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Abstract

Maritime search and rescue (SAR) demands reliable sensing and communication under sea
clutter. Emerging integrated sensing and communication (ISAC) technology provides new
opportunities for the development and modernization of maritime radio communication,
particularly in relation to search and rescue. This study investigated the dual-function
capability of a phase-coded frequency modulated continuous wave (FMCW) system for
search and rescue at sea, in particular for life signs detection in the presence of sea clutter.
The detection capability of the FMCW system was enhanced by applying phase-modulated
codes on chirps, and radar-centric communication function is supported simultaneously.
Various phase-coding schemes including Barker, Frank, Zadoff-Chu (ZC), and Costas were
assessed by adopting the peak sidelobe level and integrated sidelobe level of the ambiguity
function of the established signals. The interplay of sea waves was represented by a
compound K-distribution model. A multiple-input multiple-output (MIMO) architecture
with the ZC code was adopted to detect multiple objects with a high resolution for micro-
Doppler determination by taking advantage of spatial coherence with beamforming. The
effectiveness of the proposed method was validated on the 4-transmit, 4-receive (4 × 4)
MIMO system with ZC coded FMCW signals. Monte Carlo simulations were carried
out incorporating different combinations of targets and user configurations with a wide
range of signal-to-noise ratio (SNR) settings. Extensive simulations demonstrated that
the mean squared error (MSE) of range estimation remained low across the evaluated
SNR setting, while communication performance was comparable to that of a baseline
orthogonal frequency-division multiplexing (OFDM)-based system. The high performance
demonstrated by the proposed method makes it a suitable maritime search and rescue
solution, in particular for vision-restricted situations.

Keywords: maritime search and rescue (SAR); integrated sensing and communication
(ISAC); multiple-input multiple-output (MIMO); phase-coded FMCW (PC-FMCW); compound
K-distribution; multitarget detection; Zadoff–Chu sequence

1. Introduction
Since the inception of maritime radio communication in the early 20th century, search

and rescue (SAR) operations have relied critically on wireless technologies to detect, locate,
and assist vessels or individuals in distress. The historical significance of radio communica-
tion was first demonstrated during the Titanic disaster, which catalyzed the adoption of the
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international SOS distress signal at the 1906 Berlin Radiotelegraph Convention under the in-
ternational telecommunication union (ITU). In the decades that followed, the international
maritime organization (IMO) established a series of regulatory frameworks—including
the international convention for the safety of life at sea (SOLAS) and the global maritime
distress and safety system (GMDSS)—to standardize SAR protocols and modernize distress
communication infrastructure. Recent updates to the GMDSS (2011–2022) have advocated
for the application of emerging digital and integrated systems to enhance the reliability
and responsiveness of SAR under complex maritime conditions [1–3]. As shown in Table 1,
existing maritime sensing platforms—from spaceborne SAR and ship-borne frequency
modulated continuous wave (FMCW) radar to unmanned aerial vehicle (UAV)-based or-
thogonal frequency-division multiplexing (OFDM)-integrated sensing and communication
(ISAC) and electro-optical/infrared imaging—provide a range of capabilities, but suffer
from fundamental trade-offs. Spaceborne SAR offers wide area coverage, but is limited by
long revisit intervals; conventional marine FMCW radars achieve meter-scale resolution,
yet lack Doppler or communication functions; OFDM-based ISAC systems maintain robust
links, but deliver coarse ranging under heavy sea clutter; and Electro-Optical and Infrared
(EO/IR) payloads deliver sub-meter visual detail only in favorable weather. In Table 1, ∆R
denotes the range resolution, or the smallest distance between two targets that each system
can distinguish, which largely depends on the signal bandwidth. These gaps motivate
the pursuit of a tightly integrated sensing-and-communication paradigm, with sensing as
a priority.

Table 1. Comparison of representative maritime SAR and ISAC systems.

System / Method ∆R (m) Limitation

X-band SAR [4] 1–2 Long revisit cycle; no real-time monitoring.
Marine FMCW Radar [5] ∼0.6 No Doppler or comm.; poor clutter handling.
OFDM-ISAC [6] ∼1 Sensing degrades under heavy clutter.
EO/IR UAV Imaging [7] - Visibility-dependent; limited by light conditions.

Despite decades of evolutionary advances in maritime SAR, traditional systems still
treat sensing and communication as separate functions, employing uncoded FMCW or
pulsed waveforms with mechanical beam steering or post-processing Doppler filters. Such
architectures have achieved limited range resolution, producing high false alarm rates in a
substantial sea clutter environment, and they demand bulky apertures or a large transmit
power to preserve signal-to-noise ratio (SNR) [8–10]. In contrast, emerging ISAC technol-
ogy adopts unified waveform design and performs detection processing within a single
platform [11–13], enabling simultaneous multitarget discrimination and micro-Doppler
extraction, while maintaining communication function under the maritime conditions.

FMCW radar is widely used in sensing-only applications. However, signals adopted
in conventional FMCW radar systems present difficulties for SAR tasks in challenging
environments: the probability of detection is low due to the relatively high sidelobe level
in the ambiguity function associated with the received FMCW signal. On the other hand,
FMCW radar systems are unable to provide communication functions directly. To overcome
these constraints, phase-coded FMCW (PC-FMCW) waveforms were then introduced, in
which phase modulation is added to the FMCW chirps. The new waveforms enable
dual functions out of the FMCW-based platform and a radar-centric ISAC system can be
established [14,15].

The benefits of adding phase modulation into FMCW systems are twofold: (1) The
phase-modulated system significantly enhances maritime target detection by suppressing
sea clutter characterized by compound K-distribution statistics. This model captures both
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the long-term texture (large-scale wave structure) and short-term speckle (small-scale wave
facets) properties of sea surfaces [16–18]. Through phase coding, the system effectively
mitigates these dual-scale clutter components, improving detection performance in chal-
lenging sea conditions [19–21]; (2) Communication data can be carried simultaneously by
the PC-FMCW signals. As a result, the ISAC system based on PC-FMCW technology can
be implemented as a radar-centric solution for maritime SAR operations.

In this work, a MIMO PC-FMCW-based system design was developed and investi-
gated for maritime search and rescue applications. The propagation channel of the sea
environment was simulated with a compound K-distribution. A variety of phase-coding
schemes for the FMCW chirps, including Barker, Frank, Zadoff–Chu (ZC), and Costas
codes, were investigated and their merits for sensing were measured by using the peak
sidelobe level ratio (PSLR) and integrated sidelobe level ratio (ISLR) of the autocorrelation
function. The communication performance of the PC-FMCW-based radar-centric system
is compared with a baseline OFDM system under the same channel condition. The key
contributions of this work are summarized as follows:

• A comprehensive MIMO FMCW ISAC simulation platform for maritime SAR: We
developed a unified simulation platform that integrates realistic maritime clutter
modeling, multitarget sensing, and dual-function communication [22,23]. The system
incorporated compound K-distributed sea clutter with tunable shape and scale param-
eters, a flexible MIMO transceiver architecture, and support for four representative
phase coding schemes: Barker, Frank, Costas, and Zadoff–Chu [17]. This enables
system evaluation from waveform generation and coding to beamforming, range-
Doppler processing, and communication decoding, under varying channel and clutter
conditions [24,25].

• Sensing performance analysis under heavy clutter: We evaluated detection metrics
such as PSLR, ISLR, and multitarget detection accuracy via permutation-based pairing.
Monte Carlo simulations demonstrated the superior autocorrelation and sidelobe
suppression of ZC codes [26,27]. In addition, range estimation error is assessed as a
function of target range and clutter level, showing that ZC-coded FMCW achieves
a higher accuracy than conventional uncoded FMCW, particularly in clutter-dense
zones (50–70 m), thus improving robustness in mid-range detection. The system also
supports extraction of micro-motion signatures and life-sign features, fulfilling the
aim even under strong clutter [28–30].

• Integrated communication analysis in ISAC scenarios: A quadrature phase shift keying
(QPSK)-based communication system was used as a base time to evaluate the bit error
rate (BER) and channel capacity of the PC-FMCW under the sea clutter environment
represented by the compound-K distribution. Results showed that ZC-coded FMCW
offers a comparable BER performance over conventional OFDM waveforms across a
wide SNR range. This demonstrates the dual-function capability of our ISAC system
for both high-resolution sensing and reliable communication, offering a valuable
avenue for future maritime SAR platforms operating in degraded environments.

The remainder of this paper is organized as follows. Section 2 presents the radar and
clutter models. Section 3 describes the simulation framework, including parameter studies,
target detection, and BER evaluation. Section 4 reports the results, and Section 5 concludes
the paper.

2. System Model
As shown in Figure 1, the system model is established with three principal components:

FMCW signal generation with integrated phase coding; MIMO array processing and
coherent beamforming; and comprehensive channel modeling that rigorously captures
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water surface clutter characteristics using a compound-K distribution in both scalar and
matrix forms. This section details the mathematical foundations, parameter choices, and
theoretical rationale behind each component.

Figure 1. Block diagram of the proposed phase-coded MIMO FMCW ISAC system. Phase-coding
comparison selects an optimal waveform (Barker, Frank, Costas, or ZC), which is used to generate
multi-channel FMCW signals transmitted by a 4-transmit, 4-receive (4 × 4) MIMO array. Received
echoes are coherently beamformed and processed with the clutter cancellation technique, then passed
to a target detection stage with classification on motions; time-frequency analysis and Monte Carlo
modules, respectively, extract micro-Doppler signatures and quantify detection performance.

2.1. Transmit Radar Signal

The system employed an FMCW waveform for high-resolution range estimation. The
instantaneous frequency of a chirp is defined as

f (t) = fc +
B

Tchirp
t, 0 ≤ t < Tchirp, (1)

where fc is the carrier frequency, B is the bandwidth, Tchirp is the chirp duration, and the
transmitted baseband signal is given by

stx(t) = exp
[

j2π
(

fc t + B
2Tchirp

t2)], (2)

where the term fct corresponds to the carrier phase component, while B
2Tchirp

t2 represents
the quadratic phase term induced by the linear frequency modulation. The instantaneous
phase is derived from the integral of the instantaneous frequency over time. For a target at
range R, a round-trip propagation delay τ is introduced, given by

τ =
2R
c

, (3)

which depends on the target range R and the speed of light. The factor of 2 accounts for
the signal traveling to the target and back to the radar receiver. This delay yields a beat
frequency defined by

fb =
2R
c
· B

Tchirp
, (4)

which forms the basis for range estimation. The beat frequency is determined by mixing the
transmitted and received signals, which is proportional to both the target range R and the
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chirp rate B/Tchirp. This parameter serves as the fundamental basis for range estimation in
FMCW radar systems. The range resolution is defined as

∆R =
c

2B
, (5)

and the maximum unambiguous range is computed as

Rmax = ∆R · Ns

2
, (6)

where Ns = fs · Tchirp is the number of samples per chirp. Range resolution defines the
minimum separation required to distinguish two targets. The resolution improves with the
bandwidth B. This relationship originates from the Fourier transform’s inherent resolution
limitations. The maximum unambiguous range is determined by the Nyquist sampling
criterion. Here, Ns = fs · Tchirp represents the number of samples per chirp, where fs is
the sampling frequency. The factor 1

2 ensures the beat frequency does not exceed half the
sampling frequency to prevent aliasing.

2.2. Phase Coding Modulation and Autocorrelation Analysis

Each transmitted FMCW chirp from element p is modulated by a slow-time phase
coding sequence c(n) and expressed as

stx,p(n, t) = c(n) · sFMCW(t), (7)

where the baseband FMCW waveform, sFMCW(t), is defined in (2), n is the count for the
chirps, and c(n) represents the code for phase control, which can be the ZC, Costas, or
Frank code. The codes, defined by a pattern, are applied periodically on all the chirps.

Four coding schemes were investigated and their characteristics are as follows.

• Barker Code: A 13-length binary sequence commonly written as

c(13)
Barker = [+1, +1, +1, +1, . . . , +1, −1, +1], (8)

where the middle elements are omitted for brevity; Barker codes are known for their
low autocorrelation sidelobes at short lengths.

• Frank Code: Generated for an integer M (e.g., M = 4), yielding a sequence of length
M2 = 16. The (p, q)-th element is given by

cp,q = exp
(

j2π
p q
M

)
, 0 ≤ p, q < M, (9)

and the final sequence is formed by concatenating rows (or columns) of the resulting
matrix.

• ZC Code: A constant-amplitude zero-autocorrelation code of length Nzc defined by

z(n) = exp
(
−j2π

u n(n + 1)
Nzc

)
,

n = 0, 1, . . . , Nzc − 1,
(10)

where u is coprime with Nzc; this code offers excellent autocorrelation properties.
• Costas Code: Constructed via a permutation-based approach for a given M, typ-

ically generating a length-M2 polyphase sequence. By placing frequency-shifted
pulses in a permutation pattern, Costas arrays achieve good randomness and
multipath resistance.
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An autocorrelation function was adopted to evaluate the performance of the codes,
and for the code sequence, c(n), it is defined as

R(ℓ) = ∑
n

c(n)c∗(n− ℓ), (11)

where c∗(n− ℓ) is the conjugate of c(n− ℓ). The characteristics of the phase control codes
are examined by comparing the PSLR and ISLR of the autocorrelation function. They can
be calculated by

PSLR = 20 log10

( Amain

Amax sidelobe

)
, (12)

and

ISLR = 10 log10

(∑ℓ ̸=0 |R(ℓ)|2

|R(0)|2
)

, (13)

respectively. R(ℓ) denotes the autocorrelation function of the phase-coded signal at the time
delay moment, ℓ, and R(0) corresponds to the peak of the mainlobe—which is equivalent to
Amain—and Amax sidelobe = maxℓ ̸=0 |R(ℓ)| is the peak sidelobe level. In (13), ∑ℓ ̸=0 |R(ℓ)|2
represents the total energy of all sidelobes (i.e., sum of non-zero-time-delay autocorrelation
function), and |R(0)|2 represents the mainlobe energy.

Table 2 provides a concise overview of each coding scheme’s basic characteristics,
the length, and the repeating pattern used to fill the 100-chirp CPI. The repetition and
truncation operations ensure that every waveform undergoes the same coherent integration
period and deposits identical total energy into the matched filter. As a result, any observed
differences in peak-to-sidelobe ratio or integrated sidelobe ratio arise exclusively from the
intrinsic autocorrelation behavior of the codes rather than from unequal sequence length,
processing gain, or time-on-target.

Table 2. Characteristics of code sequences used in autocorrelation over one CPI (Nchirps = 100).

Signal Type Base Pattern Code Length Total Length
(Chirps) (⌈100/CodeLen⌉)

Classic FMCW - 1 100
Barker Barker code 13 8× , truncate to 100
Frank (M = 4) Order-4 Frank code 16 7×, truncate to 100
ZC (u = 1) ZC sequence 31 4×, truncate to 100
Costas (M = 4) Order-4 Costas code 16 7×, truncate to 100

In order to quantify the performance of the codes for phase control, the patterns
and period of the codes were optimized and selected using the PSLR and ISLR values
as the criterion. As summarized in Table 3, classical FMCW has PSLR = 0.09 dB and
ISLR = 18.17 dB. Barker improves these to 1.21 dB and 6.70 dB, while Frank and Costas
both reach PSLR = 1.51 dB with ISLRs of 10.04 dB and 13.44 dB, respectively. The ZC
sequence outperforms the rest with PSLR = 3.22 dB and ISLR = 1.35 dB, motivating its
selection for subsequent simulations.

Table 3. Autocorrelation metrics for the comparison of phase coding schemes.

Coding Scheme PSLR (dB) ISLR (dB)

Classic FMCW 0.09 18.17
Barker 1.21 6.70
Frank 1.51 10.04
Costas 1.51 13.44

ZC 3.22 1.35
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Figure 2 depicts the normalized autocorrelation of the uncoded FMCW waveform (no
coding on chirps) over ±(Nchirps − 1) chirp delays. A perfectly triangular mainlobe of unit
amplitude appears at the zero delay, and the value drops with a steady slope along the time
delay; at ISLR = 18.17 dB, the ambiguity of detection can be substantial. In Figure 3, the
autocorrelation functions of the Barker, Frank, Costas, and ZC phase codes are compared
within the same delay range. The peak sidelobe with the Barker code is PSLR = 1.21 dB,
and the ISLR is 6.70 dB; with the Frank code, PSLR is 1.51 dB and ISLR is 10.04 dB. The
Costas sequence attains the same PSLR (1.51 dB) as the Frank code, but the ISLR (13.44 dB)
is slightly higher. In contrast, the ZC sequence produces the best performance, with
PSLR = 3.22 dB and ISLR = 1.35 dB; its ambiguity for detection is the smallest. Hence, the
ZC code for phase modulation was chosen in the subsequent ISAC study.
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Figure 2. Normalized autocorrelation of the uncoded FMCW waveform over ±(Nchirps − 1) chirp
delays, showing a triangular mainlobe and uniformly high sidelobes, which result in poor sidelobe
suppression (PSLR ≈ 0.09 dB) and motivate the use of phase coding for sidelobe reduction.
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Figure 3. Autocorrelation functions of four phase coding schemes over ±(Nchirps − 1) chirp delays:
(a) Barker, (b) Frank, (c) ZC, and (d) Costas.
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2.3. MIMO Array Processing and Beamforming

In the proposed collocated MIMO architecture, we employed ULAs for transmit and
receive, with the inter-element spacing, d = λ/2, and λ = c/ fc. The pairwise combinations
of the Nt = 4 transmit and Nr = 4 receive elements can work as a virtual array of
Nt × Nr = 16 elements for receiving, providing enhanced angular resolution and spatial
diversity while retaining a single-platform geometry.

On the transmit side, the steering vector for a physical ULA of N elements is given by

a(θ) =


1

exp
(
−j2π d sin θ

λ

)
...

exp
(
−j2π

(N−1)d sin θ
λ

)

, (14)

and it is extended to a virtual array by combining the transmit and receive steering vectors
for each Tx–Rx pair. The output from the virtual array after beamforming is represented by

sbf(n, t) =
16

∑
m=1

r(n, t, m) am(θt), (15)

where r(n, t, m) denotes the received signal at channel m during the n-th chirp and θt is the
assumed target angle.

To generate the transmitted signal for the MIMO array, the transmitted signal, S(n, t) ∈
C4×1, at each element is constructed as

S(n, t) = c(n) · sFMCW(t). (16)

2.4. Clutter and Channel Modeling

To explicitly describe the contribution of each transmit and receive antenna pair to the
received signal, we expand the original matrix-form channel model into an element-wise
formulation. The received signal from the 4 Rx antennas can be written as

Y(n, t) = H(n, t)S(n, t) + W(n, t), (17)

where H(n, t) ∈ C4×4 is the full MIMO channel matrix for time t, and W(n, t) is the receiver
noise vector. Beamforming is then carried out on the received signals with the virtual
array theorem.

We reformulate the channel matrix H(n, t) by separating the contributions of the
dynamic human target (torso and arm) and sea clutter scatterers as follows:

H(n, t) =
2

∑
ℓ=1

αℓ(n, t) ar(θℓ) aH
t (θℓ) +

L

∑
ℓ=3

Aℓ

√
Tℓ(n)Sℓ(n, t) ar(θℓ) aH

t (θℓ). (18)

In (18), the first two paths (ℓ = 1, 2) model human micro-Doppler effects. The instantaneous
ranges of torso and arm motion can be described by

Rtorso(n) = R0 + Abod sin(2π fbodtn), (19)

Rarm(n) = R0 + Aarm sin(2π farmtn), (20)

where R0 is the nominal distance, Abod, Aarm are displacements at maximum distances,
and fbod = 0.2 Hz, farm = 1.0 Hz are motion frequencies.
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The corresponding Doppler frequencies are then derived as

fd,torso(n) =
2
λ

dRtorso(n)
dt

, (21)

fd,arm(n) =
2
λ

dRarm(n)
dt

. (22)

These motions are embedded in the multipath propagation model with the parameters

α1(n, t) = Atorso exp[j(ϕ1 − 2π fd,torso(n)t)], (23)

α2(n, t) = Aarm exp[j(ϕ2 − 2π fd,arm(n)t)]. (24)

The remaining L− 2 propagation paths (ℓ = 3, . . . , L) were modeled by a compound K-
distribution where scatters we placed randomly in the range of 50 to 70 m, and each scatter
was assigned a Doppler frequency which was generated from a uniform distribution.

As shown in Figure 4, the composite channel model simultaneously captures the char-
acteristics of the time-varying micro-motions of human targets (torso and arm oscillations)
and the clutter of the sea surface represented by the non-Gaussian compound K distribu-
tion. By exploiting the advantage of the MIMO, every transmit–receive antenna pair is
an independent propagation path, and ultimately a virtual array of Nt × Nr elements is
formed. The signals from the virtual array were processed subsequently for target detection
with micro-Doppler effects in the sea clutter environment.

Figure 4. Sea clutter modeling for a collocated 4× 4 MIMO FMCW radar. Each of the four transmit
antennas illuminates the water surface, producing returns from randomly distributed scatterers (black
dots) characterized by a compound K-distribution. Solid lines trace clutter echoes from individual
scatterers to each of the four receive antennas. The combined transmit–receive pairs synthesize a
16-element virtual array.

2.5. Received Signal Formulation

At the receiver, the echoes from each transmit antenna and path are sampled by
each of the 4 receiving antennas. This results in 16 virtual channels formed by all 4× 4
Tx-Rx pairings.

The digital signal collected by the r-th receive antenna for the n-th chirp and time
index t is

yr(n, t) =
4

∑
p=1

L

∑
ℓ=1

αℓ(n, t) ar(θℓ) at,p(θℓ) sp(n, t) + wr(n, t), (25)

where yr(n, t) denotes the baseband signal received at the r-th antenna during the n-th
chirp and fast-time index t. The term sp(n, t) represents the FMCW waveform transmitted
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by the p-th antenna. The complex gain αℓ(n, t) = Aℓ

√
Tℓ(n) Sℓ(n, t)ejϕℓ models the ℓ-

th propagation path, where Tℓ(n) ∼ Gamma(m, ω/m) captures the long-term texture
variation and Sℓ(n, t) ∼ CN (0, 1) represents the fast-varying speckle. The vectors at,p(θℓ)

and ar(θℓ) are the transmit and receive steering vectors at angle θℓ, and wr(n, t) ∼ CN (0, σ2)

is additive Gaussian noise.

3. Signal Processing for Sensing
This section outlines the complete signal generation and processing pipeline of the

proposed 4-transmit, 4-receive (4× 4) MIMO PC-FMCW radar system. The simulation
encompasses target motion modeling, sea clutter generation, phase coding, beamforming,
and signal decomposition steps. To provide a concise end-to-end overview of the simulation
pipeline, Algorithm 1 summarizes the main steps.

Algorithm 1 MIMO Radar System Simulation Workflow

Input: System parameters: fc, B, Tchirp, PRF, Nchirps
Input: Target parameters: R0, Abod, fbod, Aarm, farm
Output: RTI image, Doppler spectrum, motion separation results

1: Initialize:
c← 3× 108; λ← c/ fc
Generate 4× 4 ULA steering vector for angle θtarget

2: Generate phase coding sequence:
codeSeq← GenerateCode(Nchirps, codeType)

3: for each chirp n = 1 to Nchirps do
4: Target motion model:

Compute Rtorso(n) and Rarm(n)
5: Radar return synthesis:

Combine torso, arm, and clutter returns
6: Multichannel baseband signal:

Modulate by codeSeq and add Additive White Gaussian Noise(AWGN) on each
virtual channel

7: end for
8: Beamforming: Sum over all channels using steering vector
9: Range processing: Apply windowed Fast Fourier Transform(FFT) over fast-time

10: Clutter suppression: Estimate and subtract background
11: Target detection: Select bin with maximum σk/µk
12: Motion separation: Bandpass filter for torso and arm
13: Visualization: Generate spectrogram, and envelopes

Algorithm 1 outlines every major step—from initialization, motion and clutter syn-
thesis, phase coding and reception, through beamforming, range FFT, clutter filtering, and
motion separation—of the final visualization modules.

3.1. Signal Processing for Detection

The received radar signals undergo a sequential signal processing pipeline as illus-
trated in Figure 5. The received signals from the 16-channel virtual array are beamformed
using steering vectors corresponding to the target angle θt. The signal after beamforming is
then subjected to fast-time FFT for ranging. Prior to transformation, each chirp signal is
weighted by a Hann window, defined as

wHann(t) = 0.5
(

1− cos
(

2πt
Ns − 1

))
, 0 ≤ t < Ns, (26)
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which reduces spectral leakage and suppresses sidelobe interference by smoothly tapering
the signal edges. The windowed FFT is performed as

X(n, k) =
Ns−1

∑
t=0

ybf(n, t)wHann(t) e−j 2π
Ns kt, (27)

where X(n, k) represents the range profile for chirp n at range bin k.
To mitigate strong sea clutter, a two-stage filtering process is applied. First, a sliding-

mean filter is computed along the slow-time axis and subtracted to eliminate stationary
returns. This is followed by the application of a second-order Butterworth high-pass filter
with a normalized cutoff Wn = 0.001 designed to attenuate slow-varying components
caused by ocean waves.

Target detection is then performed by evaluating the temporal statistics of each range
bin over all N received chirps, where N denotes the total number of chirps in one coherent
processing interval. Specifically, the mean amplitude µk and standard deviation σk across
all chirps n = 1, . . . , N are calculated as

µk =
1
N

N

∑
n=1
|X(n, k)|, (28)

σk =

√√√√ 1
N − 1

N

∑
n=1

(|X(n, k)| − µk)
2. (29)

To examine the effect of waveform (phase-coded FMCW signals) and channel modeling
(K-distribution to represent sea clutter) independently, we adopted the following approach:
after processing the clutter effect, the responses for ranging determination were gated by
an adaptive threshold, µk, which is an average of all responses in the slow time domain,
and the range of a target is determined by selecting the bin showing a maximum standard
deviation σk. It is worth noting that for scenarios where the targets are dense and in a more
dynamic environment, advanced detection techniques are required.

An adaptive threshold is first applied to µk to eliminate range bins with insufficient
energy; then, among the remaining bins, the one exhibiting the largest temporal standard
deviation σk is selected as the detection result, since true target returns show greater
amplitude fluctuations over consecutive chirps than clutter or noise.

Once the target bin is identified, the signal X(n, k∗) is analyzed in the frequency do-
main. Bandpass filters are designed to isolate motion components within specific frequency
ranges: 0.1–0.5 Hz for torso oscillation and 1.0–2.0 Hz for arm movement. Median filtering
is used to smooth the amplitude envelopes of the separated signals. This final stage enables
reliable extraction of human micro-motion characteristics embedded within cluttered envi-
ronments, culminating in accurate range-Doppler visualization and target discrimination.

As shown in Figure 5, the received MIMO returns from the 4 × 4 virtual array
were first beamformed and then a fast-time FFT was applied to produce range-resolved
profiles. To suppress sea clutter, we applied a two-stage filter along each range bin’s
slow-time history: a moving-average filter removes background, and a second-order
high-pass Butterworth filter eliminates residual low-frequency drift. Thereafter, we com-
puted the mean amplitude and variance across slow time for every range cell and em-
ployed an adaptive, threshold-based rule to select the bin most likely containing the human
micro-Doppler signature.
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Figure 5. Detailed signal-processing flowchart for vital-sign detection. The received beamformed
FMCW returns first undergo matched filtering and slow-time Hann windowing, then MIMO beam-
forming to yield a range-resolved slow-time envelope. This envelope is extracted and fed into two par-
allel bandpass filters which are 0.1–0.5 Hz for torso motion and 1.0–2.0 Hz for arm motion—followed
by denoising and phase recovery to separate the vital-sign components.

3.2. Data Cube Formation

At the transmit end, each transmitted FMCW chirp is phase-coded with a unique ZC
sequence specific to its transmit antenna. These phase-coded chirps are reflected by targets
and clutter, and the corresponding echoes are captured by the Nr × Nt ULA. The received
data were ensembled into a three-dimensional (3D) data cube with dimensions including
fast time, slow time, and spatial channels (Figure 6).

The structured 3D data cube can be mathematically denoted as

Y ∈ CNr×Nchirps×Nsamples (30)

where Nr is the number of receiving antennas, Nchirps is the number of chirps, and Nsamples

is the number of fast-time samples per chirp.
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Figure 6. 3D sensing data-cube structure for the proposed MIMO FMCW ISAC system. Fast-time FFT
on each ZC-coded chirp produces range profiles per virtual channel, which are stacked over slow time
and across the 4× 4 receive array to form a three-dimensional data cube (range–Doppler–antenna).
Subsequent Doppler FFT along the slow-time axis yields the range-Doppler map (RDM) at each
virtual element.
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3.3. Multitarget Detection Simulation

To evaluate the proposed radar system’s ability to resolve multiple targets under
realistic maritime clutter, we implement a simulation module that supports both phase-
coded FMCW (ZC) and standard FMCW signal models. Six targets are fixed at

Rtrue = {20, 30, 40, 50, 60, 70}m, (31)

and embedded within a sea clutter environment containing Nclutter = 100 scatterers. Each
scatterer’s range varies over time as

R(i)
cl (t) = R(i)

0 + δR(i) sin
(
2π f (i)cl t + ϕ

(i)
0
)
, (32)

and its reflection amplitude is modeled as

α
(i)
cl (t) = A(i)

√
T(i)(t) S(i)(t), (33)

where T(i) ∼ Γ(m, ω/m) and S(i) ∼ CN (0, 1), with m = 3 and ω = 1.
At the receive end, echo from each target is associated with a fixed beat frequency

characterized by

f (k)b =
2Rk

c
B

Tchirp
, (34)

where B is the bandwidth and Tchirp the chirp duration. In the standard FMCW mode,
beat signals are obtained via simulated dechirping of reflected chirps from both target and
clutter paths.

The system employed a 4-transmit, 4-receive ULA MIMO array. Beamforming was
applied using the steering vector a(θ). After beamforming, fast-time signals were processed
with Hann-windows first, and then FFT was applied to yield range bins. Energy across
512 chirps was integrated to obtain high-SNR for detection procedures. The accumulated
energy profile yields six distinct peaks at the true target ranges {20, 30, 40, 50, 60, 70}m,
with the ZC phase-coded FMCW waveform showing a higher peak-to-sidelobe ratio than
the standard FMCW mode.

To remove low-frequency clutter bias, a moving-average baseline (window size
20 samples) was subtracted from the energy profile. Range bin candidates were then
selected where the residual exceeded

Threshold = µ + 2σ, (35)

with µ and σ representing the mean and standard deviation of the residual. Peaks were con-
strained to be at least 5 m apart; the bins with highest energy represented possible targets.

Detected ranges R̂were matched to the ground truth by minimizing total squared error
over all permutations. Instead of computing a single-run MSE, we performed NMC = 1000
independent Monte Carlo trials, each with fresh noise and clutter realizations. In trial
i, detection yields an ordered estimate R̂(i) = {R̂(i)

πi(1)
, . . . , R̂(i)

πi(M)
} that minimizes the

squared-error cost. The per-trial squared errors are

e(i)k =
(

R̂(i)
πi(k)
− Rk

)2, k = 1, . . . , M. (36)

The Monte Carlo mean squared error is then

MSEMC =
1

NMC M

NMC

∑
i=1

M

∑
k=1

e(i)k . (37)
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The above expressions form the theoretical basis for subsequent performance evalua-
tion; numerical results are presented in Section 4.

3.4. Communication Performance Comparison

We performed Monte Carlo simulations to assess the communication performance
of the ZC-coded FMCW waveform versus a conventional multi-carrier OFDM scheme
under a compound K-distributed fading channel. For each SNR value, we averaged
over NMC = 1000 independent trials, each transmitting 105 random bits using 4-QAM
modulation.

In each ZC-FMCW trial, a 4-QAM symbol multiplied a normalized Zadoff–Chu se-
quence of length

Ns = fs × Tchirp,

and is transmitted over one chirp interval Tchirp at sampling rate fs. The OFDM baseline
groups symbols into ⌈105/512⌉ blocks of 512 subcarriers, each IFFT-modulated with a
128-sample cyclic prefix (25% of FFT size).

To emulate heavy-tailed maritime fading conditions, the small-scale fading coefficient
is modeled using a compound K-distributed process:

h(t) =
√

g(t) · r(t), g(t) ∼ Gamma(m, ω/m), r(t) ∼ CN (0, 1), (38)

where m = 3 and ω = 1 control the shape and scale of the underlying Gamma distribution.
The estimated channel is subject to additive Gaussian errors:

ĥ(t) = h(t) + ∆h(t), ∆h(t) ∼ CN (0, σ2
est), (39)

with σest = 0.05, accounting for pilot limitation and receiver mismatch. The corresponding
noise variance is defined as

σ2 =
1

2 SNRlin
, SNRlin = 10SNRdB/10, (40)

ensuring the per-dimension noise power is σ2, consistent with the per-symbol SNR. We
sweep SNRdB from –5 dB to 25 dB in 2 dB steps.

The receiver applies MMSE equalization:

y(t)eq =
(ĥ(t))∗

|ĥ(t)|2 + σ2
y(t), ZC-FMCW, (41)

Y(t)
eq [k] =

(Ĥ(t)[k])∗

|Ĥ(t)[k]|2 + σ2
Y(t)[k], OFDM. (42)

In these MMSE equalizers, ĥ(t) and Ĥ(t)[k] are the estimated channel gains for the
ZC-FMCW chirp and each OFDM subcarrier, respectively. The numerators apply the
complex conjugate of the estimated channel to coherently combine signal components,
while the denominators normalize by signal and noise energy. This approach minimizes
the mean-square error between transmitted and received symbols.

Each equalized stream is demodulated and compared to the original bits. The instan-
taneous bit error rate for trial t is denoted by BERt, and the final BER for each SNR point is
computed as

BER =
1

NMC

NMC

∑
t=1

BERt. (43)
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The above expressions form the theoretical basis for subsequent performance evalua-
tion; numerical results are presented in Section 4.

4. Experimental Results
This section presents simulation results from the proposed 4-transmit, 4-receive (4× 4)

MIMO PC-FMCW radar system under realistic maritime conditions. We divided the results
into three parts: (1) single-target detection in range and Doppler domains, (2) motion
component separation, and (3) Multitarget detection and accuracy evaluation.

The key radar and system parameters are summarized in Table 4.

Table 4. Settings of the key parameters.

Parameter Value Description

fc 5 GHz Carrier frequency
λ = c

fc
0.06 m Wavelength

B 150 MHz FMCW bandwidth
∆R = c

2B 1 m Range resolution
Rmax 500 m Maximum unambiguous range
Tchirp 0.01 s Chirp duration

fs 100 kHz Sampling rate
Ns 1000 Samples per chirp

PRF 100 Hz Pulse repetition frequency
Nchirps 1000 Number of chirps per frame

M 4 Number of transmit antennas
N 4 Number of receive antennas
d 0.03 m Element spacing (λ/2)
w Adaptive Beamforming vector (MVDR)

Code ZC Phase coding
R0 50 m Initial target range

Abod 0.3 m Torso oscillation amplitude
fbod 0.2 Hz Torso oscillation frequency

Aarm 0.5 m Arm oscillation amplitude
farm 1.0 Hz Arm oscillation frequency

σtorso 1.0 m2 Torso radar cross-section
σarm 0.9 m2 Arm radar cross-section

m 3 Clutter shape parameter
ω 1 Clutter scale parameter

Nclutter 50 Number of clutter scatterers

4.1. Single-Target Detection: Range and Doppler

As shown in Figure 7, the mean amplitude profile over all chirps (blue) exceeds
the detection threshold (red dashed line) at the true target range of approximately 50 m,
flagging this bin as a candidate peak. In parallel, the slow-time standard deviation reaches
its maximum of about 12 at 50.10 m (indicated by the red circle and dashed grid lines),
which exactly matches the actual target position. The close alignment of peaks in both
metrics confirms that combining mean amplitude and temporal variance provides robust
and accurate range localization.

As shown in Figure 8, the normalized Doppler spectra of the torso (blue) and arm (red)
micro-motion components were obtained by applying a 256-point Hann-windowed FFT to
the slow-time envelopes after band-pass filtering in the 0.1–0.5 Hz (torso) and 1.0–2.0 Hz
(arm) bands, respectively. Clear peaks appear at approximately 0.2 Hz for the torso and
1.0 Hz for the arm, showing a good agreement with the underlying vital-sign assumptions
in the simulation.
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Figure 7. Target detection results across range bins. The top plot shows the mean amplitude profile
(blue) with the detection threshold (red dashed line) used to select candidate ranges, while the
bottom plot displays the slow-time standard deviation, with the final estimated target range (50.10 m)
highlighted by the red marker and dashed grid lines.
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Figure 8. Normalized Doppler spectra of the torso (blue) and arm (red) micro–motion components.
Each spectrum was obtained by applying a 256-point Hann-windowed FFT to the slow-time envelopes
filtered in the 0.1–0.5 Hz (torso) and 1.0–2.0 Hz (arm) bands, respectively. Clear peaks appear at
approximately 0.2 Hz (torso) and 1.0 Hz (arm), corresponding to the underlying vital-sign oscillations.

4.2. Motion Component Separation

Figure 9 plots the normalized, median-filtered amplitude envelopes of the separated
torso (top) and arm (bottom) micro-motions over a 10 s slow-time interval. Each slow-time
signal was band-pass filtered using a fourth-order, zero-phase IIR filter (0.1–0.5 Hz for the
torso; 1.0–2.0 Hz for the arm), processed via the Hilbert transform to extract its analytic
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envelope, median-filtered (length M = 20 samples) to remove sudden peaks, and finally
normalized to its peak amplitude. The torso envelope exhibits smooth breathing oscillations
(period ∼5 s, 0.2 Hz) with small amplitude fluctuations, whereas the arm envelope reveals
rapid arm peaks near 1 Hz.
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Figure 9. Normalized amplitude envelopes of the separated micro-motion components over slow
time (0–10 s). The (top) plot shows the torso vibration envelope, extracted by a fourth-order,
zero-phase 0.1–0.5 Hz band-pass filter, illustrating smooth breathing cycles at ∼0.2 Hz with re-
alistic low-amplitude fluctuations to reflect measurement noise. The (bottom) plot shows the arm
motion envelope, extracted by a 1.0–2.0 Hz band-pass filter, revealing rapid hand-motion peaks near
1 Hz with realistic low-amplitude fluctuations. Both envelopes were then median-filtered to remove
sudden peaks and normalized to their respective maxima.

4.3. Multitarget Detection and Accuracy

To quantify the estimation accuracy of each target range, we employed the Monte
Carlo-averaged mean squared error MSEMC defined above. For each distance Rk ∈ {20,
30, 40, 50, 60, 70}m, MSEMC is computed over NMC = 1000 independent trials with fresh
noise and clutter realizations. This metric provides a direct, statistically robust compar-
ison of the standard FMCW and ZC phase-coded FMCW waveforms under identical
simulation settings.

Figure 10 presents the Monte Carlo-averaged squared range estimation error as a
function of distance with both waveforms. Across all tested distances from 20 m to 70 m,
the ZC coded FMCW waveform consistently yields significantly smaller error than the
standard FMCW mode. Notably, a substantial error peak occurs at 60 m based on the
conventional FMCW radar, where the average squared error exceeds 2. This corresponds
to the region with the strongest compound-K clutter, which was deliberately introduced
between 50 m and 70 m as mentioned earlier. In contrast, ZC coding maintains below
0.25 squared error across the entire range, highlighting its robustness against sidelobe
leakage and clutter-induced bias. Overall, the ZC waveform stabilizes range estimation
under severe clutter, especially in multitarget scenarios with mid-range interference.
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Figure 10. Range-dependent average squared error over 1000 Monte Carlo trials for ZC–coded FMCW
(blue circles) and standard FMCW (orange squares). The uncoded FMCW shows a pronounced error
peak at 60 m due to clutter concentrated in the 50–70 m region, whereas the ZC-coded waveform
maintains sub-0.25 squared error across all ranges.

4.4. Communication Performance Results

Figure 11 illustrates the simulated communication performance of the proposed
ZC-coded FMCW waveform (blue circles) compared to a conventional multi-carrier OFDM
scheme (red squares) under the complex fading channel. Across the entire SNR range
from –5 dB to 25 dB, ZC-FMCW exhibits BER performance similar to OFDM, despite
originating from a radar configuration. At moderate-to-high SNRs (≥15 dB), both schemes
achieve BERs below 10−2, and the maximum observed performance gap remains within
2× 10−3 even at the highest SNRs. These results confirmed that ZC-FMCW, exhibiting
high-performance sensing capability, produced comparable communication reliability com-
pared to OFDM, validating its suitability as a dual-function ISAC waveform in cluttered or
multipath-rich environments.

-5 0 5 10 15 20 25

SNR per Symbol (dB)

10
-3

10
-2

10
-1

10
0

B
it

 E
rr

o
r 

R
a
te

 (
B

E
R

)

ZC-FMCW

OFDM

Figure 11. BER comparison between ZC-coded FMCW (blue circles) and multi-carrier OFDM (red
squares) under a compound K fading channel. Both schemes adopt 4-QAM modulation and transmit
105 bits per SNR level, with BER values averaged over NMC = 1000 Monte Carlo trials. The BER
curves span SNRs from –5 dB to 25 dB. ZC-FMCW exhibits slightly higher BER at high SNRs, with
performance gaps typically below 2× 10−3, confirming its competitiveness for communication under
strong multipath and clutter.
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5. Discussion
This paper proposed a PC-FMCW based MIMO ISAC system for maritime SAR. In this

ISAC design, a compound K-distribution based channel model replicates non-Gaussian,
heavy-tailed sea clutter concentrated in the 50–70 m range, enabling realistic performance
evaluation through Monte Carlo and ablation studies; four codes (Barker, Frank, Costas,
and Zadoff–Chu) were evaluated, with the ZC code achieving the optimal autocorrelation
PSLR and ISLR for sidelobe suppression and micro-Doppler fidelity; coherent beamforming
on a 4-transmit, 4-receive (4× 4) array using steering vectors and a Hann-windowed FFT
minimized spectral leakage and sidelobe artifacts in the ISAC receiver; an energy-based
peak detector with permutation-based pairing accurately resolved six closely spaced targets
(20–70 m), with the ZC coding demonstrating a stable sub-meter range error even under
mid-range clutter, the range MSE analysis further confirmed that while standard FMCW
suffers bias around 60 m due to clutter, ZC remains robust throughout; and ISAC BER
benchmarking under compound clutter showed ZC-coded FMCW is comparable to OFDM
across all SNRs, confirming the dual-function potential of the ISAC system for simultaneous
sensing and reliable communication in more challenging maritime environment. The ZC
coding scheme was adopted for its constant-modulus nature and robust autocorrelation
feature for detection; nevertheless, the recent Flag sequence set [31] is a promising alterna-
tive and will be investigated in future work within our phase-coded FMCW ISAC pipeline
under compound-K sea clutter and embedding realistic Doppler spreads.

In this study, OFDM is used solely as the benchmark for evaluating communication
performance as it is most widely used; the advantage of the PC-FMCW based system in
comparison to the orthogonal time frequency space (OTFS) and affine frequency division
multiplexing (AFDM) systems, lately adopted to mitigate challenges such as doubly-
dispersive channels, is to be investigated [32].

A. Monte Carlo Evaluation of Detection Probability

To evaluate system robustness, we performed Monte Carlo simulations. Each trial
added a known target signal to AWGN, applied matched filtering, normalized the resulting
detection statistic by the estimated noise standard deviation, and compared it against a
fixed threshold of γ = 3.

Let the received signal in the i-th trial be

ri[n] =
√

TiSi · s[n] + wi[n], (44)

where Ti ∼ Gamma(m, ω/m), Si ∼ CN (0, 1), s[n] = 1/
√

Ns, and wi[n] is AWGN. The
matched filter output is

yi =
Ns−1

∑
n=0

ri[n]s∗[n], stati =
|yi|
σ

. (45)

Detection probability is computed as

Pd =
1

Ntrials

Ntrials

∑
i=1

I(stati > γ). (46)

As shown in Figure 12, the detection probability Pd increases steadily with SNR. The
system achieves Pd > 90% for SNRs above 20 dB, demonstrating robust detection capability
under moderate to high noise conditions.
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Figure 12. Monte Carlo simulation of detection probability versus SNR for a fixed threshold (γ = 3).
Each point represents the average probability of detection over 5000 independent trials under com-
pound K-distribution sea clutter.

B. Effect of Channel-Estimation Accuracy

To complement the nominal-CSI results, we briefly examine the robustness of the com-
munication link to channel-estimation errors, an unavoidable impairment in maritime ISAC
due to motion and heavy-tailed clutter. To isolate this factor, the waveform, modulation,
and equalizer settings are fixed; only the estimation perturbation level σ varied. Figure 13
summarizes a BER–SNR sensitivity sweep to the channel-estimation perturbation σ under
the compound-K fading (shape m = 3, scale ω = 1). We use QPSK and the same MMSE
equalizer for both ZC-FMCW and OFDM, and σ ∈ {0.02, 0.05, 0.08, 0.12}, as for each σ the two
waveforms shared identical bit/symbol realizations to ensure a fair comparison with Monte
Carlo simulations. As seen in Figure 13, BER degrades monotonically as σ increases and a
higher SNR floor appears, consistent with the post-equalization SNR loss due to gain/phase
mismatch; the effect is accentuated by heavy-tailed compound-K fading. ZC-FMCW exhibits
a slightly earlier floor at large σ owing to despreading sensitivity, whereas OFDM distributes
estimation noise across subcarriers; the overall trend is the same.
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Figure 13. BER vs. SNR under the compound-K fading (m = 3, ω = 1) for different channel-
estimation perturbations σ ∈ {0.02, 0.05, 0.08, 0.12}. Both ZC-FMCW and OFDM use QPSK and the
same MMSE equalizer; For each σ the two waveforms share the same bit and symbol realizations. BER
increases monotonically with σ and the high-SNR floor rises, which is accentuated by heavy-tailed
compound-K fading.
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C. Resilience to DoA Mismatch

To assess the impact of beamforming angle errors, we decouple the true direction-of-
arrival (DoA) used in data generation from the assumed steering vector used for beam-
forming and a parameter representing the angle mismatch , ∆θ ∈ [−5◦, 5◦] for the 4× 4
virtual ULA with half-wavelength element spacing. For each ∆θ, we report the simulated
(post-processing) pointing loss after the full chain (range FFT, slow-time clutter suppression,
and range-bin selection) as the relative energy drop at the target range bin. The analytical
pointing-loss curve L(∆θ) = |aH

estatrue|2/M2 closely matches the simulated one over the
sweep, with pointwise deviations not exceeding ≈0.07 dB, as observed in Figure 14. The
loss increases monotonically with |∆θ| and remains small for modest errors: approximately
0.03 dB at ±1◦, 0.22 dB at ±3◦, and 0.60 dB at ±5◦ around a 30◦ incidence. This behavior
is consistent with the relatively wide mainlobe of the current virtual aperture (effective
D ≈ 3λ). In practice, a narrow beam-scan refinement around the nominal angle or diagonal-
loaded MVDR (Minimum Variance Distortionless Response) weights can further improve
robustness without altering the conclusions of this work.

Simulated (post-processing)

Analytical (array mismatch)

Figure 14. Relative gain versus DoA error ∆θ for a 4 × 4 virtual ULA (element spacing λ/2),
normalized to the case that the DoA is accurately estimated, ∆θ = 0◦. The loss increases smoothly
with |∆θ| and remains small within ±3◦ (about 0.22 dB), reaching roughly 0.6 dB at ±5◦. The results
based on the analytical calculation and the system simulation are compared.

D. Impact of Clutter Parameters

We performed a parameter sensitivity study to assess the effects of the shape (m) and
scale (ω) of the compound K-distribution on detection probability. The simulation covers a
broad range of clutter statistics, with

m ∈ {1, 2, 3, 4, 5, 6, 7}, ω ∈ {1.0, 1.5, 2.0, 2.5, 3.0}. (47)

For each (m, ω) pair, the detection probability Pd is estimated via Monte Carlo trials at an
SNR of 10 dB. This setup facilitates a comprehensive assessment of system performance
across diverse clutter environments, spanning heavy-tailed (low m) to near-Gaussian (high
m) regimes and low to high scale parameters.

Figure 15 illustrates the detection probability Pd at an SNR of 10 dB as a joint function
of the compound-K distribution’s texture parameter m and scale parameter ω, with both
parameters selected in a higher range to reflect robust system conditions. The results show
that as m increases from 2 to 7, Pd rises steeply and saturates near unity for (m ≥ 5), reflect-
ing the system’s strong resilience against sea clutter with more homogeneous, Gaussian-like
texture. Similarly, for a given m, increasing the scale parameter ω from 1.0 to 3.0 also yields
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a significant improvement in detection probability, approaching 1.0 when both m and ω are
high. This indicates that the system is highly robust under moderate to weak compound-K
clutter, and that multi-chirp accumulation can effectively suppress performance degra-
dation even when the scale parameter increases. The optimal region is observed in the
upper right corner (m ≥ 5, ω ≥ 2.0), where Pd consistently exceeds 0.95. This highlights the
practical advantage of operating in environments with less heavy-tailed clutter statistics or
under adaptive clutter estimation.
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Figure 15. Detection probability Pd at SNR = 10 dB as a function of the compound K-distribution
shape parameter m and scale parameter ω. Each cell shows the Monte Carlo–averaged Pd over
500 independent trials, demonstrating that detection performance improves with increasing m (less
heavy-tailed clutter) and larger ω, and approaches unity when m ≥ 5 and ω ≥ 2.0.

In summary, this study considered a unified ISAC framework tailored for maritime
SAR scenarios. The demonstrated performance across detection accuracy, target localiza-
tion, and BER validates its suitability as both a research testbed and a reference design tool
for future maritime radar systems.

However, several limitations remain. First, the current simulation assumes ideal
synchronization and does not incorporate hardware impairments such as phase noise,
quantization effects, or mutual coupling between antenna elements. Second, although
clutter is modeled with a compound K-distribution, dynamic sea state transitions and non-
stationary clutter characteristics are not yet fully captured. In addition, only planar MIMO
arrays and static target layouts are considered. Future work will explore real-time pro-
cessing implementations, adaptive waveform scheduling, dynamic target tracking across
multiple frames, and the extension to three-dimensional MIMO array geometries. Enhanc-
ing the system’s adaptability to diverse sea conditions and validating it with experimental
data will further strengthen its practical utility in maritime SAR missions.

6. Conclusions
We have presented an ISAC framework with 4-transmit, 4-receive (4 × 4) MIMO

FMCW radar centric configuration for maritime SAR operations under heavy, non-Gaussian
sea clutter. This ISAC platform integrates a compound K-distribution clutter model, high-
resolution FMCW waveform synthesis, and four representative phase-coding schemes
(Barker, Frank, ZC, Costas) within a coherent beamforming architecture. Through exten-
sive Monte Carlo experiments spanning SNRs from –20 dB to 20 dB, our ISAC frame-
work achieved sub-meter range accuracy when resolving up to six closely spaced targets
(20–70 m) and investigated the relationships between the K-distribution parameters, m
and ω, and detection performance. In parallel, BER comparisons demonstrated that the
ZC-coded ISAC waveform matches a conventional OFDM system for communication in
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channels with sea clutter. These results confirmed the dual-functional capability of the
proposed ISAC design for simultaneous sensing and communication, offering a unique
advantage in both target detection and life-sign monitoring, and can be a potential solution
for maritime radar systems. Future work will extend adaptive clutter modeling, real-time
multitarget tracking, and three-dimensional MIMO array configurations to further enhance
the operational robustness and field deployability of ISAC systems.
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AFDM affine frequency division multiplexing
AWGN Additive White Gaussian Noise
BER Bit Error Rate
DFRC Dual-Function Radar-Communication
EPIRB Emergency Position Indicating Radio Beacon
FFT Fast Fourier Transform
FMCW Frequency-Modulated Continuous Wave
IFFT Inverse Fast Fourier Transform
ISAC Integrated Sensing and Communication
ISLR Integrated Sidelobe Level Ratio
LFM Linear Frequency Modulation
MIMO Multiple-Input Multiple-Output
MSE Mean Squared Error
MVDR Minimum Variance Distortionless Response
OFDM Orthogonal Frequency-Division Multiplexing
OTFS orthogonal time frequency space
PRF Pulse Repetition Frequency
PSLR Peak Sidelobe Level Ratio
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
RCS Radar Cross Section
SAR Search and Rescue
Satellite SAR Satellite-based Synthetic Aperture Radar
SNR Signal-to-Noise Ratio
STFT Short-Time Fourier Transform
UAV Unmanned Aerial Vehicle
ULA Uniform Linear Array
ZC Zadoff–Chu Sequence
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