Spectral and Geometrical Guidelines for Low-Concentration Oil-in-Seawater Emulsion Detection Based on Monte Carlo Modeling
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, L.; Yang, Y.; Maheshwari, M. Strain prediction for critical positions of FPSO under different loading of stored oil using GAIFOA-BP neural network. Mar. Struct. 2020, 72, 102762. [Google Scholar] [CrossRef]
- Vidal, P.C.J.; González, M.O.A.; Melo, D.C.; Ferreira, P.O.; Sampaio, P.G.V.; Lima, L.O. Conceptual framework for the decommissioning process of offshore oil and gas platforms. Mar. Struct. 2020, 85, 103262. [Google Scholar] [CrossRef]
- Piscopo, V.; Sciacca, A. Improved outflow model for oil tankers following collision events and investigation of relevant statistical properties by Monte Carlo simulation. Mar. Struct. 2025, 101, 103779. [Google Scholar] [CrossRef]
- Hercos, V.B.; Ferreira, M.L.R. Risk assessment of the erosive process in the production pipeline of an Wet Christmas Tree as an indicator for inspection request. Mar. Struct. 2025, 101, 103765. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Hu, Y.; Ma, Y.; Li, Z.; Zhang, J. Hyperspectral Marine Oil Spill Monitoring Using a Dual-Branch Spatial Spectral Fusion Model. Remote Sens. 2023, 15, 4170. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, J.; Hu, C.; Zhang, M.; Sun, S.; Liu, Y. Optical Interpretation of Oil Emulsions in the Ocean—Part II: Applications to Multi-band Coarse-resolution Imagery. Mar. Sci. Fac. Publ. 2020, 242, 111778. [Google Scholar] [CrossRef]
- Zhong, Z.; You, F. Oil spill response planning with consideration of physicochemical evolution of the oil slick: A multiobjective optimization approach. Comput. Chem. Eng. 2011, 35, 1614–1630. [Google Scholar] [CrossRef]
- Fingas, M. Oil Spill Science and Technology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Fingas, M. The Challenges of Remotely Measuring Oil Slick Thickness. Remote Sens. 2018, 10, 319. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C.E. Review of Oil Spill Remote Sensing. In Proceedings of the 45th AMOP Technical Seminar on Environmental Contamination and Response, Conference Paper, Edmonton, AB, Canada, 6–8 June 2023; pp. 435–469. [Google Scholar]
- Sun, S.; Chen, Y.; Chen, X.; Ai, B.; Zhao, J. Optical discrimination of emulsified oil in optically complex estuarine waters. Mar. Pollut. Bull. 2022, 184, 114214. [Google Scholar] [CrossRef] [PubMed]
- Conolly, R.M.; Conolly, F.N.; Hayes, M.A. Oil spill from the Era: Mangroves taking eons to recover. Mar. Pollut. Bull. 2020, 153, 110965. [Google Scholar] [CrossRef] [PubMed]
- Guzman, H.M.; Kaiser, S.; Weil, E. Assessing the long-term effects of a catastrophic oil spill on subtidal coral reef communities off the Caribbean coast of Panama (1985–2017). Mar. Biodivers. 2020, 50, 28. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.S.; Abbas, S.; Kwok, C.Y.T.; Nichol, J.; Lee, K.H.; Tang, D.; Pun, L. Detection and Monitoring of Marine Pollution Using Remote Sensing Technologies. In Monitoring of Marine Pollution 2019; IntechOpen: London, UK, 2019; p. 81657. [Google Scholar]
- Zhang, J.; Xiang, Y.; Wang, C.; Chen, Y.; Tjin, S.C.; Wei, L. Recent Advances in Optical Fiber Enabled Radiation Sensors. Sensors 2022, 22, 3. [Google Scholar] [CrossRef]
- Lednicka, B.; Otremba, Z.; Piskozub, J. Modelling the upwelling radiance detected in a seawater column for oil-in-water emulsion tracking. Sci. Rep. 2023, 13, 23098. [Google Scholar] [CrossRef]
- Lednicka, B.; Otremba, Z.; Piskozub, J. Light penetrating the seawater column as the indicator of oil suspension—Monte Carlo modelling for the case of the southern Baltic Sea. Sensors 2023, 23, 1175. [Google Scholar] [CrossRef]
- Lednicka, B.; Otremba, Z.; Piskozub, J. Vector irradiance modelling in a seawater column for assessing the detection capabilities of an oil-in-water emulsion. Opt. Express 2024, 32, 29424–29435. [Google Scholar] [CrossRef]
- Dera, J. Marine Physics, 2nd ed.; PWN 2003; Elsevier: Warszawa, Poland, 1992; p. 541. (In Polish) [Google Scholar]
- Cox, C.; Munk, W.H. Statistics of the sea surface derived from sun glitter. J. Mar. Res. 1954, 13, 198–227. [Google Scholar]
- Sagan, S. The Inherent Water Optical Properties of Baltic Waters; Rozprawy i Monografie 2008; IOPAN Sopot: Sopot, Poland, 2008; p. 244. (In Polish) [Google Scholar]
- Ohi, N.; Makinen, C.P.; Mitchell, R.; Moisan, T.A. Absorption and Attenuation Coefficients Using WET Labs Ac-S in the Mid-Atlantic Bight: Field Measurements and Data Analysis; NASA/TM–2008–214157; Wallops Coastal Ocean Observation Laboratory Project Document Series 3; NASA: Washington, DC, USA, 2008. [Google Scholar]
- Lin, Z.; Lee, Z.; Ondrusek, M.; Liu, X. Hyperspectral absorption and backscattering coefficients of bulk water retrieved from a combination of remote-sensing reflectance and attenuation coefficient. Opt. Express 2018, 26, 157–177. [Google Scholar] [CrossRef]
- Röttgers, R.; McKee, D.; Woźniak, S.B. Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters. Methods Oceanogr. 2013, 7, 21–39. [Google Scholar] [CrossRef]
- McKee, D.; Cunningham, A.; Craig, S. Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom. Appl. Opt. 2003, 42, 4369–4374. [Google Scholar] [CrossRef] [PubMed]
- Ogashawara, I.; Mishra, D.R.; Gitelson, A.A. Remote Sensing of Inland Waters: Background and Current State of the Art. In Bio-Optical Modeling and Remote Sensing of Inland Waters; Elsevier Inc.: Amsterdam, The Netherlands, 2017; p. 24. [Google Scholar]
- Woźniak, S.B.; Meler, J. Modelling Water Colour Characteristics in an Optically Complex Nearshore Environment in the Baltic Sea; Quantitative Interpretation of the Forel-Ule Scale and Algorithms for the Remote Estimation of Seawater Composition. Remote Sens. 2020, 12, 2852. [Google Scholar] [CrossRef]
- Deutsch, E.S.; Cardille, J.A.; Koll-Egyed, T.; Fortin, M.J. Landsat 8 Lake Water Clarity Empirical Algorithms: Large-Scale Calibration and Validation Using Government and Citizen Science Data from across Canada. Remote Sens. 2021, 13, 1257. [Google Scholar] [CrossRef]
- Lednicka, B.; Kubacka, M.; Freda, W.; Haule, K.; Ficek, D.; Sokólski, M. Multi-Parameter Algorithms of Remote Sensing Reflectance, Absorption and Backscattering for Coastal Waters of the Southern Baltic Sea Applied to Pomeranian Lakes. Water 2023, 15, 2843. [Google Scholar] [CrossRef]
Wavelength (λ) [nm] | Layer 1 (0–5 m) | Layer 2 (5–30 m) | ||
---|---|---|---|---|
Absorption Coefficient (a) [m−1] | Scattering Coefficient (b) [m−1] | Absorption Coefficient (a) [m−1] | Scattering Coefficient (b) [m−1] | |
412 | 0.596 | 0.63 | 0.536 | 0.39 |
440 | 0.398 | 0.60 | 0.348 | 0.37 |
488 | 0.218 | 0.60 | 0.178 | 0.37 |
510 | 0.188 | 0.60 | 0.158 | 0.37 |
532 | 0.163 | 0.60 | 0.143 | 0.37 |
555 | 0.149 | 0.59 | 0.139 | 0.37 |
650 | 0.391 | 0.54 | 0.381 | 0.34 |
676 | 0.517 | 0.51 | 0.497 | 0.32 |
Wavelength (λ) [nm] | Absorption Coefficient (ao) [m−1] | Scattering Coefficient (bo) [m−1] |
---|---|---|
412 | 0.299 | 7.81 |
440 | 0.114 | 7.97 |
488 | 0.052 | 7.98 |
510 | 0.042 | 7.95 |
532 | 0.029 | 7.91 |
555 | 0.029 | 7.87 |
650 | 0.0125 | 7.60 |
676 | 0.0087 | 7.48 |
λi/λi | 1 m | λi/λi | 2 m | λi/λi | 5 m | λi/λi | 10 m |
---|---|---|---|---|---|---|---|
555/412 | 1.502 | 555/412 | 10.094 | 555/412 | 1103.417 | 555/412 | 194,865.181 |
532/412 | 1.325 | 532/412 | 8.376 | 532/412 | 747.955 | 532/412 | 115,773.694 |
650/412 | 1.082 | 510/412 | 6.085 | 510/412 | 393.895 | 510/412 | 44,999.828 |
510/412 | 1.063 | 650/412 | 5.856 | 650/412 | 309.666 | 488/412 | 14,288.185 |
488/412 | 0.827 | 488/412 | 4.184 | 488/412 | 182.514 | 650/412 | 10,301.518 |
676/440 | 0.785 | 676/440 | 3.368 | 676/440 | 86.555 | 555/440 | 1736.063 |
676/412 | 0.785 | 676/412 | 3.368 | 676/412 | 86.555 | 676/440 | 1415.364 |
555/440 | 0.648 | 555/440 | 2.763 | 555/440 | 73.664 | 676/412 | 1415.364 |
532/440 | 0.555 | 532/440 | 2.233 | 532/440 | 48.990 | 532/440 | 1022.643 |
650/440 | 0.446 | 650/440 | 1.546 | 510/440 | 24.511 | 510/440 | 386.106 |
510/440 | 0.416 | 510/440 | 1.521 | 650/440 | 20.056 | 488/440 | 117.189 |
488/440 | 0.296 | 488/440 | 0.962 | 488/440 | 10.585 | 650/440 | 88.965 |
440/412 | 0.224 | 440/412 | 0.692 | 440/412 | 6.529 | 440/412 | 83.961 |
555/488 | 0.154 | 555/488 | 0.395 | 555/488 | 2.322 | 555/488 | 8.374 |
532/488 | 0.113 | 532/488 | 0.274 | 532/488 | 1.347 | 532/488 | 4.441 |
555/510 | 0.084 | 555/510 | 0.190 | 555/510 | 0.756 | 555/510 | 1.892 |
650/488 | 0.081 | 650/488 | 0.178 | 650/488 | 0.503 | 510/488 | 1.034 |
532/510 | 0.051 | 532/510 | 0.110 | 510/488 | 0.400 | 532/510 | 0.864 |
510/488 | 0.049 | 510/488 | 0.108 | 532/510 | 0.370 | 650/488 | 0.271 |
676/488 | 0.036 | 676/488 | 0.065 | 555/532 | 0.149 | 555/532 | 0.260 |
650/510 | 0.031 | 650/510 | 0.064 | 650/510 | 0.119 | 650/510 | 0.017 |
555/532 | 0.026 | 555/532 | 0.052 | 676/488 | 0.083 | 676/488 | 0.015 |
676/510 | 0.001 | 676/510 | 0.004 | 676/510 | −0.002 | 676/510 | −0.008 |
650/532 | −0.010 | 650/532 | −0.011 | 650/532 | −0.024 | 676/555 | −0.009 |
676/650 | −0.026 | 676/532 | −0.037 | 676/532 | −0.032 | 676/532 | −0.011 |
650/555 | −0.029 | 650/555 | −0.039 | 676/555 | −0.034 | 650/555 | −0.034 |
676/532 | −0.031 | 676/650 | −0.041 | 650/555 | −0.051 | 650/532 | −0.035 |
676/555 | −0.044 | 676/555 | −0.051 | 676/650 | −0.057 | 676/650 | −0.050 |
λi/λi | 1 m | λi/λi | 2 m | λi/λi | 5 m | λi/λi | 10 m |
---|---|---|---|---|---|---|---|
555/412 | 8.409 | 555/412 | 47.131 | 555/412 | 4962.354 | 555/412 | 1,892,457.173 |
532/412 | 8.356 | 532/412 | 35.628 | 532/412 | 2622.654 | 532/412 | 1,063,963.351 |
510/412 | 5.409 | 510/412 | 23.784 | 510/412 | 1245.869 | 510/412 | 378,443.283 |
650/412 | 4.806 | 650/412 | 19.636 | 650/412 | 659.915 | 488/412 | 104,146.424 |
488/412 | 3.941 | 488/412 | 14.620 | 488/412 | 503.482 | 650/412 | 50,914.571 |
676/440 | 2.859 | 676/440 | 8.780 | 555/440 | 154.984 | 676/440 | 5900.442 |
676/412 | 2.859 | 676/412 | 8.780 | 676/440 | 147.071 | 676/412 | 5900.442 |
532/440 | 1.228 | 555/440 | 5.418 | 676/412 | 147.071 | 555/440 | 3639.459 |
440/412 | 1.088 | 532/440 | 3.875 | 532/440 | 95.608 | 532/440 | 2015.354 |
650/440 | 0.882 | 650/440 | 2.835 | 510/440 | 42.350 | 510/440 | 680.630 |
555/440 | 0.766 | 510/440 | 2.419 | 650/440 | 27.178 | 440/412 | 426.386 |
510/440 | 0.521 | 440/412 | 2.125 | 488/440 | 16.106 | 488/440 | 175.706 |
488/440 | 0.437 | 488/440 | 1.476 | 440/412 | 11.002 | 650/440 | 99.796 |
650/488 | 0.154 | 650/488 | 0.262 | 555/488 | 2.207 | 555/488 | 9.607 |
676/488 | 0.149 | 555/488 | 0.202 | 532/488 | 1.142 | 532/488 | 4.738 |
532/488 | 0.130 | 676/488 | 0.162 | 555/510 | 0.668 | 555/510 | 1.883 |
650/510 | 0.125 | 650/510 | 0.159 | 650/488 | 0.592 | 510/488 | 0.906 |
532/510 | 0.125 | 555/510 | 0.119 | 532/510 | 0.301 | 532/510 | 0.813 |
676/510 | 0.114 | 676/510 | 0.099 | 510/488 | 0.243 | 650/488 | 0.298 |
650/555 | 0.084 | 650/532 | 0.095 | 650/510 | 0.221 | 555/532 | 0.221 |
676/555 | 0.075 | 532/488 | 0.085 | 676/488 | 0.132 | 650/510 | 0.065 |
676/650 | 0.070 | 650/555 | 0.063 | 555/532 | 0.116 | 676/488 | 0.033 |
676/532 | 0.059 | 676/532 | 0.062 | 650/532 | 0.087 | 650/532 | 0.013 |
650/532 | 0.044 | 676/650 | 0.053 | 676/510 | 0.049 | 676/510 | 0.007 |
555/510 | −0.011 | 532/510 | 0.047 | 676/555 | 0.049 | 650/555 | 0.005 |
510/488 | −0.035 | 676/555 | 0.044 | 676/532 | 0.020 | 676/532 | 0.001 |
555/488 | −0.071 | 555/532 | 0.039 | 676/555 | 0.011 | 676/555 | 0.000 |
555/532 | −0.112 | 510/488 | 0.005 | 676/650 | 0.000 | 676/650 | −0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lednicka, B.; Otremba, Z. Spectral and Geometrical Guidelines for Low-Concentration Oil-in-Seawater Emulsion Detection Based on Monte Carlo Modeling. Sensors 2025, 25, 5267. https://doi.org/10.3390/s25175267
Lednicka B, Otremba Z. Spectral and Geometrical Guidelines for Low-Concentration Oil-in-Seawater Emulsion Detection Based on Monte Carlo Modeling. Sensors. 2025; 25(17):5267. https://doi.org/10.3390/s25175267
Chicago/Turabian StyleLednicka, Barbara, and Zbigniew Otremba. 2025. "Spectral and Geometrical Guidelines for Low-Concentration Oil-in-Seawater Emulsion Detection Based on Monte Carlo Modeling" Sensors 25, no. 17: 5267. https://doi.org/10.3390/s25175267
APA StyleLednicka, B., & Otremba, Z. (2025). Spectral and Geometrical Guidelines for Low-Concentration Oil-in-Seawater Emulsion Detection Based on Monte Carlo Modeling. Sensors, 25(17), 5267. https://doi.org/10.3390/s25175267