluidics is not merely reshaping respiratory
pathogen detection—it is redefining the role of diagnostics in healthcare, shifting from
reactive, single-target testing toward proactive, data-driven strategies that encompass both
individualized patient care and population-level surveillance. By advancing adaptive
algorithms, privacy-preserving data strategies, and multimodal fusion, this technology will
enable faster responses to outbreaks, more precise treatment decisions, and greater access
to high-quality diagnostics in resource-limited settings—ultimately reducing the global
burden of respiratory infectious diseases.
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