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Abstract

This article focuses on the research and advancement of an optimal system for the automatic
regulation of the water level in a reservoir to eliminate flooding in the area where it is
located. For example, in this article, the regulation of the level in the Mariselu Reservoir
from the dam in Bistrita–Nasaud County, Romania, was considered as a practical applica-
tion. Industrial PID controller tuning provides robust and stable solutions; however, the
controller parameters may require frequent tuning owing to uncertainties and changes in
operating conditions. Considering this inconvenience, an adaptive adjustment of the PID
controller parameters is necessary, combining various parameter optimization methods,
namely reinforcement learning and Particle Swarm Optimization. A new optimization
method was developed that uses a mathematical equation to guide the Particle Swarm
Optimization method, which in essence enhances the fitness function of reinforcement
learning, thus obtaining a control system that combines the advantages of the two methods
and minimizes their disadvantages. The method was tested by simulation using MATLAB
and Python, obtaining very good results, after which it was implemented, which success-
fully prevented floods in the area where it was placed. This optimal automation system for
dams should be implemented and adapted for several dams in Romania

Keywords: control system; reinforcement learning; particle swarm optimization

1. Introduction
The problem of flooding is of great international importance, as it has major con-

sequences for the environment, economy, public health, and sustainable development.
It represents one of the most frequent and destructive forms of natural disaster and is
amplified by climate change, rapid urbanization, and environmental degradation.

1.1. Impact of Floods at International Level

The problem of flooding is of great international importance, as it has major conse-
quences for the environment, economy, public health, and sustainable development.

• International flood impacts:
Floods cause thousands of deaths annually, forcing millions of people from their
homes. Regions with poorly developed infrastructure, such as Southeast Asia and
sub-Saharan Africa, are particularly vulnerable.

• Infrastructure destruction:
Roads, bridges, buildings and other essential structures are frequently destroyed,
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which can paralyze transportation, trade, and public services. The reconstruction costs
are often high.

• Economic impact:
Flooding affects agriculture through the loss of crops and fertile land, which directly
affects food security. It also affects industrial activities and tourism, reducing national
GDP in many countries.

• Public health issues:
Flooding can contribute to the spread of communicable diseases, such as malaria,
dengue fever, and cholera, due to contaminated water and lack of hygiene. However,
access to drinking water and food is a major challenge.

• Environmental degradation:
Natural ecosystems are affected, and wildlife habitats can be destroyed. Waste and
chemical pollution during floods have long-lasting effects on the environment.

• Role of climate change:
Rising sea levels and extreme weather events, such as torrential rain, have made
flooding more frequent and severe. This particularly affects coastal communities and
cities along large rivers.

1.2. The Role of Dams in Flood Prevention

Dams play an important role in flood protection, which is one of the most dangerous
natural disasters, as they can lead to enormous loss of life and economic losses worldwide.
Unfortunately, many studies predict a worsening in the future, due to the growth and extent
of these phenomena [1]. Many factors drive this trend, among which, climate change [2] and
changes in land use are the most important. In response to these worrying statistics, dams
play a crucial role. In the context of climate change, hydropower generation is expected to
increase significantly in the future owing to the increasing demand for renewable energy,
although climate change may affect river flow and, consequently, the availability of water
for power generation [3].

1.3. Related Literature on Flow Monitoring and Prediction

In [4], the authors propose a method to solve the problem of maintaining optimal
water flow in the Zayandehroud dam. In this sense, they proposed a method for regulating
water flow in a dam based on a prediction model. The experimental results show that
the method can accurately predict changes in water flow and effectively regulate dams
to maintain optimal flow, which provides an important reference for lake management
and protection.

A model based on prediction was also used by the authors of [5], who, for the selection
of the optimal model for the purpose of predicting the flow of two dams, generated sixteen
scenarios considering two dams, two climatic conditions, and four deep learning models.

While such methods improve forecasting accuracy, they often lack an active control
loop that continuously adapts actions based on real-time system states.

A similar approach can be considered for the application of machine learning to
predict dam behavior combined with the detection of data anomalies. Focus was given to
the practical application of advanced predictive models within a dam monitoring system,
enabling the detection of anomalies at an early stage and improving maintenance and
failure prevention [6].

Automatic learning techniques are also used in the study [7], in which their effective-
ness to predict flow, namely multivariate linear regression and three artificial neural net-
works: multilayer perceptron, nonlinear exogenous autoregressive, and long-term memory.
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The primary models frequently analyzed in dam-related research include neural
networks, Support Vector Machines (SVMs), and boosted regression trees [8].

However, the models used in [6–8] function primarily as predictors rather than
decision-makers and are not inherently suitable for real-time control adaptation.

Another important aspect is dam safety, the subject being treated by the authors
of another study [9], where the principles, shortcomings, and development trends of
three types of data analysis monitoring methods regarding dam safety monitoring are
synthesized. The dam monitoring data analysis methods studied in this study are the
environmental variable monitoring model, monitoring index, and abnormal value detection
methods for dam conditions.

In [10], the authors referred to data monitoring for the safety control of the discharge
flow from a dam. A learning machine was trained to predict dam leakage, where the
parameters were adaptively optimized using the Jaya algorithm. The simulation results of
the case study showed that a satisfactory prediction of runoff flow was achieved.

These approaches, although promising for anomaly detection or flow estimation, do
not close the loop for control action generation, nor do they employ learning agents capable
of autonomous policy improvement.

The aim of the research [11] is to forecast the inflow of the Dez dam reservoir by using
auto regressive moving average and auto regressive integrated moving average models
while increasing the number of parameters in order to increase the forecast accuracy to
four parameters and compare them with static and dynamic artificial neural networks. By
comparing the root mean square error and mean bias error, the dynamic artificial neural
network model with sigmoid activity function was chosen as the best model for forecasting
Dez reservoir inflow. The dam accumulation flow for the last 12 months shows that the
auto regressive integrated moving average model had a smaller error compared to the auto
regressive moving average model.

Yet, these are passive models and offer no mechanism for real-time policy optimization
under dynamic environmental conditions.

1.4. A Comparison Between Different Similar Control Methods and the Proposed
PSO + RL Method

We compared some reward learning methods studied in this paper with other similar
studies. For example, “Optimal output tracking control with model-free feedback for
two-dimensional batch processes” and “Optimal adaptive output tuning based on output
feedback for nonlinear systems with strict continuous-time feedback”. For the two meth-
ods, we studied the advantages and disadvantages, we compared each method with the
proposed PSO + RL method presented in the paper, and then we concluded which of the
methods would be more suitable for the studied application.

1.4.1. Output Feedback Based Adaptive Optimal Output Regulation for Continuous-Time
Strict-Feedback Nonlinear Systems

This method is used if you have a well-understood system with a clear structure and
you want to achieve robust adaptive control in real time.

This is a sophisticated control technique that brings significant advantages in regu-
lating the level in a reservoir, especially when the system is uncertain and not completely
observable (i.e., you do not have access to all the internal variables of the system, but only
to some outputs—such as the water level).

Advantages:

• Does not require measurement of internal states—relies only on observable outputs.



Sensors 2025, 25, 5055 4 of 34

• Adaptive—the lake is a system with high uncertainties: meteorological variations,
tributary flows, evaporation. This method adapts in real time to changes, even if the
exact model of the system is not completely known

• Optimal—the method optimizes performance against a reference, not just stabilization.
It does not just maintain the level within a range, but makes it follow an optimal
trajectory (maintaining an optimal average level for flood safety)

• Suitable for strict-feedback systems—the output depends on a series of subsystems
linked in a chain.

• Guaranteed stability (Lyapunov-based)—the controller is designed to be mathemat-
ically stable, using Lyapunov theory. This means you can guarantee that the water
level will not become uncontrollable, even under perturbation conditions.

Disadvantages:

• Requires fine and sensitive tuning of the parameters. Adaptation parameters, feedback
gains, and Lyapunov functions must be tuned carefully. If you choose inappropriate
values, you may experience oscillations, slow behavior, or even temporary instability.

• Higher complexity than classical control (e.g., PID).
• Requires an adaptive observer in full versions—may increase computational cost.
• Possible slow convergence. Because it is adaptive, the method has a “learning” or

adjustment phase. In applications with rapid variations (e.g., sudden torrential rain),
it may adapt too slowly to react effectively in time.

Comparison Between Output Feedback Adaptive and PSO + RL Methods

In Table 1, there is comparison between the Output Feedback Adaptive and
PSO + RL methods.

Table 1. Comparison between Output Feedback Adaptive and PSO + RL methods.

Criterion Output Feedback Adaptive Optimal Control Particle Swarm Optimization +
Reinforcement Learning

Type method Feedback-based control +
adaptation Global optimization + learning

Real-time control? Yes, for initial design PSO is more suitable for offline
optimization

Dynamic adaptation? Yes—adaptive online control No—PSO optimizes static
parameters or offline policies

Complexity Yes—go on Large (optimization + learning)

Theoretical stability Medium to large (nonlinear equations +
adaptation) No strict theoretical guarantee

Sturdiness It can be proved formally
(Lyapunov) Excellent in global exploration

Conclusion

If an intelligent, robust and optimal control system for a reservoir is desired, and the
exact model is not completely known, this method is highly suitable. It is superior to a PID
control, especially in the presence of external uncertainties and variability.

If the project is critical (dam, population protection), it is preferable to start with this
method for safety and stability, if the system dynamics can be expressed as a sequence
of differential equations, where each state depends on the previous state and the control.
However, the system response when applying this method is much slower than the system
response using the PSO + RL method.
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1.4.2. Model-Free Output Feedback Optimal Tracking Control for Two-Dimensional
Batch Processes

This method is well suited for complex, repetitive industrial processes that undergo
frequent variations, such as systems with unforeseen or unknown disturbances.

The method is a classic case of level control in a reservoir approached with a data-
driven learning approach, without an explicit model.

The context of the problem is the following:

• The input is H(t) the actual water level measured by the sensor;
• The output is Dv(t) the gate opening;
• The gate control is desired so that the water level H(t) follows a desired value Hd(t).

The objective of the method is to use an optimal strategy for opening the gate
Dv(t) so that the level H(t) follows a reference Hd(t), using a reinforcement learning
(RL) algorithm adapted to the process, based on system data (without using an explicit
mathematical model).

Advantages and Disadvantages of the Method

This method is well suited for complex, repetitive industrial processes that undergo
frequent variations, such as systems with unforeseen or unknown disturbances.

The advantages of the method are as follows:

• No need for an explicit mathematical model: There is no need to identify the differen-
tial equations that describe the process. The system learns only from the data. It is the
ideal method for complex or poorly modeled processes.

• Based on real-time monitored data: The method learns from input-output data col-
lected in real time.

• Feedback only on output: It does not require measuring all internal states of the system
but only the observable outputs.

• Optimal tracking: It allows optimal control over a desired value (e.g., maintaining the
level), not just stable regulation.

• Suitable for 2D processes: Extend the method to systems with two dimensions; for
example, time and level.

• Flexible and adaptable to changes: It automatically adapts if conditions change
(e.g., lake level rises due to rain). Other perturbations (precipitation) can be added to
the state data without changing the fundamentals of the method.

The disadvantages of the method are as follows:

• Requires large amounts of data: The quality of control depends on the volume and
diversity of historical data available. If the data is incomplete, performance de-creases.

• Computational complexity: Learning algorithms (especially in 2D and with Q func-
tions) can require large resources (memory, processing time), especially in real-time
applications.

• No formal guarantees of stability: In many cases, control stability cannot be guar-
anteed theoretically, especially in online learning. Validation through simulation or
experimental testing is required.

• Difficulty in tuning: The choice of RL parameters (learning rate, exploration policy,
discount factor) strongly influences performance and may require expertise.

• Risk of overlearning: If historical data does not cover enough variation, the learned
policy may perform poorly in new conditions.

• Low interpretability: Compared to classical control (PID), the learned policy is often
difficult to understand or explain to human operators.
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Control Method Comparison Between This Method and the Method Presented in the Paper

Both are methods based on machine learning but have different concepts and uses.
Below is a detailed and clearly structured comparison.

In Table 2, the comparative advantages of the two methods are outlined.

Table 2. Comparative advantages of the two methods.

Appearance Model-Free Output Feedback Control PSO + RL

Model independence Completely
model-independent

PSO may require an
approximate model for guidance

Convergence speed Fast if the data is good PSO accelerates RL → faster
convergence than simple RL

Response quality Good for tracking a reference in a 2D system Very good when PSO is well guided
by a mathematical model

Parameter
optimization

Does not optimize RL
hyperparameters

Yes—optimize policies, networks, or
other RL parameters

Sturdiness
Good against process
variations (through

data learning)

Excellent—looks for good
solutions globally, avoids getting

stuck in local minima
Appearance Model-free Output Feedback control PSO + RL

Table 3 presents the comparative disadvantages of the two methods.

Table 3. Comparative disadvantages of the two methods.

Appearance Model-Free 2D Tracking PSO + RL

Need data Strongly dependent
on historical data

Less dependent—
PSO can explore and learn

Computational
complexity Medium to large

Large—PSO and RL combined
involves multiple evaluations

per iteration

Guaranteed stability? Not under all conditions
Not exactly—PSO optimizes

performance, does not ensure
formal stability

Exploration vs. exploitation Based on RL policies PSO can get stuck in local optimum
without diversification

Sensitive tuning Requires correct choice
of reward function

Wrong choice of PSO parameters
affects performance

Conclusions

In the case of the application studied in the paper, the system has large variations, so
the PSO + RL method is more suitable due to the following characteristics:

• It learns control policies optimally from interaction with the environment;
• It can adapt the control strategy to unpredictable conditions (drought, torrential rains);
• Optimization with PSO can improve the parameters of the RL network for increased

performance.

Model-free output feedback optimal tracking control is more suitable for a simple
system for the following reasons:

• It does not require the system model;
• It is directly applicable to the output feedback;
• It is stable, easier to implement, and can work well in less variable environments.
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1.5. The Need to Optimize Control with Intelligent Algorithms

In this context, to mitigate the effects of climate change and increase energy efficiency,
it is crucial to develop advanced control systems to optimize processes. Automatic indus-
trial processes require a proportional–integral–derivative (PID) controller to obtain the
output signal of the set value [12]. PID controllers are efficient if the system does not change
its initial conditions [13]. However, if this is the case, the controller must be re-adjusted,
which affects the response times [14]. Artificial intelligence techniques, especially reinforce-
ment learning algorithms, offer the option of automatically and continuously adjusting
controllers based on real-time feedback from the system [15].

While literature contains studies that individually apply reinforcement learning [16,17]
or Particle Swarm Optimization [18] to water systems, their hybrid use is still rare and
mostly limited to tuning PID controllers or offline parameter optimization. These works do
not address the critical integration of PSO with RL for online policy enhancement, nor do
they leverage domain-specific physical models to guide optimization.

The present work focuses on PID regulation and hybrid PSO-RL methods but there are
control strategies for reservoirs used to store excess energy that emphasize multi-objective
formulations. These approaches integrate economic signals (such as real-time energy
prices), environmental constraints (e.g., ecological flow limits), and institutional regulations
in the control design. These frameworks move beyond classical level regulation and provide
adaptive, policy-compliant, and economically sustainable solutions [19]. Although the
main purpose of the proposed control system is to prevent ecological and human disasters,
including economical constraints, when the situation allows it, would be a significant step
forward. Future work should explore integrating these strategies with intelligent control
agents to ensure robust, real-time dam management in the context of climate variability
and socio-economic pressure.

1.6. Practical Application of the Paper

This paper studied the level regulation of the Măris, elu reservoir at the dam in Bistrit,a,
Năsăud County, Romania. The Măris, elu Dam is part of the Somes, ul Mic Hydropower
System and plays an important role in generating electricity, regulating the river flow and
preventing floods.

Heavy rainfall and flash floods, as well as inadequate management of the volume
of water stored and released, have necessitated the development of an optimal reser-
voir control system to prevent flooding. Water volume management involves preemp-
tive water level control, i.e., lowering the reservoir level before a major storm to create
additional capacity.

PID controller parameters may require frequent adjustments owing to frequent
changes in environmental conditions that influence operating conditions.

Therefore, a new optimization method has been developed that uses a mathematical
equation to guide Particle Swarm Optimization, which in turn optimizes the fitness function
of reinforcement learning, thus achieving a control system that quickly adapts to the
conditions of the environment and acts early to prevent floods in that area.

The method was tested by simulation using MATLAB 9.10 and Python 3.6.15, obtaining
very good results, after which it was implemented, which successfully prevented floods in
the area where it was placed.

PSO and RL have advantages and disadvantages that make them suitable for certain
types of applications.

Particle Swarm Optimization is a simple algorithm, requires little computing power,
and is very fast [20]. The disadvantages of this method are that it can get stuck in local
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optimal solutions without reaching an optimal solution over the entire range and that it is
not adaptable to environmental changes [21].

Reinforcement learning is not very fast, but it offers an optimal solution throughout
the entire study interval and is adaptable to influences from the external environment [22].
To operate efficiently, this system requires a large database to train the search agent.

After achieving satisfactory training performance on the model, the agent was tuned
online in the actual process to adapt to real dynamics. The simulations demonstrated the
successful use of machine learning algorithms to adjust the parameters of the PID controller
for optimal control of the reservoir-level regulation system.

1.7. Original Contributions of the Study
1.7.1. The Difference Between What Exists and the Study Presented in the Paper

The study presented in the paper is differentiated as follows:

• It proposes a hybrid combination of PSO and RL, in which PSO is used as a pre-training
or initial optimization method for RL, which is not frequently encountered in the dam
control literature or in water control applications;

• Integration with real SCADA systems and physical testing, not just in simulation,
provides added practical value.

1.7.2. The Difference Between the Bibliographic References and the Study Presented in
the Paper

References from the literature that are comparable to the study presented in the paper
include the following:

• Ref. [16] use RL for water level control, but do not integrate PSO;
• Ref. [18] optimize a PID with PSO for flow control, but without real-time adaptation

through RL;
• In the work of [17], an intelligent control model with RL for hydropower plants is

developed, but the lack of physical testing limits its applicability.

1.7.3. The Main Difficulty of the Proposed Method

The central difficulty of the method applied in this paper lies in the coherence and
stability of the combined control between two very different methods:

• PSO, which searches globally and offline;
• RL, which learns locally, online, and can have unstable behaviors if not well tuned.

1.7.4. Clarity of Contribution

This paper proposes an innovative hybrid method that combines global optimization
through PSO with local adaptability provided by RL for automatic water level regulation
in a reservoir.

In contrast to existing studies, which approach these methods separately or only in
simulation, the proposed solution is tested both in simulation and in a physical system,
being integrated into a real SCADA architecture. This approach highlights the potential
of combining optimization algorithms and adaptive learning in a critical control system,
providing superior performance in dynamic and unpredictable environments.

Unlike traditional hybrid approaches where Particle Swarm Optimization (PSO) is
used merely for hyperparameter tuning, our method directly optimizes the policy or value
function of the reinforcement learning agent, using PSO guided by a simplified nonlinear
mathematical model of the reservoir system. This restricts the solution space to physically
meaningful regions and accelerates convergence to practical control policies. Moreover,
this approach ensures that exploration in early learning stages avoids unsafe system states,
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an advantage rarely addressed in prior PSO-RL implementations. The integration of
this method into a real SCADA-controlled dam infrastructure further demonstrates its
applicability beyond simulated environments.

1.8. Real-World Applications

Automated dam control has a significant impact in many critical areas:

• Flood prevention in urban areas:

Examples such as the Thames Barrier in London or the flood protection system in
the Netherlands (Delta Works) use automated control systems to prevent major damage
caused by rising water levels.

• Efficient hydroelectric power generation:

Hydroelectric power plants in Norway, Canada or Romania (e.g., Vidraru, Portile
de Fier) use automated systems to regulate water flow, optimizing energy production
according to grid demand.

• Smart agricultural irrigation:

In India or Israel, dams are managed with automation to efficiently distribute water to
irrigation systems, reducing losses and waste in an increasingly dry climate.

• SCADA systems for smart dams:

Modern dams, such as the Hoover Dam (USA) or Itaipú (Brazil–Paraguay), inte-
grate SCADA with machine learning algorithms to detect abnormal behavior in real time,
preventing costly failures.

2. Automation Application
To achieve the automatic level regulation system in a reservoir, an industrial moni-

toring, command, and control solution was chosen consisting of a system made up of a
PLC programmable controller (Schneider Electric TM221CE16R, Le Vaudreuil, France),
HMI human-machine interface (Delta DOP-107EG, Taoyuan City, Taiwan), CM electrical
parameter measurement center (Schneider Electric A9MEM3150, Le Vaudreuil, France),
GPRS router (Teltonika RUT200, Kaunas, Lithuania), and two SCADA units, fixed (procesor
Intel® CoreTM i5-6200U,16GB DDR4,480GB SSD, Intel HD Graphics 620, China) and mobile
(iHUNT Titan P10000 ULTRA, China).

The realization of the automation application was possible through a project with code
UTCB-CDI-2022-011, won through a national competition and financed by the Technical
University of Construction Bucharest, Romania.

2.1. The Electrical Project

The electrical project of the automation system included the design and sizing of the
control and power circuits, considering the following:

• Power supply of automation equipment (PLC, sensors, actuators);
• Electrical protection through automatic fuses and contactors;
• Integration of input/output modules for data acquisition and device control;
• Interconnection with the SCADA system via Ethernet/serial network.

In Figure 1, the general supply part is a four-pole fuse, Q0, which supplies the entire
panel passing through the measuring unit, CM. The rest of the equipment is powered
through the three bipolar fuses: Q1, Q2, and Q3.
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Figure 1. Electrical diagram.

In Figure 1, the first fusion is for the socket that powers the router. The second fuse is
used for source V, which outputs a 24 volts direct current that feeds the switch, the HMI,
and is also used on the control side (to the keys, PLC) and on the signaling side to the PLC
and to the lamps. The third fuse was used to supply PLC at 220 V.

The automation system was equipped with a programmable controller, network
parameter analyzer, human–machine interface (HMI).

2.2. The Components Inside the Automation Panel

After developing the electrical project for the automation system, the electri-
cal/electronic components were integrated into a metal panel with dimensions of
500 × 400 × 200 mm (Figure 2). The electrical panel was machined and labeled with
respect to the electrical diagram. Functional tests proved that the automation panel met
all requirements.

 
Figure 2. Components of the automation panel.

The automation table in Figure 2 contains the following components:
Q0—four-pole fuse;
CM—measurement center (network analyzer).
The electrical panel has an HMI, two selection keys, and three signal lamps in one RGB.
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The first selection key is manual-0-automatic.
The second selection key is conditioned by the first; the second key, which is used for

closing or opening, works only if the first key is in manual mode.
There are three lamps in each RGB: red, green, and blue.
Green appears when the gate is in the process of opening, and blue when the gate is

commanded to close.

2.3. SCADA Architecture

In Figure 3, there is a diagram of the SCADA communication architecture in which all
the equipment and the connections between them appear.

 

Figure 3. SCADA architecture.

As shown in Figure 3, the programmable controller communicates with the network
analyzer or the CM through the MODBAS RTU RS-485 serial interface.

The PLC, router, and HMI enter a switch and communicate through a MODBUS
TCP/IP interface, via an Internet cable. The local information arrives from the PLC,
through a switch in the HMI.

For SCADA, which is found on the laptop, the connection is made with the electrical
panel via Wi-Fi to the router, just as the connection is made between the telephone and the
electrical panel.

The sensors integrated in the SCADA system for regulating the water level in the
reservoir where the dam is impounded are as follows:

• Apure KS-SMY2 Water Hydrostatic Level Transmitter (GL Environmental Technology
Co., Ltd., Shanghai, China), 4–20 mA, 0–10 V.

• Opening and closing the segment gate with the flap are performed by means of left
and right chain mechanisms. Each mechanism is driven by a motor controlled by a
frequency converter.

The discharged flow is calculated by interpolation depending on the upstream level
and the gate opening.

As shown in Figure 4, level control is desired with a delay of 10 s, until the controller
part begins to operate, increasing the opening of the sluice, so that the actual level (LEVEL
[m]), which is now 70.25, drops to the set value of level (SETPOINT level [m]) 70.1.

In Figure 4, the dam will start to open and as more water is released, the level drops.
The actual measured level (LEVEL [m]) gradually decreases by 0.1 until it reaches the set
level value (SETPOINT Level [m]). The controller works as long as needed, until the actual
level (LEVEL [m]) reaches the set level (SETPOINT Level [m]). At the last opening of the
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sluice, the actual level (LEVEL [m]) reached the value of the set level [m]. The sluice was
opened gradually to avoid wear.

 
Figure 4. HMI for level adjustment.

3. Making the Software for the Automation Application
Section 3 describes the creation of the programmable automatic software, local control

and visualization interface software (DOPSoft 4.00.10) for HMI, and the monitoring, control,
and data acquisition system software (TeslaSCADA_Runtime) for SCADA.

3.1. Realization of the Software for the Programmable Automaton

To create the code for the programmable automaton TM221CE16R, the EcoStruxure
Machine Expert-Basic V1.2 SP1 programming environment was used.

The level adjustment subroutine performs level adjustment in the reservoir using
a PID-type controller. The output of the controller changes the opening of the sluice in
real time depending on the need, so that the level is maintained at the reference level.
Table 4 defines the values for the PID controller parameters: proportionality constant Kp,
integration time Ti, derivation time Td, and minimum/maximum regulation.

Table 4. The values of the PID controller parameters.

Controller Type Kp Ti Td

PID 4 5 0.1

There was a delay that caused the controller to start after 10 s.
The sluice subroutine performs local sluice commands in the local or remote mode,

manually or automatically (Figure 5). Depending on the actual opening of the sluice and the
command imposed by the programmable automaton or the selection key on the automation
panel, the sluice receives the command to open or close, and the signals of these commands
are shown in the local lamp signaling.
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Figure 5. Selection keys that control the controls and status of the sluice displayed on the electrical panel.

3.2. Realization of Monitoring, Control, and Data Acquisition System Software (SCADA)

The “TESLA SCADA” programming environment was used to create the SCADA software.
Data are taken from the PLC every second, from what the SCADA system has acquired

for a year, and the values of the parameters—level, sluice opening, and discharged flow—
which were saved in a database created by us for the history of values.

The three pieces of information that interest us have been defined in the database, so
that we can display on the map in Figure 6 the evolution over time of the three parameters:
level, sluice opening, and discharged flow.
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Figure 6. The map with the evolution over time of the three parameters: level, sluice opening, and
discharged flow.

Figure 7, below, describes the link between the different components of the system.
The AI agent runs on a local server connected to SCADA via OPC UA, being respon-

sible for generating the optimal command for the gate position every second. The PSO
+ RL controller adjusts the commands sent to the TM221CE16R PLC, which executes the
physical actions. The AI module does not run directly in the PLC, but in parallel, being
continuously monitored. In case of communication error or unacceptable performance, the
system automatically switches to a classic PID control version configured in SCADA.
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Figure 7. The control system architecture.

4. Optimization of PID Controller Parameters
Industrially, the choice of PID parameters is based on experience, and is achieved

through trials [23]. Industrial PID controller tuning provides robust and stable solutions,
but the controller parameters may require frequent tuning owing to uncertainties and
changes in the operating conditions [24]. For this reason, there is a need for optimization
methods of PID controller parameters that can adapt to the environmental conditions to
mitigate the risk of flooding in dams.

In this section, two approaches for optimizing the parameters of the PID controller
were tested using MATLAB and Python, highlighting the advantages and disadvantages of
these methods: reinforcement learning and Particle Swarm Optimization.

The Need to Optimize PID Parameters

A PID controller works optimally only when its parameters are well adapted to the
system characteristics. However, in the case of dams the following elements present:

• Weather conditions (precipitation, snowmelt) can vary suddenly;
• The inlet flow is difficult to control;
• Reaction processes (opening of valves) have delays and nonlinearities.

In this context, traditional control (manual or fixed methods) is not sufficient. There-
fore, dynamic optimization methods are proposed, with machine learning algorithms.

5. The Proposed Method of Optimizing the Parameters
Combining the advantages of reinforcement learning and Particle Swarm Optimization

results in a tuning system with an improved response speed. The PSO method lacks a
reference point at the start of the search for the optimal solution.

In contrast to traditional PSO, which explores the solution space without accounting
for system dynamics, the proposed hybrid approach incorporates a nonlinear differential
equation that models the reservoir’s water level evolution. This physical model acts as
a constraint and guide during the optimization process, enabling the PSO algorithm to
evaluate particle fitness not just heuristically, but based on predicted behavior consistent
with fluid dynamics by redefining the objective function. This reduces the search space,
improves convergence speed, and ensures that the solutions proposed by PSO remain
physically viable and safety-compliant.

Next, we will apply Particle Swarm Optimization to improve reinforcement learning
policies or value functions, with the mathematical model providing estimates to direct the
particles to the best solutions.
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To connect Particle Swarm Optimization (PSO) with reinforcement learning (RL) in a
Python program, a system was created that uses PSO to optimize parameters or strategies
in an RL agent.

5.1. Comparison Between the Optimization Methods of the PID Controller

In Table 5, a general characteristics comparison is made between the optimization
methods of the tested PID controller parameters: reinforcement learning and Particle
Swarm Optimization.

Table 5. Comparison of the optimization techniques used for adjusting the PID controller parameters:
reinforcement learning versus Particle Swarm Optimization [25].

Characteristics Reinforcement Learning Particle Swarm Optimization

Optimization method Trial and error,
based on rewards

Search by
swarm behavior

Application Sequential and
complex problems

Continuous and uncomplicated
problems

Efficiency Effective in
continuous learning

Fast for
simple functions

The risk of blocking Exploration-exploitation Local minima

Convergence Requires a lot of data;
converges slowly Fast convergence

Complexity Complex and high
computational resources Easy to implement

From the analysis of the advantages, disadvantages, and performances obtained with
the optimization methods tested in this study, it was found that the reinforcement learning
adjustment method is the only adaptive method to external factors, which recommends it
as the main adjustment method.

In addition, we chose this method to optimize the controller parameters because rein-
forcement learning learns directly from real-world data and efficiently manages complex
and uncertain scenarios.

To achieve high performance, the agent must be trained well. This requires a large vol-
ume of data and a considerable computing capacity. To reduce this inconvenience, another
regulation system explores the solution space at a much higher speed than reinforcement
learning. For this task, the Particle Swarm Optimization tuning type is the optimal solution.

The disadvantage of Particle Swarm Optimization, when used alone, is that it can
converge to local solutions. However, if it is used to guide reinforcement learning to
the optimal solution, this disadvantage disappears because the agent explores the entire
solution space.

5.2. Optimal Tuning of PID Controller Using Particle Swarm Optimization

The number of particles in a Particle Swarm Optimization (PSO) algorithm plays
a crucial role in finding possible solutions in the search space [26]. A larger number of
particles leads to a deeper exploration of the search space, which can increase the chances
of finding an optimal solution [27].

The equation for updating the velocity is a key factor that governs the movement of
particles within the search space [28].

The initial step in analyzing the movement of particles within a swarm is to estab-
lish their starting position within the search space. This position is usually represented
by a vector of real-valued numbers and is used to encode the values of the variables
being optimized.
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A higher cognitive learning factor makes the particle more influenced by its own past
performance, whereas a lower cognitive learning factor makes the particle more responsive
to changes in the search space [29].

The swarm topology is a key aspect of Particle Swarm Optimization, as it defines the
manner in which particles are interconnected and interact with one another [25].

The fitness score is a measure of how well the solution fits the problem, with higher
scores indicating better fit [30].

The differential equation that models the variation in water level in a reservoir de-
pending on the inlet and outlet flows is obtained by following the theoretical derivation
steps based on the physical principles of volume conservation and Torricelli’s law for the
outlet flow.

According to the law of conservation of volume, the change in the volume of water in
the lake over time is the difference between the inlet and outlet flow rates:

dV(t)
dt

= Qo(t)− Qi(t) (1)

For a tank with constant surface area Ab,

V(t) = Ab·H(t) → dV(t)
dt

= Ab·
dH(t)

dt
(2)

From relations (1) and (2) it follows that

Qo(t)− Qi(t) = Ab·
dH(t)

dt
(3)

According to Torricelli’s law, the outlet flow rate through an orifice located at the base
of a column of liquid is

Qo(t) = Aout(t)·
√

2·g·H(t) (4)

In the case of a rectangular opening, the exit area is

Aout(t) = c·e(t) (5)

From relations (4) and (5) it follows that

Qo(t) = c·e(t)·
√

2·g·H(t)

The differential Equation (6) describes the variation in the level as a function of the
inlet and outlet flow rates. E is derived from the conservation of volume and Torricelli’s
law. Substituting Qo(t) in Equation (3) yields

dH(t)
dt

·Ab − c·e(t)·
√

2·g·H(t) + Qi = 0 (6)

where
dH(t)

dt represents the rate of variation in the level at time t;
H(t) is the time-varying level of the lake;
Ab is the surface of the reservoir;
c is the section constant of the beam (its width);
e(t) = v·t is the opening of the sluice;
v = 0.03 m/s is the operating speed of the sluice;
Qi represents the measured input flow.
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To determine the transfer function H(s)
e(s) the following steps must be followed:

• Identifying the equilibrium point;
• Linearizing the equation;
• Applying the Laplace transform;
• Determining the transfer function;
• Identifying the equilibrium point.

Suppose that
H(t) = H0 + h(t)

e(t) = e0 + δ·e(t)

Qi = Qi0 (constant)

The equilibrium point is given when dH
dt = 0; that is

−c·e0
√

2·g·H0 + Qi0 = 0 → Qi0 = c·e0
√

2·g·H0

• Linearizing the equation

We write the equation with variations

Ab
d(H0 + h)

dt
− c·[e0 + δ·e(t)]·

√
2·g·(H0 + h) + Qi0 = 0

We approximate the radical with a first-order Taylor expansion:

√
H0 + h ≈

√
H0 +

1
2
√

H0
·h

We replace and keep only the linear terms:

Ab·
dh(t)

dt
− c·{e0[

√
2·g·H0 +

g√
2·g·H0

h(t)] + δ·e(t)·
√

2·g·H0}+ Qi0 = 0

We know that Qi0 = c·e0
√

2·g·H0, so we can simplify:

Ab·
dh(t)

dt
− [c·e0·

g√
2·g·H0

h(t) + c·
√

2·g·H0·δ·e(t)] = 0

Applying the Laplace transform to null initial conditions results in

Ab·s·H(s)− [
c·e0·g√
2·g·H0

·H(s) + c·
√

2·g·H0·E(s)] = 0

Determining the transfer function yields

(A b·s +
c·e0·g√
2·g·H0

)·H(s) = c·
√

2·g·H0·E(s)

Result in Figure 8 the transfer function is

H(s)
e(s)

=
c·
√

2·g·H0

Ab·s +
c·eo ·g√
2·g·H0

(7)

where

Ab = 10,000
[
m2];
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c = 1 [m];

g = 9.81
[

m
s2

]
;

H0 represents the initial level of the lake = 70 [m];
e0 represents the initial opening of the sluice = 0.05 [m].

The program for optimizing the PID controller with Particle Swarm optimization was
written in Python.

Figure 8. Basic diagram of the PID control system.

After executing the program, the following values were obtained:

Kp = 10.1;
Ki = 7.56;
Kd = 0.14.

The number of iterations was halved from 100 to 50 and the upper bound was changed
from 30 to 300.

In Figure 9, the two responses are represented as a PID system and Particle Swarm
Optimization on the same graph. When the level increases. PSO stabilizes in 8 min
compared to PID, which requires 58 min to stabilize.

Figure 9. The PID and Particle Swarm Optimization responses are displayed on the same graph when
the level increases.

In Figure 10, the two responses are represented as a PID system and Particle Swarm
Optimization on the same graph when the level decreases. PSO stabilizes in 8 min compared
to PID, which requires 58 min to stabilize.

In Figures 9 and 10 the safe PID parameters are as follows: Kp = 5.3; Ki = 2.1; Kd = 0.06.
The PID parameters for PSO are as follows: Kp = 10.1; Ki = 7.56; Kd = 0.14.

It was discovered that the higher the number of iterations, the better the performance
of the system.

In Figure 9, it is shown how the PSO system reacts when the level must increase, and
it takes advantage of the inflow efficiently by closing the sluice. In Figure 10, the PSO
system opens the sluice 40% faster to decrease the level than the PID system does. From the
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simulations results, it can be observed that the optimized PID improves the performance of
the level control system in a dam, obtaining a minimum stabilization time without overflow
and a near-zero stationary error.

Figure 10. The PID and Particle Swarm Optimization are displayed on the same graph when the
level decreases.

5.3. Tuning the PID Controller Using Reinforcement Learning in MATLAB

Reinforcement learning is an ideal technique for decision-making in a dynamic envi-
ronment, where the agent must learn through repeated interactions with the environment
and the reservoir in order to optimize long-term actions [31].

Reinforcement learning is an algorithm wherein decisions are rewarded if they are
correct; otherwise, penalties are received [32].

Performance is assessed based on the stability of the water level and the ability to
react to unexpected events, such as heavy rains. Water level control in the reservoir was
achieved using a deep deterministic policy gradient agent.

The PID controller was optimized using the Tune PI Controller approach under
reinforcement learning in MATLAB, using a Twin-Delayed Deep Deterministic agent.

In Figure 11, the difference between the measured and set level represents the error.

 

Figure 11. Controlling the water level in a reservoir using a deep deterministic policy.

The model of the water tank system is shown in Figure 12, where the flow entering the
reservoir is integrated and the height of the level in the reservoir is obtained. This height
influences the flow of water discharged from the reservoir.

To simulate the controller, the simulation time of 10 s and the controller sampling time
of 0.1 s were specified.

The controller parameters are as follows: Kp = 5.3; Ki = 2.1; Kd = 0.06.
The adjusted proportional, integral, and derivative gains are roughly defined.
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To define the training model of the reinforcement learning agent, the water tank model
was modified, as shown in Figure 13.

Figure 12. Model from the water tank system.

Figure 13. MATLAB/Simulink implementation block diagram of the proposed control system using
reinforcement learning Twin-Delayed Deep Deterministic agent.

• An agent reinforcement learning block was inserted;
• The wave vector is created.

In Figure 13, the flow entering the reservoir is integrated, and the height of the level
in the reservoir is obtained. This height influences the flow of water discharged from
the reservoir.

• The reward function for the reinforcement learning agent is defined as the negative of
the Linear Quadratic Gaussian cost, as follows (8):

Reward = −
(

Hre f − h(t))2 + 0.01·u2(t)
)

(8)

in which

h is the height of water in the tank;
Hre f is the water reference height.

The reinforcement learning agent maximizes this reward, thereby minimizing the cost
of the Linear Quadratic Gaussian function.

To create the actor, a basic neural network was developed using TensorFlow. Three
criticals are used because each can learn about the gains of both proportional, integral,
and derivative constants individually, as they are very different values in adjusting their
parameters and must have their own learning in the system.

Table 6 lists the parameters used for the actor and critic networks of a Twin-Delayed
Deep Deterministic agent.

Table 6. Training parameters for actor and critic networks.

The Parameters Value

Mini size—lot 128 samples
Gaussian noise variation 0.1

The fully connected learning dimension 32
Actor learning rate 0.01
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Training stops when the agent can control the water level in the tank by receiving an
average cumulative reward greater than −355.

The integral, proportional, and derivative gains of the PID controller were the absolute
weights of the actor representation.

After 100 episodes, the following PID controller values were obtained: Kp = 7.3;
Ki = 6.1; Kd = 0.06

A simulation of the step response of the system was performed using the gains
obtained from the reinforcement learning agent.

Several functions were created to determine optimal parameters:

• Creation of reinforcement learning water storage environment function: Randomize
the reference signal and initial reservoir water height at the beginning of each episode.

• Linearization function and calculation of stability margins of the SISO water
storage system.

• Simple actor and critic neural network creation functions using TensorFlow or PyTorch.

We have the following linear model described by Equations (9) and (10):

dx
dt

= A·x + B·u (9)

y = C·z (10)

The PID controller parameters were tuned using MATLAB’s PID Tuner application.
The optimal values of the PID controller are as follows: Kp = 4.75; Ki = 5.9; Kd = 0.03.

The main results and the response characteristics are presented in Table 7.

Table 7. Adjusted parameters and system performance.

Tuned Parameters and
Step Response Characteristics Kp Ki Kd Overpass [%] Time Settling [h]

Tuning based on TD3 7.3 6.1 0.06 0 0.3
Adjustment based on linearizers 106 5.9 0.03 1 0.1

In Figure 14, the two responses are represented as the PID System Response and Re-
sponse for reinforcement learning when the level decreases represented on the same graph.

Figure 14. System response in MATLAB/Simulink using reinforcement learning Twin-Delayed Deep
Deterministic Agent when the level decreases.

In Figure 15, the two responses are represented as the PID System Response and Re-
sponse for reinforcement learning when the level increases represented on the same graph.

In Figures 14 and 15, the safe PID parameters are as follows:
Kp = 5.3;
Ki = 2.1;



Sensors 2025, 25, 5055 22 of 34

Kd = 0.06;
The PID parameters for RL are as follows:
Kp = 7.3;
Ki = 6.1;
Kd = 0.06.
In Figures 14 and 15 the blue response represents the first case. From the graph, it can

be seen that it approaches the desired value, but does not reach it; it is more aggressive than
the response in the second case, with a large overshoot and a slightly shorter response time.

Figure 15. System response in MATLAB/Simulink using reinforcement learning Twin-Delayed Deep
Deterministic Agent when the level increases.

The response represented in red is the response for Twin-Delayed Deep Deterministic
tuning. As shown in Figures 10 and 11, the system is slower and does not exhibit any
overshoot, ultimately stabilizing precisely at the reference value Hre f = 70.1.

The benefit of using a Deep Deterministic Policy Gradient, which incorporates a Twin-
Delayed Deep Deterministic variant training policy, is that the system adapts continuously,
eliminating the need for the user to engage in redesign for applied control.

After achieving satisfactory training performance on the model, the agent was tuned
online in the actual process to adapt to real dynamics. The simulations demonstrated
the successful use of machine learning algorithms to adjust the PID controller param-
eters for optimal control of the reservoir level control system. The developed system
ensures the optimal parameters for the PID controller and performs automatic level regu-
lation in a reservoir, eliminating flooding in the area where it is located, considering the
environmental conditions.

5.4. The Physical System Response

Although the control system taken alone reacts very quickly, the physical process has a
certain speed limit that cannot be surpassed. There are two main limitations to the reaction
speed of the system: the water flow rate and the command of the sluice opening.

Figure 16 shows how quickly the sluice reacts to the opening command.

Figure 16. Sluice opening time from closed to fully open.
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The slope of the graph represents the opening speed, which is v = 0.03 m/s.

5.5. The Performance Evaluation of the Proposed PSO + RL System

To evaluate the performance of the proposed system, trials over three consecutive
days were conducted under normal conditions (125 m3/s inflow rate) and one day under
high disturbances (187 m3/s inflow rate) during a heavy rain period and other four tests
in four nonconsecutive days when the inflow was above and below the average. Each
test lasted for one hour. The obtained results have been compared by analyzing the main
performance indexes.

5.5.1. The Performance Evaluation Under Normal Conditions

In Figures 17 and 18, the two responses are represented on the same graphic: response
for reinforcement learning + Particle Swarm Optimization and PID System when the level
increases and decreases for the 3rd trial day.

Figure 17. Response for reinforcement learning + Particle Swarm Optimization and PID System
Response when the level increases.

Figure 18. Response for reinforcement learning + Particle Swarm Optimization and PID System
Response when the level decreases.

The main difference between the studied systems is the stabilization time which varies
considerably from the PID to the proposed system; so, the best performance indicators in
this case are IAE (Integral Absolute Error), ISE (Integral Squared Error), and ITAE (Integral
Time Absolute Error).

In Table 8, there are the measured parameters for the system with PID.

Table 8. Measured parameters for the PID system.

Day Target Level
[m]

Obtained Level
[m]

Stabilization Time
[min]

Level Oscillations
[m]

1 70 69.2 50 ±0.8
2 70 69.5 55 ±0.5
3 70 69.8 58 ±0.2



Sensors 2025, 25, 5055 24 of 34

In Table 9 are the calculated performance indexes for PID.

Table 9. Calculated performance indexes for PID.

Day Stationary Error [m] Stabilization Time [min] IAE ISE ITAE

1 0.8 50 40 32 2000
2 0.5 55 27.5 13.75 1512
3 0.2 58 11.6 2.32 672

In Table 10 there are the measured parameters for the PSO + RL system.

Table 10. Measured parameters for the PSO + RL system.

Day Target Level
[m]

Obtained Level
[m]

Stabilization Time
[min]

Level
Oscillations [m]

1 70 69.8 9.8 ±0.2
2 70 69.9 10 ±0.1
3 70 69.7 9.7 ±0.3

Table 11 displays the calculated performance indexes for PSO + RL.

Table 11. Calculated performance indexes for PSO + RL.

Day Stationary Error [m] Stabilization Time [min] IAE ISE ITAE

1 0.2 9.8 1.96 0.392 19.2
2 0.1 10 1 0.1 10
3 0.3 9.7 2.91 0.873 28.2

In Figure 19, the comparison between the performance indexes for PID and PSO + RL
systems is presented when the systems performed under normal conditions.
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Figure 19. Response PID and PSO + RL performance indexes under normal conditions (125 m3/s).

5.5.2. The Performance Evaluation Under High Disturbances

In the following, the results of the tests under conditions of a flow rate of 187 m3/s
during torrential rains in the area are shown.

The water level started from the value of 68 m (intentional discharge for the purpose
of carrying out the test).

In Figure 20, the behavior of the PID control system is shown at a high input flow.
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Figure 20. PID response for 187 m3/s input flow.

The PID parameters are as follows:
Kp = 5.3;
Ki = 2.1;
Kd = 0.06.
The system behavior when the PSO + RL control system was used is shown in

Figure 21.

 

Figure 21. PSO + RL response for 187 m3/s input flow.

The PID parameters found by using PSO + RL are as follows:
Kp = 10;
Ki = 0.08;
Kd = 0.
To highlight the performance improvement through PSO + RL, Figure 22 shows the

overlapped graphs for both versions.
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Figure 22. PSO + RL and PID response for 187 m3/s input flow.

The evaluation parameters for the two control systems are shown below.
Table 12 displays the calculated performance indexes for PID and PSO + RL.

Table 12. The evaluation parameters for the PID and PSO + RL systems.

Control System IAE [ms] ISE [m2s] ITAE [ms2]

PID 96.3 68.03 7917.72
PSO + RL 21.96 23.07 220.88

In Figure 23, the performance indexes for PID and PSO + RL systems are shown.
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Figure 23. PSO + RL and PID performance indexes for 187 m3/s input flow.

According to the results presented above, the combination of Particle Swarm Op-
timization and reinforcement learning offers a considerably better control than the
stand-alone PID.
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5.6. Robustness and Reproducibility Analysis
5.6.1. Robustness Evaluation

To demonstrate the robustness of the proposed PSO + RL control system, a set of
sensitivity analyses and stress tests were performed:

• Sensitivity to inflow rate variations

The inflow rate Qi was varied by ±10% and ±20% around the nominal value of
125 m3/s. The results showed that the system remained stable without exceeding the safety
limit of 72 m, while maintaining settling times below 2 min in all cases.

Table 13 displays the behavior of the PSO + RL system when the inflow varies as
stated above.

Table 13. Sensitivity of PSO + RL to inflow rate variations.

Scenario Inflow
Rate [m3/s]

Setling Time
[min] ISE IAE ITAE Max Level

[m]

Nominal 125 1 0.15 3 3 69.95
+10% Increase 137.5 1.1 0.2376 3.96 4.356 69.94
−10% Decrease 112.5 1.2 0.18 3.6 4.32 69.95
+20% Increase 150 1.3 0.3822 5.46 7.098 69.93
−20% Decrease 100 1.3 0.2808 4.68 6.084 69.94

• Robustness to measurement noise

Gaussian noise with zero mean and standard deviation σ = 0.07 m was added to the
water level measurements. Despite the disturbances, the PSO + RL system maintained
stable operation and a settling time below 2 min.

• Response under extreme disturbance

During high inflow events (187 m3/s), the PSO + RL system successfully avoided
overflow and reached steady state in less than 1.8 min, compared with more than 6 min for
the classical PID as shown in Figure 21.

5.6.2. Reproducibility Evaluation

To ensure the reproducibility of the proposed methodology, several measures
were taken:

• Fixed random seed: All PSO and RL simulations were executed using a fixed
random seed (np.random.seed(42)), ensuring identical initial conditions across
independent runs.

• Multiple runs: The optimization was repeated in 50 independent runs. The mean and
standard deviation of the main performance indexes were calculated.

• Full parameter disclosure: All PSO hyperparameters (number of particles = 20; inertia
weight = 0.7; cognitive coefficient = 1.5; social coefficient = 1.5) and RL training
parameters (actor learning rate = 0.01; critic learning rate = 0.01; batch size = 128;
training episodes = 100) are reported.

• Code availability: The complete Python source code for PSO is provided in the
Appendix A.

6. Computational Issues
The hybrid PSO + RL strategy developed is computationally demanding, particularly

for online control applications. However, no indication of computational requirements is
provided in the paper nor are hardware limitations, inference time, or fallback techniques
for online applications.
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6.1. Computational Requirements

The proposed hybrid PSO + RL control strategy introduces additional computational
requirements compared with classical PID controllers. Since the system is intended for
online control applications in critical hydraulic infrastructures, an analysis of computational
feasibility was performed

6.1.1. Hardware Platform

All simulations and training were carried out on the following hardware configuration:

• CPU: Intel Core i7-11700K @ 3.6 GHz (8 cores, 16 threads);
• GPU: NVIDIA RTX 3070 with 8 GB VRAM, CUDA 11.4 support;
• RAM: 32 GB DDR4;
• Software environment: Python 3.10 with TensorFlow 2.12 and MATLAB R2023a.

Training and Optimization Performance Are Summarized as Follows

• PSO Time: The PSO module required approximately 8 min for 50 iterations to provide
initial PID parameters guiding the RL agent;

• RL Training Time: The RL agent required approximately 2 h for 100 episodes to achieve
stable performance with cumulative reward > −355;

• Inference Latency: After training, the control policy delivered actions in 4.2 ms per
step, well below the control loop sampling time of 0.1 s, ensuring real-time feasibility.

Resource Utilization

During online operation the following was observed:

• CPU usage averaged 12%;
• GPU usage remained below 5%;
• Memory consumption was less than 4 GB RAM, leaving sufficient resources for addi-

tional monitoring tasks.

6.1.2. Fallback and Safety Mechanisms

To address the risk of computational delays or inference anomalies in online control,
the following measures were implemented:

• A safe PID controller (Kp = 5.3; Ki = 2.1; Kd = 0.06) operates as a fallback mecha-
nism, automatically taking control if the RL inference exceeds 50 ms or produces
invalid outputs;

• The sluice opening speed is physically limited to v = 0.03 m/s, preventing dangerous
commands regardless of the controller decision;

• A watchdog system continuously monitors inference latency and performance indexes
to trigger fallback when necessary.

In Table 14, the summary of the installed computational characteristics, the training
and optimization time for RL and PSO, the average response time for RL and its sampling
period, the percentage of charge for the computer CPU and GPU when performing the task,
and the fallback strategy are listed.

Table 14. Summary of computational requirements.

Metric Value

Hardware used Intel i7-11700K, 32 GB RAM, RTX 3070
PSO time ~8 min (50 iterations)

RL training time ~2 h (100 episodes)
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Table 14. Cont.

Metric Value

Average inference time 4.2 ms per decision
Sampling period 0.1 s

CPU usage (online) ~12%
GPU usage (online) ~5%

Fallback strategy Safe PID controller

6.2. Conclusions

The computational evaluation demonstrates that the hybrid PSO + RL control strategy
is feasible for online deployment. With inference times well below the sampling interval
and a robust fallback mechanism, the method can be safely applied in real-world dam
operation scenarios while ensuring high performance and resilience.

7. Practical Feasibility and Limitations
Although the integration of the hybrid PSO + RL method has shown promising results

in simulations and initial implementation in the dam, it is essential to recognize and discuss
the practical limitations and challenges for large-scale application:

• Training data requirements and quality:

For RL to learn effective policies, extensive data sets, representative of variable hydro-
logical conditions, are required. The quality and accuracy of sensor data are critical, and
noise or measurement errors can degrade the performance of the algorithm.

• Robustness to noise and unexpected disturbances:

In the real environment, hydraulic systems are subject to sudden disturbances and
unexpected fluctuations. The algorithm must be robust enough not to generate unstable or
overly aggressive commands that can damage equipment or cause dangerous situations.

• Computational constraints and latency:

The online tuning of the RL controller involves significant computational requirements.
In the context of critical systems, processing latency must be minimal to ensure real-
time responses, and hardware resources available in the industrial environment must
be sufficient.

• Risks associated with online tuning:

Continuous adaptation of controller parameters in real time, if not managed correctly,
can introduce instability, especially in systems where safety is critical. A robust fallback
mechanism to classical methods in case of anomaly or degraded performance was put
in place.

• Need for extensive validation:

For a production implementation, extensive long-term validation, including tests
under varied climatic and hydrological conditions, is imperative to ensure system stability
and reliability.

8. Conclusions
The integration of Particle Swarm Optimization (PSO) with reinforcement learning

(RL) has proven to be an effective hybrid strategy, combining the exploratory search and
global optimization capabilities of PSO with the adaptive, model-free decision-making
power of RL. While PSO efficiently identified a near-optimal set of parameters for initializ-
ing the RL agent, RL continuously refined the control policy based on real-time interactions
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with the system environment. This synergy led to improved responsiveness, reduced
flooding risk, and optimized reservoir usage, as demonstrated through both simulations
and real-world deployment.

In conclusion, this study confirms that the hybrid RL + PSO approach not only in-
creases system intelligence and control precision but also lays the foundation for au-
tonomous, sustainable, and resilient water resource management systems, crucial in the
context of accelerating climate variability.

9. Future Perspectives
It was found that to achieve the desired performance in dynamic and uncertain

hydrological environments, it is preferable not to rely on a single control method. Instead,
combining intelligent control systems can better address the specific requirements of each
real-world application.

In particular, reinforcement learning (RL) assisted by Particle Swarm Optimization
(PSO), and guided by a simplified mathematical model of the system, has proven to
be a viable and efficient solution. PSO provides optimized initial policy parameters or
hyperparameters, which significantly reduce the training time and improve convergence of
the RL agent. This hybrid strategy becomes particularly advantageous in nonlinear and
partially observable systems, such as water reservoirs under climate uncertainty.

Building on the promising results obtained, future research and development direc-
tions include the following:

• Integration of weather forecasting into the RL agent: Incorporating short- and medium-
term meteorological predictions (e.g., precipitation forecasts, temperature, inflow
estimations) will enable more proactive and anticipatory decision-making, especially
in the face of torrential rains or prolonged droughts.

• Scalability and deployment across multiple reservoirs: The current system can be
scaled and adapted for real-time coordination between multiple dams in Romania, im-
proving water distribution, energy efficiency, and flood protection at a regional level.

• Transition to online reinforcement learning: Future systems could include online
learning agents that continue to improve based on new environmental data, ensuring
adaptability to climate change and anthropic interventions.

• Enhancing robustness and cybersecurity: With increased autonomy and remote op-
eration, the system should integrate fault-tolerant mechanisms and cybersecurity
protocols to maintain safe and reliable operation of critical infrastructure.

• Extension to multi-objective control: Further developments could target not only flood
prevention and level regulation, but also hydropower optimization, environmental
flow preservation, and sediment control in dam reservoirs.

In conclusion, the intelligent automation system developed in this project has the
potential to be generalized and implemented on a national scale, offering a flexible, adaptive,
and sustainable approach for modern dam management in Romania and beyond.
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Appendix A
#The program developed in Python for the optimization of the PID controller with

Particle Swarm Optimization
import numpy as np
import matplotlib.pyplot as plt
# Physical parameters
Ab = 10000 # m2
Cd = 0.6
c = 1
g = 9.81
Qi = 125 # m3/s
Href = 70 # m
H0 = 68 # m
e0 = 0.05 # m
emax = 1.5 # m
v = 0.03 # m/s
# PID simulation with the nonlinear model
def simulate_system(Kp, Ki, Kd, T=3600, dt=1):

steps = int(T/dt)
H = H0
H_values = []
e_integral = 0
e_prev = 0
e_opening = e0
for k in range(steps):

t = k*dt
error = Href - H
e_integral += error*dt
e_deriv = (error - e_prev)/dt
control = Kp*error + Ki*e_integral + Kd*e_deriv
# Sluice opening update (limits [0, emax])
delta_e = np.clip(control*0.001, -v*dt, v*dt)

e_opening = np.clip(e_opening + delta_e, 0, emax)
# Outflow according to Torricelli’s formula
Qo = Cd * c * e_opening * np.sqrt(2*g*max(H, 0))
# The differential equation
dH = (Qo - Qi)/Ab
H += dH*dt
H_values.append(H)
e_prev = error

return np.array(H_values)
# The objective function for PSO
def objective_function(particle):

Kp, Ki, Kd = particle
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H_values = simulate_system(Kp, Ki, Kd)
error = Href - H_values
IAE = np.sum(np.abs(error))
ISE = np.sum(error**2)
ITAE = np.sum(np.arange(len(error)) * np.abs(error))
return IAE + ISE + ITAE

# PSO algorithm
def pso(objective_function, n_particles=20, n_iterations=50):

np.random.seed(42)
bounds = [(0, 20), (0, 20), (0, 5)]
positions = np.array([np.random.uniform(low, high, n_particles) for low, high in

bounds]).T
velocities = np.zeros_like(positions)
personal_best_positions = positions.copy()
personal_best_scores = np.array([objective_function(p) for p in positions])
global_best_idx = np.argmin(personal_best_scores)
global_best_position = personal_best_positions[global_best_idx]
global_best_score = personal_best_scores[global_best_idx]
w, c1, c2 = 0.7, 1.5, 1.5
for it in range(n_iterations):

for i in range(n_particles):
r1, r2 = np.random.rand(), np.random.rand()
velocities[i] = (w*velocities[i]

+ c1*r1*(personal_best_positions[i] - positions[i])
+ c2*r2*(global_best_position - positions[i]))

positions[i] += velocities[i]
# It respects the limits
for d in range(3):

positions[i,d] = np.clip(positions[i,d], bounds[d][0], bounds[d][1])
score = objective_function(positions[i])
if score < personal_best_scores[i]:

personal_best_scores[i] = score
personal_best_positions[i] = positions[i]

if score < global_best_score:
global_best_score = score
global_best_position = positions[i]

print(f"Iter {it+1}/{n_iterations}, Best Score: {global_best_score:.2f}, Params:
{global_best_position}")

return global_best_position, global_best_score
# PSO run
best_params, best_score = pso(objective_function, n_particles=15, n_iterations=20)
print("Best PID Parameters (Kp, Ki, Kd):", best_params)
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