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Abstract

(1) Objective: Volatile organic compounds (VOCs) monitoring in industrial parks is crucial
for environmental regulation and public health protection. However, current techniques
face challenges related to cost and real-time performance. This study aims to develop a
dynamic calibration framework for accurate real-time conversion of VOCs volume frac-
tions (nmol mol 1) to mass concentrations (ng m~3) in industrial environments, addressing
the limitations of conventional monitoring methods such as high costs and delayed re-
sponse times. (2) Methods: By innovatively integrating photoionization detector (PID)
with machine learning, we developed a robust conversion model utilizing PID signals,
meteorological data, and a random forest’s (RF) algorithm. The system’s performance
was rigorously evaluated against standard gas chromatography-flame ionization detectors
(GC-FID) measurements. (3) Results: The proposed framework demonstrated superior
performance, achieving a coefficient of determination (R?) of 0.81, root mean squared
error (RMSE) of 48.23 g m~3, symmetric mean absolute percentage error (SMAPE) of
62.47%, and a normalized RMSE (RMSEorm) of 2.07%, outperforming conventional meth-
ods. This framework not only achieved minute-level response times but also reduced
costs to just 10% of those associated with GC-FID methods. Additionally, the model ex-
hibited strong cross-site robustness with R? values ranging from 0.68 to 0.69, although its
accuracy was somewhat reduced for high-concentration samples (>1500 jtg m~3), where
the mean absolute percentage error (MAPE) was 17.8%. The inclusion of SMAPE and
RMSEporm provides a more nuanced understanding of the model’s performance, partic-
ularly in the context of skewed or heteroscedastic data distributions, thereby offering a
more comprehensive assessment of the framework’s effectiveness. (4) Conclusions: The
framework’s innovative combination of PID’s real-time capability and RF’s nonlinear mod-
eling achieves accurate mass concentration conversion (R? = 0.81) while maintaining a 95%
faster response and 90% cost reduction compared to GC-FID systems. Compared with tra-
ditional single-coefficient PID calibration, this framework significantly improves accuracy
and adaptability under dynamic industrial conditions. Future work will apply transfer
learning to improve high-concentration detection for pollution tracing and environmental
governance in industrial parks.

Keywords: random forest; industrial parks; real-time monitoring; mass concentration
conversion
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1. Introduction

Volatile organic compounds (VOCs) are a class of organic compounds with high
vapor pressure at ambient temperatures, making them prone to volatilization into the
atmosphere. Industrial parks, characterized by concentrated emissions from industrial
activities, such as waste gas discharge and solvent volatilization, are significant VOC
sources. As precursors to ozone and secondary organic aerosols (SOAs) [1-4], VOCs
contribute to regional air pollution through photochemical reactions, significantly affecting
local air quality [5,6]. Furthermore, reports from the World Health Organization (WHO)
and the International Agency for Research on Cancer (IARC) [7,8], long-term exposure to
specific VOCs such as benzene and formaldehyde can increase the risk of disease, including
leukemia and nasopharyngeal cancer. Precise monitoring of VOCs emissions in industrial
parks is essential not only for pollution source tracing and liability determination, but also
for health risk assessment and targeted environmental governance [9-12], playing a vital
role in improving air quality and safeguarding public health. According to China’s 2024
Ecological Environment Statistical Report [13], industrial-source VOCs emissions account for
32.8% of the total anthropogenic emissions, which highlights the urgent need to develop
effective monitoring technologies for industrial parks.

Currently, online VOC monitoring in Chinese industrial parks primarily relies on gas
chromatography-mass spectrometry (GC-MS) or gas chromatography—flame ionization
detectors (GC-FID). These devices are known for their high sensitivity, wide linear range,
and stability [14], particularly in analyzing individual VOC species [15,16]. However, they
also have several drawbacks: Firstly, the equipment is costly, with GC-MS and GC-FID
systems typically priced in the hundreds of thousands of dollars, representing a signifi-
cant initial investment for many industrial parks and monitoring agencies. Additionally,
maintenance costs are substantial, requiring regular replacement of consumables (e.g.,
chromatography columns, carrier gases) and professional maintenance, further increasing
operational expenses. Secondly, these devices lack temporal representativeness, with each
analysis taking between 20 min and 1 h, making them inadequate for real-time monitoring
and rapid response. Moreover, they have stringent environmental requirements, making
large-scale deployment within industrial parks challenging. Lastly, they require highly
skilled operators who have undergone specialized training, which limits their application
in grid-based monitoring.

Instruments equipped with a photoionization detector (PID) have gradually become
an important tool for the rapid screening of VOCs due to their millisecond response times
and low costs [17-20]. These instruments ionize VOC molecules using ultraviolet lamps
and can quickly output volume concentrations (in pmol mol~!/nmol mol~!). They can
also monitor individual gases through conversion coefficients, significantly compensating
for the lack of timeliness in traditional technologies. However, PID technology has two
inherent flaws: (O The differences in ionization energies (IP) of various species in mixed
VOCs make it difficult to accurately characterize the dynamic response of multi-component
systems through measurement results. (2) Since environmental regulatory requirements in
China typically use mass concentration (mg m~?) as the benchmark, and the composition
of VOCs in industrial parks is complex and dynamically changing (e.g., changes in wind
direction can lead to variations in pollutants), traditional single-calibration coefficients
cannot adapt to the synergistic changes in multiple components and the interference of
environmental parameters (such as seasonal fluctuations in temperature and humidity),
resulting in significant deviations between PID output data and regulatory standards.

In recent years, the rapid development of machine learning technologies [21-24] has
attracted increasing attention in the field of environmental monitoring, offering innovative
solutions to the challenges mentioned above. Machine learning algorithms can automati-
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cally learn and identify complex patterns and relationships in data, enabling the precise
prediction and classification of unknown samples. For instance, machine learning has
been applied to optimize sensor array design [25], classify VOCs [26], and monitor soil
VOC fluxes in real-time using PID [27]. Among various algorithms, Random Forest (RF)
demonstrates unique advantages: (1) Its ensemble learning architecture can effectively
mitigate overfitting caused by high variability in environmental data. (2) The inherent non-
linear modeling capability aligns well with the complex interactions between PID signals
and meteorological parameters. (3) Feature importance analysis can provide interpretable
insights into key influencing factors. These characteristics make RF particularly suitable
for developing robust calibration models that can adapt to heterogeneous conditions in
industrial monitoring.

This study innovatively integrates PID technology with machine learning to address
critical scientific challenges in real-time VOCs monitoring within industrial parks. The re-
search focuses on the following: (1) constructing a dynamic calibration model to overcome
the technical bottleneck of converting PID signals to mass concentrations; (2) systemat-
ically comparing the performance of five algorithms—support vector regression (SVR),
polynomial regression (PR), decision tree (DT), gradient-boosting decision tree (GBDT),
and RF—with an emphasis on evaluating key metrics such as adaptability to coupled
multi-environmental parameters, nonlinear feature extraction capability, and model inter-
pretability; and (3) establishing an intelligent monitoring system through multi-region field
validation that integrates real-time performance (minute-level response), cost-effectiveness
(over 80% cost reduction), and high accuracy (R2 > 0.8). This technical solution will pro-
vide next-generation technological support for pollution source tracing, dynamic health
risk early warning, and precise environmental governance in industrial parks, holding
significant practical implications for advancing the intelligent transformation of environ-
mental regulations.

The developed dynamic calibration framework not only enables the accurate con-
version of PID data to mass concentrations, but also supports real-time monitoring and
alarm functions. Calibrated PID data can be used to continuously monitor VOC concen-
trations and trigger alarms when levels exceed a predefined threshold (e.g., 1000 j1g m~3).
This capability is essential for the timely detection and management of pollution events,
ensuring environmental compliance and protecting public health. The system’s rapid re-
sponse and cost-effectiveness make it a valuable tool for industrial parks aiming to enhance
environmental governance and reduce operational costs.

2. Materials and Methods
2.1. Study Sites and Equipment

This study selected three representative industrial parks as monitoring sites (A, B, and
C) based on their distinct industrial profiles and VOCs emission characteristics:

Site A

e Located in Shanghai, China

® Represents a typical chemical industry cluster with dense manufacturing facilities

o Characterized by high-intensity VOC emissions, primarily from pharmaceutical and
coating production processes

Site B

e Situated in a mixed industrial-residential area

o Characterized by water treatment plants and new material manufacturing facilities

e Exhibits moderate VOC emission levels with significant diurnal variations

Site C

e Dominated by mechanical processing industries
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e Exhibits relatively stable, yet compositionally complex, VOC emissions

o Reflecting contributions from both industrial activities and urban background sources

The equipment configuration included the following;:

(1) The PID online monitoring systems included eight devices from four manufacturers
(Brands Y, Z, A, and S), each equipped with 10.6 eV UV lamps and dehumidification com-
ponents [28]. PID technical specifications: detection range: 0—20 pmol mol~! (isobutylene
equivalent); response time: <3 s; humidity compensation: from 0 to 95% RH; zero drift:
+1%ES./24 h.

(2) The reference GC-FID system was utilized for standardized VOC quantifica-
tion, with alarm thresholds set at 1000 ug m 3 based on the sum of individual com-
pound concentrations.

2.2. Experimental Design
2.2.1. Equipment Installation, Calibration, and Comparison

During the comparison test, both the PID and GC-FID systems operated simultane-
ously. The correlation between VOC concentrations measured using the PID and GC-FID
systems was assessed by calculating the coefficient of determination (R?). To ensure data
validity, only measurements with a validity exceeding 80% were included. In line with rele-
vant maintenance regulations, the GC-FID system was calibrated weekly using standard
gases to maintain stable operation. Data were reviewed daily to guarantee their integrity
and reliability. The flow rate of the PID device was calibrated monthly throughout the
monitoring period. Additionally, the PID system can switch to a 15 min rolling average
output at the software level, offering flexibility to meet both regulatory requirements and
real-time monitoring needs. During GC-FID maintenance periods (weekly calibration
and unscheduled repairs), PID data were continuously recorded, but were excluded from
model training and validation to preserve the reliability of reference data. The PID system
can provide 15 min rolling averages for real-time monitoring while maintaining hourly
averages for regulatory compliance.

2.2.2. Algorithm Optimization

All models were implemented using the Python programming language (version
3.9). The dataset was collected over a 15-month period from December 2021 to May 2023,
comprising 3532 valid samples across three sites. To ensure a representative concentration
distribution, the data into 60% for the training set, 20% for the validation set, and 20%
for the test set using stratified sampling. For model development, we employed Python
3.8 with scikit-learn 1.0.2 was employed, utilizing GridSearchCV for hyperparameter
optimization with 10-fold cross-validation. The input features included the volume fraction
data from the PID devices, as well as wind direction, wind speed, temperature, humidity,
and atmospheric pressure, were used as input features, while the mass concentration data
from the GC-FID system were used as the target variable. GridSearchCV was employed
to optimize the hyperparameters of the five models mentioned above, balancing model
complexity (e.g., tree depth, learning rate) to avoid overfitting or underfitting, thereby
enhancing prediction performance and stability. The specific settings are shown in Table 1.

To better understand the contribution of each input feature to the model’s predic-
tion, feature importance analysis was conducted for all models. The correlation coefficient
between each feature and the target variable (VOC mass concentration) was calculated to as-
sess its influence on the model’s predictions. This helps clarify the impact of meteorological
parameters on VOC concentration prediction.
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Table 1. Core advantages and hyperparameter settings of machine learning algorithms.

Hyperparameter Settings

Algorithm Core Advantage (GridSearchCV Optimization) Optimization Strategy
. . - Kernel function (linear), penalty =~ Maintained linear kernel stability with
SVR Multivariate linear fitting coefficient (C = 10) grid-selected optimal penalty coefficient
. - e _ Optimal degree selected through model
PR Nonlinear fitting capability =~ Degree (degree = 2) complexity testing
DT High model interpretability Maximum d.epth (10), minimum Pre—p.ru.nmg.strategy to balance depth and
samples split (2) overfitting risk
Residual iterative Learning rate (0.1), number of . . .
GBDT optimization trees (100), maximum depth (4) Early stopping for iteration control
RE High stability and Number of trees (100), Feature subsampling to enhance diversity

maximum depth (10),

> fithi i
anti-overfitting maximum features (2)

Tree depth optimization for feature interaction

2.2.3. Data Flow and Pseudocode

To clarify the data processing pipeline, Figure 1 presents a block diagram illustrating
the workflow from raw sensor input to the final VOC mass concentration output.

Data Preprocessing Feature Engineering

+Qutlier removal

« (IQR filter)

*Hourly averaging (align with
GC-FID timestamps)

*Generate WD, = sin(WD x
1/180)

*Generate WD, = cos(WD x
1/180)

+Normalize features (Z-score)

PID Raw Signal Meteorological Data

(T, RH, WS, WD)

(nmol mol-?)

v

Random Forest Model

+Input: PID, T, RH, WS, WDy,
WD

Post-Processing

«Clip negative values to 0
*Apply 95% CI (bootstrapped)

*Output: TVOC mass Final Output (ug m=3)

concentration

Figure 1. Data flow pipeline from raw PID signals (nmol mol ') and meteorological inputs to final
VOC mass concentrations (ug m~3).

2.2.4. Computational Resources

The configuration of the existing equipment is as follows: CPU: Cortex-A8; Memory:
512 MB; Storage: 4 GB; Operating System: Linux.

Our research aims to enhance existing PID equipment rather than replace it entirely
with new hardware. This approach not only reduces costs, but also facilitates rapid de-
ployment and implementation. The model operates efficiently on resource-constrained
embedded systems, making it well-suited for real-time monitoring applications. Addition-
ally, the use of TensorFlow Lite optimizes model deployment on these systems, ensuring
low-latency inference without requiring a GPU.

2.3. Data Analysis
2.3.1. Data Preprocessing

We cleaned the collected data to remove outliers and missing values. Next, we
converted the volume fraction data measured by the PID device to match the time resolution
of the GC-FID system by calculating hourly averages for comparative analysis. For the
total concentration values obtained from the GC-FID system, the following formula was
used to convert the monitoring concentrations:

n C;
Cria = Yy le"i
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Here, C; represents the volume fraction (nmol mol~1) of VOCs that the PID device
can detect (used in correlation analysis) or the mass concentration (ug m~3) of individual
VOCs (used for model building and validation), and CF; is the calibration coefficient of
the compound on the PID sensor [29]. Compared to the simple summation of individual
single factors, this method significantly improves the correlation between the sensor and
the GC-FID system.

Due to the inherent limitations of the GC-FID system’s measurement principle, the
monitoring analysis is not continuous. The GC-FID system used in this study operates on
a 30 min analysis cycle during the last half of each hour. During this 30 min period, the
device performs eight sampling events, each lasting two minutes, totaling approximately
16 min of actual sampling.

The data obtained from this analysis are referred to as hourly averages. The hourly
averages of the PID device are continuous, aggregated from minute-level or second-level
data. In this study, the minute-level PID data corresponding to the GC-FID sampling
periods were selected to generate new hourly values, which were then compared with the
hourly averages from the GC-FID system.

To comply with China’s environmental regulatory standards, this study used hourly
averages. These hourly averages from the PID device are continuous and aggregated from
minute- or second-level data. Specifically, minute-level PID data corresponding to the
GC-FID sampling periods were selected to generate new hourly values, which were then
compared with the hourly averages obtained using the GC-FID system.

2.3.2. Correlation Analysis

The correlation between VOC concentrations measured by the PID and GC-FID was
evaluated by calculating the coefficient of determination R? to evaluate their linear rela-
tionship. Additionally, the correlation between meteorological parameters (wind direction,
wind speed, temperature, humidity, and atmospheric pressure) and VOC concentrations
were analyzed to determine the impact of these factors on the monitoring data.

2.3.3. Model Building and Validation

The dataset was divided into training and testing sets at a ratio of 8:2. Model stability
was evaluated using 10-fold cross-validation on the training set. Model performance was
assessed by calculating the mean squared error (MSE), root mean squared error (RMSE), and
coefficient of determination (R?). To further enhance the robustness of our evaluation, we
calculated the symmetric mean absolute percentage error (SMAPE) and the normalized root
mean squared error (RMSEorm), which provide additional insights into model performance
and are less sensitive to data scale. Additionally, to estimate the prediction uncertainty, we
employed bootstrapping methods to derive 95% confidence intervals (CI) for the RMSE.
This comprehensive approach to evaluating model performance and uncertainty ensures
that our findings are reliable and generalizable across different environmental conditions,
as further validated at Sites B and C.

3. Results

3.1. Comparison of PID and GC-FID System and the Impact of Meteorological Factors
3.1.1. Comparison of PID and GC-FID Systems

In the comparative test conducted at Site A, the volume fractions (nmol mol 1) of
VOCs obtained from the PID devices showed a significant correlation with those measured
by the GC-FID system. The highest correlation coefficient was observed for Device Z-1
(R? = 0.92). However, notable performance differences were evident among PID devices
from different manufacturers (Table 2). For instance, Device Y-2 exhibited a slope (0.94)
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close to the ideal value, while Device Z-1 exhibited an anomalously high slope (6.07)
due to calibration deviation, indicating systematic differences in signal response between
devices. The RMSE values for GC-FID and PID data ranged from 18.7 to 59.6 nmol mol !,
confirming the effectiveness of PID in capturing emission trends, despite its inherent
technical limitations of not being able to directly output mass concentration.

Table 2. Comparison results of PID and GC-FID systems. Data collection period for all devices:
December 2021 to March 2022. Effective data selection criteria: PID and GC-FID timestamps aligned
with no missing data.

Device Effective Mean R2 Slope Intercept RMSE MAE

Name Data (nmol mol—1) P p (nmol mol—1) (nmol mol—1)

GC-FID 915 23.4 + 36.4 1.00 / / /
Y-2 858 50.4 +34.7 0.76 0.94 —229 30.9 27.0
Z-1 915 743 £ 5.7 0.92 6.07 —427.8 59.6 50.9
A-1 915 32.5 4+ 40.0 0.81 0.82 —-3.3 19.4 9.1
A-2 915 28.2 + 38.5 0.79 0.84 —0.2 18.7 4.8
A-3 915 33.54+40.2 0.85 0.83 —4.5 18.7 10.1
S-1 915 225+ 19.0 0.67 1.58 —12.1 23.3 —-0.9
S-2 915 244 +19.2 0.69 1.58 —15.2 22.9 1.0
S-3 915 20.7 + 18.8 0.71 1.63 —10.3 23.1 —2.7

3.1.2. Impact of Meteorological Parameters on VOCs Concentrations

Meteorological parameters significantly influence the monitoring data of VOC concen-
trations. Figure 2 illustrates that, during the comparison process, the negative correlation
(—0.1748) between the GC-FID system concentration and wind direction indicates that
changes in wind direction substantially impact VOC concentrations. This negative corre-
lation reflects the combined effects of the pollution source location at Site A, variations
in wind speed, topographical features, and regional transport phenomena. An increase
in temperature generally enhances the volatility of VOCs, while humidity can affect the
detection sensitivity of PID devices. Although the PID device is equipped with dehumid-
ification components, its detection signals may still be somewhat interfered with under
high-humidity conditions. By integrating temperature and humidity data, the model can
effectively correct these interferences and improve prediction accuracy.

Correlation Heatmap

1.0
1 : 0.10 0.09 -0.17 -0.19 A
fid l o8

0.6

hum -
0.4

tem-
F0.2

Correlation

Feature

0.0

WD -

r—0.2

atm 1

-0.4

WS

T

fid hljm tevm WD atm WS
Feature

Figure 2. Correlation heatmap between VOC concentrations (GC-FID) and meteorological parameters
(temperature, humidity, wind direction). Red and blue indicate positive and negative Pearson
correlation coefficients, respectively.
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3.2. Comparison of Model Performance and Analysis of the Impact of Meteorological Factors
3.2.1. Comparison of Model Performance Comparison

In this study, a systematic evaluation was conducted on five machine learning algo-
rithms (Table 3). The results reveal that the RF model demonstrated the best performance
in converting volume fraction to mass concentration, achieving a coefficient of determi-
nation (R?) of 0.81, a root mean square error (RMSE) of 48.23 ug m~3, a symmetric mean
absolute percentage error (SMAPE) of 62.47%, and a normalized RMSE (RMSEnorm) of
2.07 x 1072 on the test sets, significantly outperforming the other models. To provide
a more robust estimation of the model’s predictive performance, we also calculated the
95% confidence intervals for the RMSE using bootstrapping methods, which ranged from
28.94 pg m—3 to 55.19 ug m~3. This indicates that 95% of the predictions are expected
to fall within this range, adding a measure of reliability to our results. The SMAPE and
RMSEnorm metrics offer more stable insights compared to the mean absolute percentage
error (MAPE), especially for skewed or heteroscedastic data, as they are less sensitive to
low values and normalize the error relative to the data range.

Table 3. Performance comparison of machine learning models.

Model Name MSE (:{gl\f‘i) MAE R? M(‘.',’/:I;E S“;{,;':‘)PE RMSEnorm
SVR 2570.33 50.70 27.96 0.79 221.43 81.79 4.23 x 102

PR 3445.14 58.70 29.52 0.72 231.03 106.85 2.29 x 1072

DT 4254.76 65.23 30.48 0.65 220.86 77.52 4.32 x 1072
GBDT 2504.75 50.05 24.40 0.80 235.28 82.25 2.08 x 102
RF 2326.23 48.23 20.25 0.81 129.95 62.47 2.07 x 1072

The high MAPE (129.95%) reflects the logarithmic concentration distribution: for low-
concentration samples (<50 pg m~2), an absolute error of 10 pg m ™~ results in a relative
error exceeding 20%. When samples with concentrations below 100 g m~3 are excluded,
the MAPE decreases to 35.2%, suggesting that MAPE may be better suited for hetero-
geneous datasets. To provide a more comprehensive evaluation of model performance,
especially in the presence of skewed or heteroscedastic data, we also introduced SMAPE
and the RMSEorm. The SMAPE, which is less sensitive to low values and provides a more
balanced measure of error, was calculated to be 62.47%. The RMSE,orm, which normalizes
the RMSE by data range, was found to be 2.07 x 10~2. These metrics offer a more stable
and nuanced understanding of the model’s performance.

The RF algorithm has two core strengths:

(1) Anti-overfitting capability: This method integrates multiple decision trees and
employs voting to reduce noise interference, resulting in less than a 5% difference in R?
between the training and test sets.

(2) Nonlinear modeling capability: It adaptively captures the complex interactions
among PID signals, temperature, and humidity (e.g., higher temperatures accelerate VOC
volatility, while higher humidity suppresses PID ionization efficiency).

In comparison, the other models exhibit significant limitations: SVR, despite its
multivariate adaptability, is restricted by the use of linear kernel function (R? = 0.79;
MAPE = 221.43%; RMSEorm = 4.23 X 10’2), which hampers its ability to fit the nonlinear
characteristics inherent in environmental data. PR can model nonlinear relationships
through higher-order terms (R2 =0.72; RMSE = 58.70 pg m 3, RMSEnorm = 2.29 X 10*2),
but it is prone to overfitting, resulting in poor generalizability (RMSE = 58.70 pug m—3). DT,
although highly interpretable with visualizable feature importance, lacks model complexity
(R? = 0.65) and is unable to handle the coupling effects of multiple variables. GBDT’s
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residual iterative optimization (R2 = 0.80; RMSEorm = 2.08 x 10’2), but still underperform
compared to RF in fitting high-concentration samples.

By incorporating SMAPE and RMSEorm into our evaluation framework, we provide
a more stable and comprehensive assessment of model performance, which is crucial for
regulatory and decision-making purposes.

In our study, we constructed residual plots (Figure 3) and confusion matrices (Figure 4)
to evaluate the performance of various machine learning models. The residual plots assess
predictive accuracy by comparing the differences between the predicted values and actual
measurements of VOC mass concentrations. The confusion matrices illustrate how each
model classifies VOCs into low-, medium-, and high-concentration categories, thereby eval-
uating their predictive capabilities across different concentration levels. Figure 3 displays
the residual plots for five machine learning models, including GBT, RE, SVR, PR, and DT.
These plots assess the predictive performance of the models by comparing the differences
between the predicted values and the actual measurements of VOC mass concentrations.

Residual Plot for GBDT Residual Plot for RF Residual Plot for PR
3 . 1% . 51200
% 1000 % 1000 %
5 5 5 1000
9 800 0 800 0
= & & 800
~ 600 = 600 —
g 400 g g o0
3] O 400 Q
A 200 % 3 0
2 = 200 2
© ®, © 0 ©
=} Jg%2ag0 R AP0 o | 3 K S 200
2 o 2 ol - I
3 : g : L :
=2l
00 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Predicted Values (GBDT) Predicted Values (RF) Predicted Values (PR)
Residual Plot for DT Residual Plot for SVR
E 1200 E 1200
2 9
§ 1000 @1000
T 800 S 800
3 600 2 600
o 9]
< 400 < 400
o . w
g 200 T § 200 -
7 ol-dffe 7 ot
g i : o O
-4 14
0 100 200 300 400 500 600 700 0 200 400 600 800
Predicted Values (DT) Predicted Values (SVR)

Figure 3. Comparison of model performance using residual plots. This figure displays residual
plots for five machine learning models: GBDT, RE, PR, DT, and SVR. Each subplot illustrates the
distribution of residuals between the predicted values and the actual TVOC concentrations. The
blue dots represent the residuals for each prediction made by the model, which are the differences
between the actual TVOC concentrations and the predicted values. The red line represents the line
where the residuals equal zero, indicating perfect predictions where the actual values match the
predicted values. The closer the blue dots are to this line, the better the model’s performance.

The plots reveal that the GBT, RF, and SVR models have residuals that are more
randomly distributed around the zero line, with most residuals clustering near this line.
This pattern indicates that these models exhibit relatively good accuracy in predicting
VOC concentrations. However, the residual plots for the PR and DT models display some
systematic biases, particularly at the higher end of the predicted values, suggesting that
these models may have limitations when predicting high VOC concentration levels.

The residual plot for the DT model, in particular, displays a distinct funnel shape,
suggesting that the model produces larger errors when predicting lower concentrations
and smaller errors when predicting higher concentrations. Meanwhile, the residual plot for
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the PR model reveals a trend of increasing residuals as predicted values rise, potentially
indicating instability in the model when handling high-concentration data.
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Figure 4. Comparison of model performance using confusion matrices. This figure presents the
classification accuracy of five machine learning algorithms for VOC monitoring through confusion
matrices. The algorithms include GBDT, RF, PR, DT, and SVR, with the goal of evaluating their
predictive performance across various concentration levels.

In our study, we created confusion matrices (see Figure 4) to illustrate how different
machine learning models convert VOC volume fractions into mass concentrations. These
matrices provide a clear depiction of how each model classifies VOCs into low-, medium-,
and high-concentration categories.

The confusion matrices in Figure 4 demonstrate that the RF model performs best. It
achieves the highest accuracy and the lowest error rate across all concentration levels. This
aligns with our earlier findings, where the RF model outperformed others in key metrics
such as R?, RMSE, and SMAPE.

These matrices also reveal the strengths and weaknesses of each model. For example,
the DT and GBDT models struggle with medium concentration levels, possibly due to
difficulties in handling complex relationships. The SVR and PR models underperform
compared to the RF model across all categories, further highlighting the RF model’s
effectiveness in managing varied emissions in industrial settings.

3.2.2. Analysis of the Impact of Meteorological Factors

In this study, the feature importance of five machine learning algorithms was analyzed.
As shown in Figure 5, there are significant differences in the impact of meteorological
factors across different models. In the RF model, WD and WS are the most important
features, with WD being more influential than WS. This indicates that RF can effectively
utilize WD information to optimize the prediction of diffusion paths. The DT model is most
sensitive to WD, with its importance ranking higher than temperature and WS, reflecting
the high sensitivity of the single-tree structure to changes in WD. In the GBDT model, the
importance of WD and temperature is comparable and higher than that of WS, suggesting
that GBDT suppresses noise interference to some extent through residual optimization.
In contrast, SVR and PR models exhibit lower sensitivity to meteorological factors, with
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generally low importance values for each feature. This may be due to the limitations of
linear or low-order kernel functions in capturing nonlinear relationships.
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Figure 5. Assessment of the importance of meteorological factors by various models.

Overall, the RF model demonstrates significant advantages in handling complex en-
vironmental data, particularly in terms of multivariate adaptability and nonlinear fitting
capabilities. Future research can further explore multi-sensor fusion and dynamic cali-
bration mechanisms to enhance model performance and generalizability. Additionally,
understanding the differences in model sensitivity to meteorological factors is crucial for
optimizing environmental monitoring models and improving prediction accuracy.

3.3. Case Analysis of High-Concentration Pollution Events

To enable readers to quickly evaluate real-world model performance, Figure 6 presents
a continuous one-week comparison (2-8 March 2022) of VOC concentrations measured
using GC-FID and PID sensors calibrated using five different algorithms. Visual inspection
reveals that the RF model (red line) stays within this band more consistently than the
other algorithms, while also accurately capturing sharp emission peaks with the small-
est deviation.

One-week comparison
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Figure 6. One-week comparison of VOC concentrations (ug m—3) measured by GC-FID (reference)
versus PID calibrated with RF, GBDT, DT, PR, and SVR (2-8 March 2022). The RF (red line) shows
the closest alignment with GC-FID, particularly during high-humidity daytime conditions. Data
gaps (approximately 30%) correspond to scheduled maintenance periods of the GC-FID instrument,
during which no reference data were available.
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To further validate the effectiveness of the RF model in practical applications, we
conducted a detailed analysis of a specific pollution event shown in Figure 6. This event
took place around 9:00 PM on 4 March 2022, when the PID device detected a sudden
spike in VOC volume fraction, reaching 869.76 nmol mol~1. The model converted the PID
measurements into a mass concentration of 1223.4 pgm 2 and compared these values to
the actual measurements from the GC-FID system.

The pollution event occurred near a chemical plant at Site A, with primary emissions
comprising aromatic hydrocarbons and alkanes. During the event, meteorological con-
ditions included a temperature of 6.9 °C, 74% humidity, wind speed of 2.2 m s71, and
wind direction of 83.1°. These factors contributed to the local accumulation of VOCs, caus-
ing a sudden spike in their concentration. The GC-FID recorded a peak concentration of
1967.68 g m~3, with 1,3-butadiene as the dominant compound (787.3 j1g m~3, representing
40% of the total concentration), as shown in Table 4. This unusually high concentration of
1,3-butadiene was not observed in the hours before or after the event, which were mainly
characterized by typical species such as toluene, xylene, and isopentane. The rarity of such
elevated 1,3-butadiene levels in the training data resulted in the less accurate calibration of
the RF model for this compound.

Table 4. Time series of concentration pollution event. During the pollution event on 4 March 2022,
the model underestimated peak concentrations by 37.8% (1223.4 vs. 1967.68 ug m3).

Time PID Predicted_FID FID Main Pollutant Main Pollutant
(nmol mol—1) (ug m—3) (ugm—3) (ug m—3) Type

4 March 2022 20 117.44 4479 445.95 128.37 Toluene
4 March 2022 21 869.76 12234 1967.68 787.30 1,3-Butadiene
4 March 2022 22 91.99 420.1 305.35 65.09 Isoprene
4 March 2022 23 30.28 76.5 119.83 22.23 Xylene
5 March 2022 00 106.31 434.1 462.49 253.18 Isopentane
5 March 2022 01 82.61 319.6 362.61 74.84 Xylene
5 March 2022 02 96.58 459.6 426.27 103.66 Xylene
5 March 2022 03 161.16 708.6 698.46 272.94 Isopentane
5 March 2022 04 191.02 858.8 803.06 386.08 Isopentane
5 March 2022 05 117.00 453.4 494.36 98.79 Isopentane

3.4. Model Generalizability and Cross-Scenario Challenges
3.4.1. Cross-Site and Cross-Seasonal Validation

To comprehensively assess the model’s generalizability, this study collected data from
Sites B and C (from January to May 2023). The data from Site A during the winter of
2022 (from December 2021 to March 2022) were used as a basis to verify the model’s adapt-
ability to different seasons and emission characteristics. After normalizing the evaluation
indicators for the three sites, the radar chart (Figure 7) clearly shows that the RF model
outperformed all other models, achieving the highest scores in most evaluation metrics,
especially MSE, RMSE, MAE, and R?, while maintaining a relatively low MAPE. GBDT also
demonstrated strong performance, with high scores in most metrics, although its MAPE
was relatively high. In contrast, SVR consistently performed poorly across all charts and
indicators, with generally low scores. PR and DT showed mediocre performance, with PR
outperforming SVR, but still lagging behind DT, GBDT, and RF. Overall, the radar chart
clearly indicates that RF was the best-performing model, followed by GBDT, while SVR
consistently underperformed. Given RF’s superior performance, it was used uniformly for
modeling and analysis at all three sites.
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Figure 7. Comparison of indicators for different models.

3.4.2. Generalizability Analysis—Pollutant Concentration

According to the investigation, the emission sources at Site A are primarily concen-
trated in pharmaceuticals, coatings, and fine chemicals, which have high VOC emissions
and relatively concentrated sources. In contrast, Site B’s emission sources include water
treatment, chemical manufacturing, and new materials, while Site C’s sources are domi-
nated by mechanical processing and residential activities. Sites B and C are located farther
from the emission sources. These differences result in variations in VOC concentrations.
Analysis of the RF models at the three sites (Table 5) shows that Site A exhibits higher
concentrations with extreme values, where the model performs well, yielding a higher R?
value. However, this may obscure prediction errors at low-value points, leading to a higher
RMSE. Additionally, monitoring at Site A was conducted in winter, whereas monitoring at
Sites B and C occurred in summer; this discrepancy may be related to temperature-induced
baseline drift of the PID [17]. Future iterations should incorporate seasonal calibration
cycles. In comparison, Sites B and C have lower concentrations, with data closer to the
lower limit of the model’s prediction range, resulting in larger relative errors and lower
R? values. Nevertheless, these sites have lower RMSE values, indicating smaller absolute
prediction errors.

Table 5. Cross-site analysis of VOC concentrations and model performance.

Site Name

Device Name
Mean (ug m~3)
Training Set
Testing Set
R2
RMSE (ug m~3)
MAE (ug m~)
MeanCV
Atm
Temp (°C)
Hum
WS
WD Standard Deviation

Site A Site B Site C
GC-FID A-3 Prediction GC-FID A-1 Prediction GC-FID A-2 Prediction
479 + 110.6 38.6 - 82.6 28.3 +31.3 282 +22.6 223 +27.6 204 +17.6
914 1364 1253
914 1364 1253
0.81 0.69 0.68
48.3 174 20.4
20.5 8.5 10.6
0.80 £ 0.02 0.67 = 0.04 0.66 £ 0.05
1024.3 5.2 10134 + 4.1 1011.9 4.3
6.9 3.7 20.2 £3.9 20.1 £4.1
74.0 £18.1 68.2 £ 14.0 70.8 & 15.7
22+12 05405 12+0.7
1.25 1.8 1.22

To investigate the model’s dependence on input features, this study analyzed tem-
perature, humidity, wind direction, and wind speed to assess their impacts on prediction
accuracy (Figure 8).
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Figure 8. Comparison of feature importance and wind rose diagram.

Figure 8 (left) compares the feature importance across the three sites (A, B, and C).
WDsin and WDcos represent the sine and cosine components of wind direction, respectively.
These features are used because they effectively capture the periodicity and directionality
of wind direction by converting angular data into a numerical format that is easier for the
model to process. This approach not only resolves the periodic boundary issue inherent in
angular data, but also enhances the numerical stability and interpretability of the model,
thereby improving the quantification of wind direction’s impact. Consequently, the model
can more accurately understand and predict the influence of wind direction on target
variables, such as VOC diffusion. The right panel displays a wind rose diagram, illustrating
the frequency distribution of wind direction at each site. The analysis reveals that wind
direction features (WDsin and WDcos) have the greatest impact on the target variable at
Site B, where the dominant wind direction is easterly (90°), confirming the critical role of
wind direction in VOC diffusion. In contrast, at Sites A and C, the dominant wind direction
is westerly (270°), but the wind speed (WS) feature contributes more significantly to the
target variable at these locations.

In summary, the generalizability of the RF model is limited by two factors: (1) differ-
ences in regional emission characteristics, as the PID response characteristics of various
VOC components have not been fully modeled; and (2) the coupling effects of meteorologi-
cal conditions, with easterly winds (90°) at Site B promoting pollutant dispersion, while
westerly winds (270°) at Site A lead to local accumulation. Future work could involve trans-
fer learning to extract common features across regions or incorporating emission source
types as categorical variables to improve prediction accuracy in heterogeneous scenarios.

4. Discussion

The present study demonstrates that integrating a low-cost PID with a RF-based dy-
namic calibration framework can reliably convert VOC volume fractions (nmol mol~1) to
mass concentrations (pg m~3) with a response time on the order of minutes and at approx-
imately one-tenth the cost of conventional GC-FID systems. The RF model achieved the
best overall performance (R? = 0.81; RMSE = 48.23 ug m~3), outperforming four alternative
algorithms, and maintained robustness across three industrial parks with heterogeneous
emission profiles (R? = 0.68-0.69). Two mechanistic insights emerged: First, the RF model’s
ensemble structure effectively suppressed PID signal noise caused by variable ionization
potentials of multi-component VOC mixtures, a known limitation of single-coefficient
calibration [17]. Second, the nonlinear interactions between meteorological variables (wind
direction, wind speed, temperature, and humidity) and PID response were successfully
captured, confirming that environmental covariates are indispensable for accurate mass
conversion in dynamic industrial settings.

Our R? value of 0.81 aligns with recent machine-learning-enhanced VOC studies
(0.80-0.85) that combined sensor arrays with meteorological data [25,27], and surpasses the
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typical 0.40-0.60 range reported for static PID calibrations [17]. Additionally, the SMAPE
of 62.47% and normalized RMSE of 2.07 x 10~2 further validate the model’s robustness
and stability across diverse emission profiles and meteorological conditions. These metrics
provide a more comprehensive evaluation of the model’s performance, addressing the
limitations of MAPE in skewed or heteroscedastic data. Importantly, our cost reduction
(~90%) exceeds the 50-70% savings reported for simplified GC systems [16], highlighting
the economic feasibility of the proposed framework for large-scale industrial deployment.

Five machine learning models were used to evaluate feature importance. The analysis
revealed that wind direction and wind speed are the dominant predictors, explaining 38%
and 25% of the variance, respectively, in the RF model. The negative correlation between
VOC concentration and wind direction (r = —0.17) observed at Site A reflects the combined
effects of upwind emission sources and topographic channeling.

During a sudden emission event (>1500 g m~3), the RF model underestimated peak
concentrations by 37.8%. This bias is attributed to (i) a scarcity of high-concentration
samples in the training set (<0.5%) and (ii) nonlinear PID signal saturation at elevated
levels. Similar saturation artifacts have been reported in PID-based soil-flux systems [27].
While the overall MAPE decreased from 129% to 35% after excluding low-concentration
samples (<100 pg m~3), the high-end bias underscores the need for stratified sampling or
transfer learning augmentation in future model updates.

Seasonal factors are likely to have a significant impact on model performance; however,
direct comparisons of model performance across different seasons at the same site are not
feasible. Variations in temperature and humidity can affect the performance of PID: lower
temperatures may cause baseline drift and reduced sensitivity, while higher humidity
levels can impair ionization efficiency. These effects tend to be more pronounced during
winter and summer. Additionally, seasonal meteorological conditions, such as temperature
inversions, can influence pollutant dispersion and the representativeness of monitoring
results. Emission control policies implemented in winter may also alter the distribution of
VOC concentrations, increasing the proportion of low-concentration samples and thereby
affecting the model’s performance and error distribution.

Cross-validation at Sites B and C yielded R? values of 0.68 to 0.69, slightly lower
than the 0.81 observed at Site A. This decrease is attributed to lower baseline concentra-
tions (mean 40-90 pg m~3 versus 200 pg m~3 at Site A) and differing emission profiles
(mechanical processing versus pharmaceutical /chemical industries). Nonetheless, RMSE
values (2845 p1g m~3) remained within acceptable regulatory limits, indicating that the RF
model retains practical utility across diverse industrial contexts. Incorporating categorical
source-type variables or seasonal calibration cycles could further enhance generalizability.

The developed framework provides a near-real-time cost-effective solution for VOC
surveillance in industrial parks. Its minute-level latency enables rapid detection of fugitive
emissions, facilitating prompt mitigation measures and supporting dynamic health-risk
early-warning systems. A 90% cost reduction allows for the deployment of dense sensor net-
works, thereby enhancing spatial coverage for source-apportionment studies. Integration
of the RF model into lightweight edge devices (Raspberry Pi-class) has been pilot-tested,
demonstrating that it maintains prediction accuracy with inference times under 2 s, paving
the way for autonomous grid-based monitoring.

5. Conclusions
5.1. Summary of Conclusions

Compared to the conventional single-coefficient PID calibration method (average
R? > 0.40 in our preliminary tests [17]), the RF model demonstrates a 97.6% improvement
in prediction accuracy R? = 0.81, a SMAPE = 62.47%, and RMSEporm = 2.07 x 1072, while
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maintaining comparable hardware costs. These additional metrics provide a more ro-
bust evaluation of the model’s performance, particularly in the presence of skewed or
heteroscedastic data. This underscores the necessity of multivariate dynamic calibration in
industrial applications.

This study developed a low-cost, real-time monitoring system for VOC mass concen-
tration in industrial parks by integrating a PID with an RF algorithm. The main conclusions
are as follows:

(1) Validation of the correlation between PID and GC-FID monitoring data: In long-
term comparative tests conducted at a typical industrial park (Site A), despite the influence
of differences in ionization potentials (IP) of mixed gases on PID signals, the volume
fractions (nmol mol~!) of VOCs measured using the PID device showed a significant
correlation with those measured using the GC-FID system (highest R? = 0.92), indicating
that PIDs can effectively capture the dynamic trends of VOC emissions in real-time.

(2) Optimization efficacy and advantage mechanism of the RF algorithm: By integrat-
ing multi-dimensional data, such as PID volume fractions, temperature, humidity, and
wind speed, the RF model successfully achieved precise conversion from volume fraction
(nmol mol ') to mass concentration (g m~3). Its prediction accuracy was significantly
superior to that of other algorithms. The core strengths of the RF model lie in its ensemble
learning mechanism, which suppresses overfitting in individual trees (with less than a 5%
difference in R? between the training and test sets), and its nonlinear modeling capability,
which dynamically corrects for meteorological interferences.

(3) Model generalizability and limitations across scenarios: At Sites B and C, which
have heterogeneous emission corrects for dominated by residential and light industrial
sources, the model continued to demonstrate strong predictive performance, achieving
R? values reaching 0.68-0.69. This fully validates the model’s adaptability in the region.
However, there are some limitations in high-concentration predictions, especially during
sudden pollution events, due to the scarcity of high-value samples in the training dataset.

5.2. Future Outlook

This study innovatively developed a rapid-response monitoring system based on a
PID sensor to address the technical bottlenecks in online VOC monitoring. Compared to
traditional GC-MS methods, the system shows significant improvements in key perfor-
mance indicators: the real-time response speed has been accelerated to the minute level,
which is a 95% reduction from the 30-60 min required by GC-MS. Meanwhile, monitoring
costs have been cut to 10% of those of conventional solutions, with equipment purchase
costs being below CNY 50,000. However, due to the hardware limitations of the current
equipment, we opted for the relatively better-performing Random Forest algorithm. In
some cases, other algorithms might perform better. In future research, we will further
explore the potential of other algorithms and combine them with the hardware capabilities
of new equipment. For example, combining Random Forest with LSTM networks could
offer greater advantages. In addition, optimizing hyperparameters and feature selection
can also enhance model performance. To address these technical shortcomings and further
improve the model’s generalizability, some specific improvements include the following:

Incorporation of SMAPE and RMSEnorma into the model evaluation framework to
provide more stable insights across diverse datasets.

Development of feature-level data fusion algorithms, including the construction of
dynamic fingerprint spectra for typical VOCs in industrial parks (aromatic hydrocarbons,
alkanes, and halogenated hydrocarbons) and the establishment of a transfer learning frame-
work with a pre-training and fine-tuning models to adapt to complex on-site conditions.
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Integration of high-precision temperature and humidity compensation modules, in-
cluding the development of transfer function compensation models, research and devel-
opment of embedded dynamic calibration systems, and design of dual-channel reference
measurement structures with adjustable zero-point calibration intervals (5-30 min) to
suppress baseline drift.

Early-warning mechanisms, including developing a two-level early-warning mecha-
nism for concentration exceedances, with thresholds set at 500 ug m~3 (primary warning)
and 800 pg m? (secondary warning). Compared to the 1000 pg m 2 alarm threshold of the
GC-FID, this system offers early warning tens of minutes in advance.
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