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Abstract

Environmental perception is crucial for achieving autonomous driving of auxiliary haulage
vehicles in underground coal mines. The complex underground environment and working
conditions, such as dust pollution, uneven lighting, and sensor data abnormalities, pose
challenges to multimodal fusion perception. These challenges include: (1) the lack of a
reasonable and effective method for evaluating the reliability of different modality data;
(2) the absence of in-depth fusion methods for different modality data that can handle sensor
failures; and (3) the lack of a multimodal dataset for underground coal mines to support
model training. To address these issues, this paper proposes a coal mine underground
BEV multiscale-enhanced fusion perception model based on dynamic weight adjustment.
First, camera and LiDAR modality data are uniformly mapped into BEV space to achieve
multimodal feature alignment. Then, a Mixture of Experts-Fuzzy Logic Inference Module
(MoE-FLIM) is designed to infer weights for different modality data based on BEV feature
dimensions. Next, a Pyramid Multiscale Feature Enhancement and Fusion Module (PMS-
FFEM) is introduced to ensure the model’s perception performance in the event of sensor
data abnormalities. Lastly, a multimodal dataset for underground coal mines is constructed to
provide support for model training and testing in real-world scenarios. Experimental results
show that the proposed method demonstrates good accuracy and stability in object-detection
tasks in coal mine underground environments, maintaining high detection performance,
especially in typical complex scenes such as low light and dust fog.

Keywords: autonomous driving; multimodal information fusion; environmental perception;
bird’s-eye view; auxiliary transportation vehicles

1. Introduction

Auxiliary transportation vehicles are one of the important components in underground
coal mine auxiliary haulage systems,which undertakes the transportation tasks of workers,
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equipment, and materials. They directly affect the production efficiency and mining security.
Studying their driverless methods can solve the problems of high personnel input, low
transportation efficiency, and prominent safety hazards that exist in the traditional manual
driving of auxiliary transportation vehicles [1]. However, the underground environment
is complex, and driverless auxiliary transportation vehicles need to be equipped with a
reliable object-detection model to provide information for decision making [2,3].

The environment of underground mine tunnels is complex, as shown in Figure 1. The
surrounding rock of the tunnels is prone to deformation due to ground pressure, posing safety
hazards such as rock falls and roof collapses (Figure 1a), some areas have high dust and fog
concentrations and uneven illumination (Figure 1b), and the tunnels have many slopes and
curves (Figure 1c). Actual measurement data show that in auxiliary transportation vehicle
operation areas, such as tunneling tunnels and return airways, dust mass concentration can
reach up to 500 mg/m?, and most areas have a low illumination of approximately 5 lux. At the
same time, under the influence of mining, the contraction ratio of some tunnel cross-sections
can reach 23% [4-6].The above complex conditions result in poor data quality collected by
sensors. The field of view of a single sensor is insufficient to fully cover the vehicle’s driving
area, increasing the difficulty of sensing the underground environment and placing higher
demands on the robustness and reliability of sensing methods.

Currently, multimodal fusion object-detection models based on BEV have achieved
significant results in the field of autonomous driving. However, existing models are primar-
ily applied to ground-based autonomous driving scenarios, where perception datasets are
abundant and of high quality. When faced with multimodal data of uneven quality under
the adverse conditions of underground environments, existing feature fusion strategies lack
the ability to dynamically perceive the quality of modal data, making it difficult to ensure
model robustness. Additionally, there is currently a lack of multimodal datasets for under-
ground coal mines, limiting research and validation of multimodal fusion object-detection
models for underground environments. Therefore, developing object-detection models
tailored to underground coal mine environments faces dual challenges: feature fusion
strategies that are not well-suited to the environment and a shortage of data resources.

(a) Roadway Deformation (b) Dust-laden Roadway (c) Inclines and Curves

Figure 1. Complex perception scenarios.

To address these challenges, this paper proposes the Mine-DW-Fusion model based
on multimodal fusion, which accurately recognizes and locates obstacles in underground
coal mines by uniformly mapping image and point cloud data into BEV (Bird’s-Eye View)
space. The main contributions of this paper are as follows:

* A Mixture of Experts-Fuzzy Logic Inference Module (MoE-FLIM) is designed to
evaluate the confidence levels of BEV features from images and point clouds, enabling
the dynamic allocation of multimodal feature weights.

*  The Pyramid Multiscale Feature Enhancement and Fusion Module (PMS-FFEM) is
proposed, which uses Gaussian pyramid multiscale decomposition of BEV features to
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enhance detail and coordinate features at different scales, achieving deep multiscale
feature fusion.

¢ A multimodal perception dataset for underground coal mine environments is con-
structed, comprising camera images and LiDAR point clouds annotated with five
typical obstacle types and four complex environmental scenarios, providing a founda-
tion for model training and validation.

2. Related Work
2.1. Research on Target Detection in Coal Mine Shafts

Underground target-detection methods primarily focus on camera visual data and
LiDAR 3D point cloud data. In terms of image target detection, research focuses on address-
ing image degradation issues caused by low illumination and high dust concentration in
underground environments [7-14]. Ref. [15] addresses low-light conditions by proposing
DK-YOLOV5, which improves the reliability of target detection in low-light environments
by enhancing the SPPF layer and C3 module and incorporating the C2f-SKA attention
mechanism; Ref. [16] improved YOLOv5s through data augmentation and attention mech-
anisms, proposing ODEL YOLOV5s suitable for harsh coal mine environments, thereby
enhancing obstacle recognition accuracy for underground locomotives. In point cloud per-
ception, the research challenge lies in the high point cloud noise caused by dust interference
and rough rock surface conditions underground [17-21]. Ref. [22] uses a grid traversal
method to filter the raw point cloud, then filters dust and fog noise points based on point
cloud echo features before performing clustering detection; Ref. [23] proposes an improved
Euclidean clustering algorithm that adaptively adjusts Euclidean clustering parameters
based on distance and point cloud density, enhancing the robustness of underground point
cloud target detection.

Although the aforementioned studies have improved the performance of single-modal
object detection under specific conditions, single-modal data alone cannot fully describe
the characteristics of underground environments. Image data lack depth information,
and point cloud data cannot provide semantic information. Therefore, fusing multimodal
data to achieve intermodal information association and complementarity is an effective
approach to further enhance underground target-detection capabilities. Thus, this paper
proposes Mine-DW-Fusion, which improves the accuracy of underground target detection
by fusing multimodal data.

2.2. Target-Detection and Multimodal Fusion Methods Based on BEV Features

BEV feature encoding methods have emerged as one of the mainstream paradigms in
object-detection technology for autonomous driving due to their unified spatial represen-
tation capabilities. In the field of visual detection, the Lift-Splat-Shoot method proposed
in [24], maps monocular image data to the BEV space, implicitly extracting depth infor-
mation from the image; Subsequently, methods such as BEVFormer [25], PolarFormer [26],
and PETR [27] further enhanced BEV representation capabilities and model detection
performance by introducing Transformer structures. In point cloud detection, Ref. [28]
proposed the PointPillars method, which became a representative model for point cloud
BEV object detection due to its real-time and efficient advantages; Ref. [29] further proposed
CenterPoint, which integrated BEV encoding with an anchor-free detection mechanism,
also demonstrating excellent detection performance.

With the rapid maturation of BEV feature-detection technology, research has gradually
expanded from single-modal to multimodal fusion. The BEVFusion proposed in [30] is
currently the most widely used multimodal fusion scheme, which uniformly encodes visual
and point cloud features into the BEV space and then fuses them together. This approach
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has achieved significant improvements in object-detection performance compared to single-
modal detection. Building upon BEVFusion, Ref. [31] introduces SimpleBEV, which
incorporates cascaded depth estimation and LiDAR correction mechanisms. Additionally,
by designing a camera-BEV feature-assisted detection branch and optimizing the multiscale
sparse convolution feature fusion mechanism, the model’s ability to express and fuse
multimodal features is further enhanced.

Although BEV-based object-detection models have achieved quite good results in
recent years, existing research has mostly focused on ground scenes and has not addressed
the special processing of low-quality underground data. Furthermore, the feature stitching
fusion strategy is difficult to effectively cope with fluctuations in the quality of underground
sensor data. In addition, due to the lack of underground multimodal object-detection
datasets, existing results are difficult to directly apply to underground environments. To
address these issues, this paper proposes the MoE-FLIM module, which dynamically
allocates weights for different modality data, and constructs the PMS-FFEM module to
deeply mine multimodal fusion features. Additionally, an underground multimodal dataset
is constructed for model training and testing.

3. Methodology

This section introduces Mine-DW-Fusion, a multimodal fusion object-detection model
proposed based on BevFusion [30] for underground coal mine environments, which en-
hances detection performance through feature weighting and enhanced BEV fusion features.
As shown in Figure 2, the model consists of a BEV feature encoding module (BEV Encoder),
an expert mixture-fuzzy logic inference module (MoE-Fuzzy Logic Inference Module,
MoE-FLIM), and a pyramid multiscale feature enhancement and fusion module (Pyramid
Multiscale Feature Enhancement and Fusion Module, PMS-FFEM).
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Figure 2. Mine-DW-Fusion overview. Multimodal inputs are processed separately by camera
encoders and laser radar encoders, and fusion features are generated by MoE-FLIM and PMS-FFEM
for target detection.

First, the raw data from LiDAR and camera are encoded into BEV features in a unified
space. Then, the MoE-FLIM module is designed to assign fusion weights to different modal
features through an expert-fuzzy logic inference mechanism. Next, the PMS-FFEM module
is introduced, which uses a Gaussian pyramid for multiscale decomposition of features,
and sequentially applies context enhancement and coordinate attention mechanism en-
hancement to generate BEV fusion features. Finally, the features are fed into five detection
heads to perform detection of target category and position, target size, target angle, target
height, and target center point offset, respectively.
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The loss function in this study is defined as follows:
Liotal = Lcenter + Ldims + LyaW + L, + ny—delta 1

The loss function for object category and localization (Lcenter) is computed using the
improved Focal Loss, which effectively addresses the class imbalance between positive
and negative samples in underground detection scenarios [32]. For object size (Lgips), yaw
angle (Lyaw), height (L;), and xy-delta (Lyy.delta), the loss functions are calculated using the
Masked MSE Loss.

3.1. Lidar/Camera to BEV

To address the challenge of aligning multimodal features due to differences in percep-
tion fields and data dimensions, this paper transforms all modality data into a unified BEV
feature map. BEV characterization is based on the vehicle body local coordinate system,
which changes with vehicle motion. In this study, BEV feature encoding refers to bevfusion.
Figure 3 illustrates the BEV feature encoding methods for LIDAR and camera modalities.

LiDAR Input Multi View Image Input
)\ 4 4
Pillar Encoding Depth & Feature Encoding
)\ 4 4
Pillar Feature Net Voxel Generation
)\ 4 4
Pseudo - Image Splat to BEV
)\ 4 4
2D CNN Encoder BEV Fusion (Multi-view)

v

BEV Feature Map

Figure 3. Technical route of BEV encoder.

3.1.1. Lidar BEV Stream

The PointPillars network [28] is used to perform BEV encoding of LiDAR point clouds.
The main steps are as follows:

Step 1: Encode the point cloud as pillars. The features of each pillar are calculated
based on the point cloud inside the pillar.

Step 2: Convert the pillar features into the top-view perspective, which completes the
generation of the pseudo-image.

Step 3: Extract the 2D BEV feature map by applying 2D convolution.

3.1.2. Camera BEV Stream

BEV features of the image are extracted using the LSS algorithm [24], with the follow-
ing steps:

Step 1: Obtain the 3D features of each 2D pixel in space (LIFT). First, a D-dimensional
depth space is predefined for the image to generate a D x H x W point cloud of view cones.
Then, a context vector (¢ € R°) is predicted for each pixel p with coordinates (H, W), and
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the distribution & of each pixel over depth. This provides the context features at (D, H, W)
as cg = ug4C.

Step 2: Splat. Based on the camera’s intrinsic and extrinsic parameter matrices,
compute the 3D coordinates of the pixel in the principal coordinate system. The resulting
3D points are then assigned to the nearest Pillars. Summation pooling is performed to
obtain a C x H x W tensor, and convolution operations are applied to this tensor to extract
the image’s BEV features.

3.2. Mixture of Experts-Fuzzy Logic Inference Module

The quality of different modal data in coal mine shafts fluctuates with changes in the
scene environment, leading to uneven data quality. In such cases, the feature concatenation
method used by BevFusion is not effective in highlighting the contribution of effective
features, limiting the model’s performance.

To address the above issues, this paper plans to adjust the weights of different features
by calculating the confidence levels of different modal data. However, there is no clear map-
ping relationship between confidence levels and weight allocation. To model this uncertain
mapping, this paper introduces fuzzy logic reasoning methods, using membership func-
tions to divide confidence levels into continuous fuzzy states, and defining corresponding
weighting rules to infer weights. Additionally, due to inherent differences among sensors,
weight allocation varies when different sensor categories dominate. Therefore, this paper
further integrates a multi-expert network mechanism, constructing multiple expert net-
works tailored to different sensor dominance scenarios to dynamically fuse expert outputs
and achieve adaptive weight allocation in various scenarios. Thus, this paper proposes
the Multi-Expert-Fuzzy Logic Inference Module (MoE-FLIM) to enhance model detection
performance when sensor data quality is imbalanced.

As shown in Figure 4, we first calculate the Local Confidence Map for both LiDAR and
camera BEV features, then map the confidence values to fuzzy states using the Membership
Function and defining fuzzy rules. These fuzzy states are then evaluated by the corresponding
expert network, and finally, a Gating Network is introduced to fuse the outputs from the expert
networks and dynamically adjust the fusion weights of the sensor features.
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Figure 4. Diagram of the Mixture of Experts-Fuzzy Logic Inference Module.

3.2.1. Confidence Calculation

Due to modality differences between the data collected by the camera and LiDAR, directly
calculating the confidence on the raw data results in inconsistencies in units. Additionally,
dimensionless processing of the results lacks theoretical support and is not sufficiently effective.
To address this, the paper standardizes the confidence calculation for BEV features, as shown
in (2). Given the sensor features (x € RE*C*HxW) e first extract the C-dimensional feature
vector at each spatial location. The local mean and standard deviation along the channel
dimension are then computed to characterize the feature strength and stability. The results are
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subsequently normalized using Z-score and mapped through a Sigmoid function to obtain
the confidence representation of the BEV features.

Conf(x) = Sigmoid (y(x) +0(x) — E[u(x) + ()] ) @
VarGu(e) o) +e
where y(x) is the mean mapping of the feature channel dimensions. The sizeis B x 1 x H X
W, 7(x) is the mean and standard deviation of the local area characteristics and € = 1le a
small quantity constant to prevent division by zero.

3.2.2. Moe-Fuzzy Logic Reasoning

Confidence is divided into three fuzzy states: low, medium, and high, which are
defined by the triangular membership functions pow (X), fimid (X), high (¥) to calculate the
state values. The function images are shown in the Figure 5 below.

n(x) 4
1

0 0mid 0high ;

Figure 5. Triangular Membership Function.

In order to ensure that the confidence threshold is more suitable for underground con-
ditions, the confidence thresholds 6}y, and et are set as learnable parameters. Through
Blow and Ooeset, the expressions for Oiq and bhig, are achieved, as shown in the formula:

(Ohigh — 6
Ohigh = Olow + boffsets  Omid = gfow) ®3)

It should be noted that the reason for not directly defining the three thresholds as
learnable parameters is to avoid the model losing the relationship 65w < 0miq < Ohigh during
the learning process. The membership functions of the three fuzzy states are defined as:

emid —X X — Gmid

Hiow (X) = 0 /,uhigh(x) Hmid () =1 = prow (x) — ,”high(x) (4)

mid — 6low Hhigh - Gmid

The confidence level is mapped to a three-dimensional fuzzy membership vector
using formula X. Based on the fuzzy state combinations of LiDAR and camera confidence,
three sets of decision rules are defined: Equal, LIDAR Advantage, and Camera Advantage.
By calculating and combining the membership product corresponding to the fuzzy state
combinations, the fuzzy membership degree of LIDAR py;q,, (¥) and the fuzzy membership
degree of the camera Jicamera (¥) are obtained under each rule.

In traditional fuzzy logic systems, rule outputs are fixed. To enhance the expressive
power of fuzzy reasoning, this paper configures multiple expert networks (Expert MLPs)
for each rule, as shown in Formula (5). Each expert network takes the membership degree
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combination of LIDAR and camera data under that rule as input and outputs the weights
of LiDAR and camera data under that rule.

E(Rule) = Softmax(MLP([p1idar (X), pcamera(¥)])) ©)

where MLP is a multilayer perceptron network. Each MLP consists of a fully connected
layer and an ReLU activation layer.

3.2.3. Gating Weight Distribution

A gating network is introduced to dynamically adjust expert network outputs. Its inputs
comprise LiDAR confidence, camera confidence, their difference, and the absolute difference,
enabling adaptive learning of spatial context. The gating network is defined as follows:

GateNetwork(GateInput)

ExpertGates = So ftmax( T

) (6)

where GateNetwork is a network containing convolutional layers and nonlinear activa-
tion functions with an output dimension of the total number of expert networks, T is
temperature parameter to regulate the sensitivity of the expert network weight assignment.

The weighted summation of the final expert network is the LiDAR feature fusion
weights and the camera feature weights are also obtained.

N
Wiidar Weamera = Y, ExpertGates; x E;(R) (7)
i=1
where num_experts is total number of expert networks, Wi;q,; is final LIDAR weights for
feature fusion, Weamera is final camera weights for feature fusion.

3.3. Pyramid Multiscale Feature Enhancement and Fusion Module

To address the issues of poor feature fusion quality and weak information expression
caused by low-quality underground images and point cloud data, this paper proposes a
multiscale feature enhancement and fusion module (PMS-FFEM) based on the Gaussian
pyramid. This module primarily consists of multiscale decomposition and reconstruc-
tion using the Gaussian pyramid, as well as feature enhancement and fusion. The main
workflow is illustrated in Figure 6. First, Gaussian pyramids are applied to decompose
LiDAR and camera features into multiple scales. Then, at each scale, the features undergo
contextual enhancement and coordinate attention enhancement, followed by fusion using
reliability estimation and dynamic compensation strategies. Finally, a Gaussian pyramid is
used to reconstruct the features across scales, resulting in a multiscale fused representation
of the multimodal features.

Decomposition Context Enhanced i Modality fusion i Restructure !
i U Lidr | Lidar |G e i 1
g f > Sy - Sott - e oz
' i " H i i | . .
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- | ¢ st LS P FE
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Figure 6. Diagram of the Mixture of Pyramid Multiscale Feature Enhancement and Fusion Module.
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3.3.1. Multiscale Feature Decomposition and Reconstruction Based on Gaussian Pyramid

Previous studies have shown that the Gaussian pyramid structure has significant
advantages in multiscale feature modeling and fine-grained target mining. Compared
with conventional stride convolution or pooling strategies, it can more effectively retain
low-level detail information and enhance high-level semantic features, thereby improving
overall detection performance [33,34].

Given that different scales in BEV feature maps contain information of varying granular-
ity, we use Gaussian convolution to perform layer-wise downsampling on the input feature
maps, generating multilevel pyramid features. Given that different scales in BEV feature
maps contain information of varying granularity, we use Gaussian convolution to perform
layer-wise downsampling on the input feature maps, generating multilevel pyramid features.
During the upsampling reconstruction process at each layer, information from different scales
is gradually fused to enhance the overall contextual expression capability.

3.3.2. Contextual Enhancement and Coordinate Attention Feature Enhancement

Contextual enhancement and coordinate attention enhancement are performed in
parallel within each scale. The enhanced feature map and the weight information obtained
from MoE-FLIM will be merged in subsequent steps.

Contextual enhancement: spatial adaptive pooling extracts global contextual information,
which is then combined with the original features to enhance the features, as in (8):

Fonhance = ¥ - O(Convy 1 (Softmax (Convy 1 + Convy g (x) (8)

where x is the feature map with dimensions B x C x H x W, Convy41 is 1 x 1 convo-
lution operation, O(-) is context vectors after pooling and weighting spatial locations are
expanded to their original size.

Define the fuzzy rule input based on the state combination of LIDAR and camera
as follows:

Fatt = 0(Convyx1(Py(x) 4+ Pw(x))) )

where Py (x) is features after pooling along the height direction (Y-axis), Py (x) is features
after pooling along the width direction (x-axis), and ¢ is the Sigmoid activation function.

3.3.3. Feature Fusion Based on Reliability Estimation and Cross-Modal Compensation

To deeply fuse features from different modalities, a feature fusion method based
on modality reliability estimation and cross-modal feature compensation is proposed by
exploiting the complementary perception capabilities between LiDAR and camera.

First, a convolutional network with dynamic weighting is employed to predict the
local reliability of LIDAR and camera features, denoted as 7};4,r and 7camera, respectively.
The predicted reliabilities are then corrected to obtain the final weights Weamera and Wygar
for the subsequent input.

Next, the compensated features are generated from the complementary modality
features Fl,era and F ., as follows:

F llidar =F lidar + Clidar<F camera) ' (1 - Wl/idar) (10)
E c/amera = Feamera + Ccamera (Hidar) - (1 — Wclamera) (11)
where C(-) generates a compensating gating factor via Sigmoid.

The compensated features are weighted by the corrected weights and fused to generate
enhanced features:
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F fused = Convyyq ([F llidar : Wllidar/ F c/amera : Wc/amera]) (12)

As shown in Formula (13), the original feature Fyeight and enhanced feature Fpseq
are fused and weighted using a gating factor to obtain the final fused feature Fg,, at
each scale. After feature reconstruction through the pyramid module, it can be used for
object-detection tasks.

Ffinal = ReLU (Ffused + Gate(Ffused/ Fweighted) ’ Pweighted) (13)

where Gate(-) denotes the computational process of the gated convolution module that
dynamically controls the ratio of the two fused features.

4. Experiments
4.1. Construction of the Multimodal Environmental Perception Dataset for Coal Mines

Current research in the field of multimodal environmental perception in underground
coal mines is limited, and there is a lack of publicly available standard datasets. Existing
datasets are insufficient to support the research of multimodal deep-learning models for coal
mine underground environments. Therefore, this paper constructs a multimodal dataset
specifically for auxiliary transportation scenarios in underground coal mines, covering
typical roadway environments and complex perception conditions. This dataset provides
fundamental data support for future research on multimodal environmental perception in
underground coal mines.

The data acquisition equipment is shown in Figure 7 and consists of two RGB cam-
eras, one laser radar, and one portable computing device. The image acquisition resolu-
tion is 640 x 480, and each frame of laser radar point cloud data contains approximately
24,000 points. The image and laser radar point cloud data are synchronized at the frame
level through a unified timestamp. We employed three data acquisition methods: manual
scanning, motor vehicle-mounted scanning, and monorail-mounted scanning. During data
acquisition, the laser radar sampling frequency was set to 10 Hz, and the camera sampling
frequency was set to 3 Hz. To prevent data loss, camera data timestamps were used to index
and match laser radar data, ensuring alignment between radar and image data with an
error margin of 50 ms. Additionally, to synchronize the camera and LiDAR data for subse-
quent annotation, this study used the official Livox tool, Livox Camera-LiDAR Calibration
Tool, for external parameter calibration. This involved capturing standard checkerboard
calibration plates and collecting corresponding point cloud and image data. By combining
image corner points with point cloud edge feature extraction, the PnP algorithm was used
for initial estimation, followed by nonlinear least squares optimization to further refine the
pose, ultimately achieving high-precision camera -radar external parameter calibration.

(a) Acquisition equipment (b) Acquisition on Locomotive (c¢) Acquisition on Monorail

Figure 7. Multi-sensor data acquisition system and deployment.
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Coal mines feature numerous roadways with extensive coverage. This paper selects
six representative areas for data collection, including the industrial site, shaft station, main
haulage roadway, upper marshalling yard, inclined track haulage roadway, and return
airway. These areas encompass various complex underground environments, such as low
illumination, uneven lighting, and high dust and fog conditions.

The dataset consists of a total of 3298 multimodal perception data sets, including
2632 sets for training and 666 sets for testing. It defines 5 types of typical obstacle targets:
Miner, Mine Car, Device Box, Material, and Notice Board, as well as 4 types of typical
environmental scenarios: Normal, Dust Fog, Low Light, and Uneven Lighting. As shown in
Figure 8, we utilized Python to develop an annotation tool for the dataset, which captures
location, category, size, and orientation information.
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Figure 8. Data annotation software.

The dataset distribution is shown in Figure 9. In terms of scene types, the underground
environment is predominantly characterized by uneven lighting and low-light conditions,
accounting for 54.9% and 19.3%, respectively. Normal scenes and dust and fog conditions
together make up a smaller portion, accounting for 13.1% and 12.7%, respectively. Regard-
ing target categories, the highest proportion is for Miner, accounting for 46.8%, reflecting
the high occurrence frequency of miners in underground coal mine production scenarios.
Miners are key objects in environmental sensing and safety monitoring. Next, Mine Car
and Notice Board account for 21.3% and 19.0%, respectively. Overall, the dataset provides
rich information on transportation and management scenarios, offering significant research
and practical value.
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Figure 9. Dataset distribution.
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4.2. Implementation Details
4.2.1. Experimental Configuration

The image resolution for training and testing is 640 x 480, the maximum number of
points per frame of the LiDAR point cloud is 24,000, and data enhancement methods such
as cropping, flipping, and blurring adjustments are randomly performed during training.
The batch size is set to 8, and the optimizer uses AdamW with a cosine annealing learning
rate scheduling strategy with warm-up, a minimum learning rate of 1074, and a warm-up
duration of the first three epochs.The model is trained on a single A100 GPU. A total of
100 epochs are trained.

4.2.2. Evaluation Indicators

The evaluation metrics mAP and NDS, which are commonly used for target detection,
are introduced to comprehensively evaluate the model performance. Among them, mAP
denotes the average value of precision rate under different recall rates. Since the self-built
dataset does not contain speed and attribute information, the NDS metric is simplified as
follows in this paper:

NDS = 110(5><mAP+ <1—min<l ATE)>

’ ATEnorm
ASE
+({1—-min(1, ——
( < ASEnorm ) )
AOE
+(1—min(1l, ——— +2 14
( < AOEnom ) ) ) (14

where ATE (average translation error), ASE (average scale error), and AOE (average orien-
tation error) reflect the accuracy of the predicted target in terms of position, size and ori-
entation, respectively. The normalization constants: ATE,y = 2.0 m, ASE,om = 0.1,
AOE;;orm = 1.0 rad. The two values of missing velocity error and attribute error are taken as 1.

4.3. Evaluation of Model Performance

In this section, the proposed method (Mine-DW-Fusion) is compared in detail with
the current mainstream 3D detection algorithms. The methods are evaluated by retraining
each model on the dataset, and Table 1 presents the evaluation results of different models
on the test set.

The experimental results show that Mine-DW-Fusion outperforms other methods in
both overall performance and category-specific detection accuracy. Compared to unimodal
detection methods, Mine-DW-Fusion and BevFusion are able to fuse richer multimodal
feature information, resulting in a substantial improvement in detection performance
for both methods. In particular, Mine-DW-Fusion outperforms the suboptimal method
BevFusion, with a 5.1% increase in mAP and a 2.6% increase in NDS. This indicates
that the multimodal deep interaction fusion strategy proposed by Mine-DW-Fusion can
more effectively fuse multimodal information, significantly enhancing the model’s overall
detection capability.

Further analysis of the results in Table 1 reveals that, thanks to the MoE-FLIM mod-
ule and the PMS-FFEM module, Mine-DW-Fusion demonstrates particularly significant
advantages in the Miner and Notice Board categories. The MoE-FLIM module employs
fuzzy logic reasoning and expert networks to dynamically allocate weights based on modal
quality differences across various environmental scenarios, preserving the discriminative
capabilities of superior modalities and significantly reducing the false negative rate for the
Miner category. Meanwhile, the PMS-FFEM module enhances feature expression for small
and medium-sized targets through multiscale feature decomposition, context enhance-
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ment, and cross-modal compensation, enabling targets such as Notice Board to maintain
high detection accuracy even in complex backgrounds and low-contrast conditions. This
mechanism of dynamic weight allocation and multiscale feature enhancement significantly
improves the model’s overall detection capability.

Table 1. Comparative experiments with mainstream detection methods on our custom dataset.

Method

Modality mAP NDS

Miner Device Noticeboard MineCar Materials

NDS AP NDS AP NDS AP NDS AP NDS

Pointpillars [28]
LSS [24]
BevFusion [30]
Mine-DW-Fusion

L
C
L+C
L+C

56 652 751 739 413 589 464 615 876 819 294 527
47.9 612 577 658 411 587 39 57 758 756 258 499
60.5 677 721 728 549 657 43 59.7 876 819 45 60.9
65.6 703 799 76.7 605 68.6 52 643 894 828 463 61.2

Figure 10 presents the performance of PointPillars, LSS, BevFusion, and Mine-DW-Fusion
on the test set from both image and point cloud perspectives. The visualization results clearly
demonstrate that Mine-DW-Fusion outperforms the other methods in mine scenarios. As
shown in Figure 10b, the LSS method exhibits notable missed detections of personnel in
the tunnel, whereas Mine-DW-Fusion accurately detects and locates various types of targets.
Additionally, Mine-DW-Fusion demonstrates higher precision in detecting target sizes.

%

’ 4
(a) PointPillars (b) LSS (c) BevFusion (d) Ours

Figure 10. Detection effect of different target-detection methods in underground.

4.4. Model Performance in Typical Complex Environments of Coal Mines

To further assess the model’s perception capability in specific complex environments
within coal mines, this paper classifies underground environments into three categories:
dusty, low illumination, and uneven lighting. Specialized experimental evaluations of the
model’s perception performance are conducted under each of these conditions.

The experimental results are shown in Table 2, where the proposed Mine-DW-Fusion
method achieves the best detection performance under all three environmental conditions,
demonstrating excellent adaptability and robustness. In low-light scenarios, Mine-DW-
Fusion performs better than other models because LiDAR is not affected by lighting
conditions. MoE-FLIM can dynamically increase the weight of the LiDAR modality to
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compensate for insufficient image information. Notably, in the dusty environment, the
perception performance of all models shows a significant decline compared to the overall
scene. This is primarily due to the severe attenuation of the LiIDAR laser beam as it passes
through the dust, leading to increased noise in the point cloud. Additionally, the dust
substantially impacts the visibility of the camera images, significantly degrading image
quality and, in turn, affecting the overall perceptual performance of the multimodal infor-
mation. However, Mine-DW-Fusion still outperforms other models in dusty environments,
indicating that PMS-FFEM can still extract and compensate for certain effective information
even when sensors are simultaneously interfered with.

Table 2. Mine-DW-Fusion detection performance in different complex environments.

DustFog LowLight UnevenLight
Method
mAP NDS mAP NDS mAP NDS
pointpillars 43.1 58.8 48.5 61.1 56.8 65.8
LSS 24.8 49.5 47.5 61 48.7 61.6
BevFusion 49.2 62.1 61.8 68.1 61.1 68.2
Mine-DW-Fusion 51.1 62.9 79 76.7 65.3 70.2

Figure 11 shows the detection performance of the Mine-DW-Fusion method under the
complex working conditions of a typical coal mine. The results indicate that the model
can effectively recognize and locate personnel and equipment targets in low-light and
uneven lighting conditions, exhibiting strong resistance to interference. Even in scenes
with significant dust and fog, although the model’s detection performance decreases, it
still maintains a certain level of personnel detection capability. These results suggest that
the fusion of multimodal information by the Mine-DW-Fusion model yields promising
performance even under challenging conditions.

19%-01-01 BT 01:20:14

1ol SEme 108y
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-

(a) Dust fog scene (b) Low light scene (c) Uneven illumination scene

Figure 11. Detection effect of Mine-DW-Fusion method in different complex environments of coal mine.
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4.5. Ablation Studies

This paper conducts extensive ablation experiments to assess the effectiveness of
Mine-DW-Fusion. All experiments were performed using a custom test set.

4.5.1. Mixture of Experts-Fuzzy Logic Inference Module

This section explores the optimal configuration of the MoE-FLIM. It analyzes the
impact of the hidden layer dimension of the expert network, the number of experts corre-
sponding to each rule group, and the gating temperature coefficient of the expert weights
on the module’s performance.

Table 3 lists the impact of different expert network hidden layer dimensions on model
performance. The experimental results show that as the hidden layer dimension increases
from 4 to 16, the model performance improves consistently, with mAP and NDS increasing
by 2.4 and 1.2, respectively. However, when the dimension is expanded to 32, overfitting
occurs, with mAP and NDS decreasing by 4.8 and 2.4 percentage points, respectively.
This indicates that a moderate increase in the hidden layer dimension can enhance model
performance, but excessive expansion leads to significant performance degradation. When
the hidden layer dimension exceeds 16, capacity oversaturation occurs.

Table 3. Impact of hidden layer dimensions in expert networks.

Hidden Layer Dimension mAP NDS
4 60.1 67.4

8 61.7 68.3

16 62.5 68.6

32 57.7 66.2

Table 4 lists the impact of the number of experts assigned to each rule group on model
performance. When each rule group is equipped with one expert, the model achieves
baseline performance, with an mAP of 62.5 and an NDS of 68.6. When the number of
experts per rule group is increased to two, the model’s performance improves significantly,
with the mAP rising to 63.4 and the NDS to 69.0, indicating that the dual-expert strategy
effectively enhances feature discrimination. However, when the number of experts is
further increased to [3,3,3], performance declines markedly, with mAP and NDS dropping
by 4.5 and 2.3, respectively. The performance remains below optimal levels even when the
number of experts reaches [4,4,4]. The experiment confirms that more experts do not always
lead to better performance. When each rule group is equipped with two experts, the model
strikes the best balance between feature representation capability and parameter efficiency.
Excessive numbers of experts result in model overcapacity and introduce decision noise.

Table 4. Effect of number of experts on model performance.

Numbers of Experts mAP NDS
1,1,1 62.5 68.6
2,2,2 63.4 69
3,33 58.9 66.7
4,4,4 59.1 67

7 Xy

Table 5 lists the impacts of different temperature coefficient settings on model perfor-
mance. When the temperature coefficient reaches 1.0, the model achieves optimal global
performance (mAP 65.4, NDS 70.3). At lower temperature coefficients (0.1 and 0.5), the
performance of the two-expert system is poor, as overly sharp expert selection weakens
the discriminative advantage of the multi-expert mechanism. The results indicate that
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model performance improves monotonically with an increase in the temperature coefficient,
reaching its best performance at a coefficient of 1.0.

Table 5. Effect of gating temperature coefficient on model performance.

Temperature mAP NDS
0.1 59 66.9

0.5 58.3 66.5

1 63.4 70.3

In summary, based on the results of the ablation experiments in this section, the optimal
configuration for this module was determined to be a hidden layer dimension of 16, a rule
expert assignment of (2, 2, 2), and a gating temperature coefficient of 1.

4.5.2. Pyramid Multiscale Feature Enhancement and Fusion Module

The experiments in this section investigate the impact of the number of pyramid layers
on model performance in the PMS-FFEM. The experimental results, shown in Table 6, reveal
that when the number of pyramid layers increases from 1 to 2, the model performance
remains relatively unchanged. However, when the number of layers increases to 4, the
model performance improves further, with an mAP of 65.4% and an NDS of 70.3%, reaching
its optimal performance. This suggests that a deeper hierarchical structure enhances the
ability to model contextual information and express multiscale features. In contrast, when
the number of layers is set to 3, model performance degrades significantly, likely due to
feature imbalance caused by this configuration, which leads to a decline in the model’s
expressive capability.

The ablation experiment results in this section show that a reasonable increase in
the number of pyramid layers enhances model performance. Based on these findings, a
pyramid layer count of 4 is determined to be the optimal configuration for this module.

Table 6. Effect of pyramid layer count on model performance.

Pyramid Layers mAP NDS
1 63.8 69.5
2 63.4 69
3 58.3 66.5
4 65.6 70.3

4.5.3. Module Validity

In the previous two sections, we conducted an in-depth parameter configuration
analysis of the core modules in Mine-DW-Fusion to determine their optimal architectural
settings. To further assess the actual contribution of each module within the overall
architecture, this section performs a complete ablation of each submodule and conducts
ablation tests under a unified configuration to evaluate its impact on final performance.

The experimental results are shown in Table 7. When only the MoE-FLIM is retained and
the PMS-FFEM is removed, the model performance decreases significantly, with an mAP of
57.8% and an NDS of 66.2%. This indicates that the model’s performance is limited without
the multiscale, in-depth fusion of multimodal features. When only the PMS-FFEM is retained
and the MoE-FLIM is removed, the model’s performance remains lower than that of the full
structure, with an mAP of 60.4% and an NDS of 67.6%. This shows that the MoE-FLIM plays
a crucial role in improving feature discriminability. With the complete structure, the model
achieves the best performance, with an mAP of 65.6% and an NDS of 70.3%.



Sensors 2025, 25, 5185

17 of 20

Table 7. Ablation results of core modules.

Module
MoE-FLIM PMS-FFEM mAP NDS
v 57.8 66.2
v 60.4 67.6
v v 65.6 70.3

The experimental results confirm that the synergistic combination of the two types of
modules significantly enhances the model’s representational power and robustness. The
modules proposed in this paper effectively improve the model’s detection performance.

4.6. Runtime Analysis

To further evaluate the computational efficiency of Mine-DW-Fusion, this paper sets
the batch size to 1 and tests the model inference speed using FP32 precision on an NVIDIA
A100 GPU (40 GB). The results are shown in Table 8.

Table 8. Ablation results of core modules.

Method FPS Avg. Inf. Time (s)  Std. of Inf. Time (s) Memory (GB) Mem. Util.
Pointpillars 62.55 0.016 0.0237 0.05 0.125%
LSS 42.61 0.0235 0.0518 0.09 0.225%
BevFusion 27.06 0.0369 0.0365 0.11 0.275%
Mine-DW-Fusion 9.54 0.1048 0.0413 0.14 0.350%

Under the same hardware conditions, the inference speeds of PointPillars, LSS, and
BEVFusion are 62.55 FPS, 42.61 FPS, and 27.06 FPS, respectively. while Mine-DW-Fusion
achieves 9.54 FPS, with inference speeds significantly lower than other models. Our analysis
found that PMS-FFEM consumes a significant amount of inference time, primarily due
to the current optimal pyramid layer count of 4, which results in a large computational
workload for multiscale feature analysis. While this improves detection accuracy, it also
increases computational overhead.

In terms of GPU memory usage, the peak values for the four methods are 0.05, 0.09,
0.11, and 0.14 GB, respectively. As GPU memory usage increases, the inference speed of
the model also slows down. However, the GPU memory usage of all four models is less
than 0.1%, far below the device limit, indicating that GPU memory is not a performance
bottleneck, and the differences in inference speed primarily stem from computational
complexity. Overall, Mine-DW-Fusion improves the accuracy of underground target de-
tection at the cost of some real-time performance. The operating speed of underground
auxiliary transport vehicles is generally around 1.5-2.5 m/s, and the current model can
only achieve near real-time perception in low-speed driving scenarios. In the future, we
will optimize the PMS-FFEM module and further enhance the model’s detection speed
through pruning distillation and TensorRT acceleration to meet the real-time inference
requirements of engineering applications

5. Conclusions

In this paper, Mine-DW-Fusion is proposed to address the multimodal perception
problem in the complex environment of underground coal mines. The model introduces the
MokE-fuzzy logic inference method for dynamic allocation of multimodal feature weights
and combines it with a pyramid multiscale enhancement fusion strategy to perform feature
enhancement and fusion at different scales. Additionally, this study constructs a multi-
modal environment perception dataset for underground coal mines, and Mine-DW-Fusion
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is trained and tested on this dataset. The experimental results show that, in terms of overall
performance, Mine-DW-Fusion achieves an mAP of 65.6% and an NDS of 70.3%. Under
typical harsh conditions such as dust and fog, low illumination, and uneven lighting,
the model achieves mAP values of 51.1%, 79.0%, and 65.3%, respectively, demonstrating
strong environmental adaptability. The ablation experiments confirm that the proposed
MoE-FLIM and PMS-FFEM contribute 7.8% and 4.8% improvements in mAP, respectively.

Mine-DW-Fusion is one of the few existing multimodal environmental perception meth-
ods for underground environments. We hope this research will provide a more effective
and feasible technical approach for environmental perception in underground autonomous
driving scenarios. While achieving the aforementioned results, we also recognize that this
study has room for further improvement in several areas. First, the current model is primarily
designed to address issues of sensor quality imbalance and has not yet fully considered
extreme conditions where sensor damage leads to complete data loss. Second, while the
constructed dataset covers typical driving scenarios for underground auxiliary transport
vehicles, the data were primarily collected from mines in southwestern China. The model’s
robustness and generalization capabilities in cross-domain adaptability across multiple mining
areas, especially in out-of-distribution environments, require further validation. Additionally,
this work focuses on model design, and further research is needed on the deployment and
engineering implementation of the model in real underground environments.

Future work will focus on reducing computational overhead while maintaining detec-
tion accuracy through methods such as model lightweighting, inference acceleration, and
knowledge distillation, while further expanding the coverage and diversity of the dataset.
At the same time, we will introduce robustness optimization strategies for sensor failure
and out-of-distribution inputs to improve the stability and reliability of the model in a
wider range of practical application scenarios.
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