
Academic Editor: Naipeng Li

Received: 20 June 2025

Revised: 15 July 2025

Accepted: 31 July 2025

Published: 6 August 2025

Citation: Balasubramanian, B.; Cetin,

K. Vision-Based 6D Pose Analytics

Solution for High-Precision Industrial

Robot Pick-and-Place Applications.

Sensors 2025, 25, 4824. https://

doi.org/10.3390/s25154824

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Vision-Based 6D Pose Analytics Solution for High-Precision
Industrial Robot Pick-and-Place Applications
Balamurugan Balasubramanian 1,2 and Kamil Cetin 1,3,*

1 Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, Cigli,
35620 Izmir, Türkiye

2 Eren Brake Linings, Kemalpasa, 35170 Izmir, Türkiye
3 Smart Factory Systems Application and Research Center, Izmir Katip Celebi University,

Cigli, 35620 Izmir, Türkiye
* Correspondence: kamil.cetin@ikcu.edu.tr; Tel.: +90-232-270-5500

Abstract

High-precision 6D pose estimation for pick-and-place operations remains a critical problem
for industrial robot arms in manufacturing. This study introduces an analytics-based
solution for 6D pose estimation designed for a real-world industrial application: it enables
the Staubli TX2-60L (manufactured by Stäubli International AG, Horgen, Switzerland) robot
arm to pick up metal plates from various locations and place them into a precisely defined
slot on a brake pad production line. The system uses a fixed eye-to-hand Intel RealSense
D435 RGB-D camera (manufactured by Intel Corporation, Santa Clara, California, USA)
to capture color and depth data. A robust software infrastructure developed in LabVIEW
(ver.2019) integrated with the NI Vision (ver.2019) library processes the images through a
series of steps, including particle filtering, equalization, and pattern matching, to determine
the X-Y positions and Z-axis rotation of the object. The Z-position of the object is calculated
from the camera’s intensity data, while the remaining X-Y rotation angles are determined
using the angle-of-inclination analytics method. It is experimentally verified that the
proposed analytical solution outperforms the hybrid-based method (YOLO-v8 combined
with PnP/RANSAC algorithms). Experimental results across four distinct picking scenarios
demonstrate the proposed solution’s superior accuracy, with position errors under 2 mm,
orientation errors below 1°, and a perfect success rate in pick-and-place tasks.

Keywords: industrial robot arm; industrial camera; pick-and-place application; 6D pose
estimation; analytics solution; LabVIEW; YOLO

1. Introduction
Industrial robot arms have been used for many years to increase the efficiency of

modern manufacturing processes due to their high precision, repeatability, and speed
capacities [1]. They are widely used in critical processes such as pick-and-place applications,
assembly, packaging, and material handling, and these application capabilities directly
affect the performance of production lines [2,3]. However, high-precision and high-accuracy
positioning and manipulation of objects in dynamic and complex industrial environments
pose significant challenges, especially in cases that require 6D (six-dimensional) pose
estimation (three-dimensional position and three-dimensional orientation) [4,5]. In this
study, the problem of picking metal plates located in different positions in a brake pad
production line from the center of gravity with a vacuum–magnetic gripper integrated at
the end point of the robot arm and placing them in certain empty slots with high precision
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is addressed. This process becomes complicated due to the different orientations and
positions of the plates and requires high accuracy in both picking and placing operations.
For example, if the gripper at the end point of the robot arm moves to the correct position
but does not approach the metal plate with the correct orientation, it may not be able to
grasp the metal plate from its targeted center point due to its weight, magnetic field effect,
and, if any, its inclination relative to the production line. Therefore, a metal plate that
cannot be picked with the desired position and orientation may not be correctly placed in
the empty target slots. This problem emerges as a critical obstacle that needs to be solved
in order to increase precision and minimize the margin of error in industrial production.

For estimating the 6D pose of objects, cameras are the most widely used technology in
industrial applications [6], even if sensors such as lasers [7], IMU-based string encoders [8],
and tactile sensors [9] are rarely used. In this study, a fixed eye-to-hand RGB-D camera is
used because RGB-D cameras provide more accurate pose estimation by providing both
color and depth information of objects simultaneously. In order to process the real-time
images obtained from the camera and to compare the calculated 6D pose values, the actual
dimensional parameters of the metal plates in the 3D computer-aided design (CAD) models
are needed as reference values. To computationally estimate the 6D pose of objects, deep
learning-based or traditional analytics-based solutions are often integrated with image
processing techniques.

When we examine pioneering and innovative studies that have become reference
points in the literature [10–14] on the estimation of objects’ 6D pose, the approaches to
solving this problem are divided into two main categories: learning-based and non-learning-
based techniques. Of the traditional non-learning-based 6D pose estimation techniques
from the early years, the template matching-based and feature-based methods are still used
today. LineMOD [15], the most well-known of the template matching methods, estimates
the 6D pose of an object by comparing previously created 2D/3D templates from different
viewpoints with the input image and selecting the best matching pose. Feature-based
methods, other important methods that are non-learning-based, estimate the 6D pose by
matching the 2D key points in the image with the corresponding 3D points in the object
model and then solving the pose using geometric techniques such as perspective-n-points
(PnP) and random sample consensus (RANSAC) [16]. For target objects exhibiting distinct
textural features, traditional techniques such as the Hough Transform (HT) [17], Scale-
Invariant Feature Transform (SIFT) [18], Speeded-Up Robust Features (SURF) [19], and
Oriented FAST and Rotated BRIEF (ORB) [20] are often used for feature extraction and
reliable pose estimation. In recent years, the estimation of objects’ 6D pose using these
traditional techniques has been further developed and used in robotic grasping applications.
In [21], the authors presented an approach for detecting and achieving high-accuracy 3D
localization of multiple textureless rigid objects from RGB-D data. The authors of [22]
presented a unique framework called Latent-Class Hough Forests for 3D pose estimation
in situations that are very congested and obscured. Ref. [23] proposed a coarse-to-fine
approach using only shape and contour data, selecting similar projection images to create
many-to-one 2D–3D correspondences while emphasizing outlier rejection and leveraging
geometric matching to guide pose estimation robustly. The authors in [5,24] developed
the bunch-of-lines descriptor (BOLD) method to identify and match contour lines by fully
using the geometric information of textureless metal objects in industrial applications.
The study in [25] introduced a 3D point cloud pose estimation method using geometric
information prediction to enhance accuracy and speed in robotic grasping of industrial
parts by analyzing appearance characteristics and point cloud geometry. The study in [26]
contributed a probabilistic smoothing method for stable object pose tracking in robot control
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using real and synthetic datasets. The study in [27] proposed a grasping pose estimation
framework using point cloud fusion and filtering from a single-view RGB-D image.

Learning-based 6D pose estimation techniques include direct regression (e.g., PoseNet
and SSD-6D), key point-based (e.g., PVNet and HybridPose), dense correspondence (e.g.,
DenseFusion and CosyPose), template matching (e.g., PPF-FoldNet), pose refinement (e.g.,
DeepIM and RePose), and differentiable rendering (e.g., DPOD and NeMo) methods. These
methods rely on deep learning to predict object poses from RGB or RGB-D data with
varying trade-offs in accuracy, robustness, and computational efficiency. Direct regression
methods predict the 6D pose of the object from an input image in an end-to-end manner
using deep neural networks, as demonstrated by PoseNet [28], which regresses camera pose
from RGB images, SSD-6D [29], which combines detection and pose regression, and Deep-
6DPose [30], which directly outputs key points and pose through a CNN. Key point-based
methods predict the 6D pose by first detecting 2D key points (e.g., object corners or semantic
points) in the image and then solving the pose using PnP algorithms, as seen in PVNet [31],
which predicts vector fields for key point localization, and HybridPose [32], which com-
bines key points with edge vectors and symmetry constraints for robust estimation. Dense
correspondence methods establish per-pixel 2D–3D mappings between the input image
and object model before computing the 6D pose, as demonstrated by DenseFusion [33],
which fuses RGB and depth features for pixel-wise pose prediction, and CosyPose [34],
which leverages dense matching for robust multi-object pose estimation in cluttered scenes.
Template matching with deep features aligns input images with 3D object representations
using learned feature descriptors, as exemplified by PPF-FoldNet [35], which encodes geo-
metric Point Pair Features via deep learning, and Oberweger et al.’s method in [36], which
employs CNNs to predict template matches for robust pose estimation under occlusion and
textureless conditions. Pose refinement methods iteratively optimize an initial coarse pose
estimate through learned correction mechanisms, as demonstrated by DeepIM [37], which
uses iterative feature matching between observed and rendered images, and RePose [38],
which employs differentiable rendering to analytically refine poses in a neural framework.
Differentiable rendering-based methods optimize the estimation of 6D pose by comparing
neural renderings of predicted poses without real images using gradient-based refinement,
as exemplified by DPOD [39], which combines detection with differentiable silhouette
matching, and NeMo [40], which aligns predicted and rendered surface normal maps for
pose optimization.

Common features of hybrid methods are that they perform CNN-based feature ex-
traction (key point, correspondence, and segmentation) in the learning phase and final
pose optimization with PnP, RANSAC, ICP, or differentiable rendering in the geometric
phase. Learning-based and non-learning-based hybrid approaches combine both the flex-
ibility of deep learning and the robustness of traditional geometric methods in 6D pose
estimation. Among the aforementioned methods, the most common hybrid methods and
prominent examples are DenseFusion [33], PVNet [31], HybridPose [32], CosyPose [34], and
DPOD [39]. Tekin et al. introduced YOLO6D in [41], a CNN that estimates 2D projections
of 3D bounding box corners (You Only Look Once (YOLO) was first developed by [42]),
enabling pose estimation via PnP via 2D–3D relations. Sundermeyer et al. introduced
augmented autoencoders (AAEs) in [43], an extension of denoising autoencoders, which
reduce the synthetic-to-real domain gap by training the model to be invariant to such
discrepancies. Hodan et al. proposed a hybrid EPOS method in [44] that learns compressed
3D surface features and combines them with PnP and RANSAC. The authors in [45] pro-
posed a region-based key point detection transformer, which uses set prediction and voting
mechanisms to estimate the 6D pose in robotic grasping applications. Recent work by [46]
demonstrated a vision-based pick-and-place system using an eye-in-hand camera and
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deep learning (YOLOv7 combined with GANs) to achieve real-time object recognition and
precise robotic control in both simulated and real-world environments. In general, most of
the above-mentioned geometry-based, learning-based, and hybrid methods focus on pose
estimation itself without real-world applications. When we examine the studies mentioned
above and the literature in general, we see that there are very few academic studies dealing
with real problems in industrial applications. In our study, we address the problem of 6D
pose estimation using a camera for a high-precision pick-and-place application of a metal
brake pad plate with a robot arm in a real industrial application.

The learning-based and hybrid approaches mentioned in the literature usually require
large datasets and intensive training processes, which can create difficulties in terms of
efficiency and real-time performance in practical industrial applications. In this study, an
analytical solution-based 6D pose estimation method with less computational complexity is
presented, specially developed for a specific industrial task. Most of the studies mentioned
above focus only on pose estimation itself and ignore real-world applications; therefore,
academic studies dealing with real industrial problems are quite few. Existing studies
generally do not take into account critical practical issues such as how the robot arm’s
end-effector can fail operations such as grasping heavy metal plates from the center, even if
it approaches the object in the correct position. Therefore, in this paper, the estimation of the
6D pose of an object encountered in a real industrial application is combined with robotic
grasp planning to demonstrate the accuracy of the proposed method. In this respect, this
study stands out as one of the rare studies that address vision-based high-precision 6D pose
estimation and an industrial robotic pick-and-place application in an integrated manner.

In this study, we address the challenge of high-precision 6D pose estimation for a
real-world industrial application by developing and validating a complete vision-guided
robotic system. The main contributions of this study are summarized as follows:

• A lightweight, analytics-based 6D pose estimation method is developed and imple-
mented in a real-world robotic pick-and-place system without requiring deep learning
or large training datasets.

• The proposed method is experimentally validated on a Staubli TX2-60L robot arm
integrated with an RGB-D camera and a vacuum–magnetic gripper in an actual brake
pad production line.

• The system demonstrates high accuracy in real-time 6D pose estimation in four differ-
ent object placement scenarios, achieving positional errors less than 2 mm and angular
errors less than 1◦.

• A comparative analysis is presented against state-of-the-art hybrid YOLO-based meth-
ods (e.g., YOLO + PnP/RANSAC), highlighting the accuracy, time-efficiency, consis-
tency, and robustness of the proposed approach.

Although this study focuses on planar metallic brake pad plates due to their relevance
in the specific industrial problem addressed, the proposed analytical 6D pose estimation
approach is designed to be adaptable to broader object categories. Furthermore, while
the current industrial setup benefits from relatively stable lighting and minimal occlusion,
future adaptations may require addressing dynamic environmental factors such as varying
illumination, partial object visibility, or complex geometries. The subsequent sections are
organized as follows: Section 2 provides a detailed description of the robotic setup, focusing
on the six-degree-of-freedom Staubli TX2-60L robot arm and the forward kinematic model
created using the Denavit–Hartenberg (DH) method. Section 3 outlines the industrial cam-
era setup, including the specifications of the Intel RealSense D435 camera, the calibration
process for the camera and robot frames, and the LabVIEW software developed for image
acquisition. Section 4 explains our proposed analytics-based solution, which uses the NI
Vision library to process images and an inclination angle method to calculate the object’s 6D
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pose. For comparative analysis, Section 5 details the implementation of alternative hybrid
methods, which use the deep learning-based algorithm YOLO-v8 for key point detection
and various geometric algorithms (PnP/RANSAC) for pose estimation. Then, Section 6
presents the experimental studies, describing the pick-and-place application software and
the four different test scenarios and discussing the results, which validates the high preci-
sion of our proposed analytical method against the hybrid approach. Finally, this study is
concluded in Section 7.

2. Robotic Setup
In this study, a fixed eye-to-hand camera and a robot arm are used to place metal

plates with random unknown positions in bulk in empty slots with specific poses in a brake
pad production phase. For this real industrial pick-and-place application, a Staubli TX2-60L
model robot arm and an Intel RealSense D435 camera are used. The general structure of
the system setup is shown in Figure 1.

(a) (b)

Figure 1. The overall setup structure consists of the following: (a) real system overview with (i) the
RGB-D camera, (ii) the end-effector with the vacuum–magnetic gripper, (iii) the metal plates to be
picked, (iv) the robot arm, (v) the empty slot in which to place the metal plates, and (vi) the CS9
controller unit. (b) Design and frame representations of overall system: {C} the camera frame, {S} the
surface frame where metal plates are picked, {O} the object frame of the metal plate, {T} the tool frame
of the end-effector of the arm, {B} the base frame of the arm, and {P} the empty slot frame where
metal plates are placed.

The Staubli TX2-60L model is a six-degree-of-freedom (DOF) robot arm, as shown in
Figure 2a. The robot arm operates in a spherical workspace, has a reach of approximately
1 m, and can carry payloads of up to 3.7 kg. This TX2-60L model is equipped with 19-bit
absolute encoders and is ready to operate without initialization. It has a repeatability
of ±0.02 mm and is used for high-precision tasks such as assembly or parts handling.
Due to its compact size, fast movement, and high repeatability, this robot is suitable for
performing a wide range of operations and especially pick-and-place tasks that require
speed and accuracy. In order to perform our pick-and-drop operations on the metal plates,
a vacuum–magnetic gripper is mounted on the robot’s end-effector, as shown in Figure 2b,
which can hold up to approximately 3.5 kg. The CS9 controller, as shown in Figure 2c,
with an open architecture connects the robot to the computer via the Modbus TCP/IP
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industrial communication protocol and is used consistently in production because it has
rapid integration.

(a) (b) (c)

Figure 2. Robotic setup consisting of the following: (a) The Staubli TX2-60L model 6-DOF robot arm.
(b) The vacuum–magnetic gripper. (c) The CS9 controller.

In order for the robot to perform the task of picking up the metal plates, first the 6D
pose of the objects is calculated with the RGB-D data coming from the camera. Then, the
pose of the target object in Cartesian space is converted to the target end-effector pose
of the robot arm using camera calibration calculations. In order for the robot to pick up
the objects quickly and precisely with a correct trajectory strategy, the target trajectory
positions of the robot’s end-effector are sent to the CS9 controller. The CS9 controller
performs the movement of the metal plate held at the end-effector of the robot from the
picked point to the place point using the encoder data in the joint motors and forward
kinematic calculations.

In this study, forward kinematic calculations are performed to find the position and
orientation of the end-effector frame {T} of a 6-DOF Staubli robot arm in Cartesian space
with respect to the base frame {B}. A standard Denavit–Hartenberg (DH) method [47]
is used to create the kinematic model of the robot and to perform forward kinematic
calculations. This method defines the geometric relationship between each joint and link
with four DH parameters (α, a, d, and θ). According to the link frame assignments of the
Staubli TX2-60L robot arm we created, as shown in Figure 3, the DH parameters for each
link are determined as in Table 1.

Table 1. The Denavit–Hartenberg parameters of the Staubli TX2-60L robot arm.

Link i αi ai di θi

1 0 0 0 θ1
2 −π/2 0 0 θ2
3 0 a3 d3 θ3
4 π/2 0 d4 θ4
5 −π/2 0 0 θ5
6 π/2 0 d6 θ6



Sensors 2025, 25, 4824 7 of 31

In Table 1, αi is the twist angle between two joint axes, ai is the distance between two
adjacent joint axes, di is the translation from one link to the other along the joint axis, and
θi is the angle of rotation about the joint axis.

Figure 3. The link frame assignments of the Staubli TX2-60L.

The variable DH parameters of this robot arm, all six of which are rotary joints,
are the joint angles θi for each joint and are measured from the encoder data in the mo-
tors/actuators. The other three DH parameters of the robot arm (αi, ai, and di) are fixed.
These constant parameters are a3 = 0.4 m, d3 = 0.02 m, d4 = 0.45 m, and d6 = 0.07 m.
Based on the standard definitions of the DH parameters [48], link-to-link transformation
matrices are formed as

Ti−1
i =


c(θi) −c(αi)s(θi) s(αi)s(θi) aic(θi)

s(θi) c(αi)c(θi) −s(αi)c(θi) ais(θi)

0 s(αi) c(αi) di

0 0 0 1

 (1)

where s(θi) and c(θi) represent the sine and cosine of the joint angle θi, respectively, and
s(αi) and c(αi) represent the sine and cosine of the twist angle αi, respectively.

When each link-to-link transformation matrix is calculated from T0
1 to T5

6 and multi-
plied by all, the transformation matrix that gives the pose information of the end-effector
of the robot arm T0

6 with respect to the base is found as

T0
6 = T0

1 T1
2 T2

3 T3
4 T4

5 T5
6 =


r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1

 (2)
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The equations for the 3 × 1 position vector entries (px, py, and pz) obtained from the
base-to-end-effector transformation matrix in (2) can be calculated according to the DH
parameters as

px = d4s23c1 − d3s1 − d6(s1s4s5 − s23c1c5 − c1c2c3c4s5 + c1c4s2s3s5) + a2c1c2 (3)

py = d6(c1s4s5 + s23c5s1 + c2c3c4s1s5 − c4s1s2s3s5) + d3c1 + d4s23s1 + a2c2s1 (4)

pz = d4c23 − a2s2 − 0.5(d6s23s45) + d6c23c5 + 0.5(d6 sin(θ4 − θ5)s23) (5)

Using the 3 × 3 rotation matrix of the robot arm obtained from the base-to-end-effector
transformation matrix in (2), the Euler angles (roll rx, pitch ry, and yaw rz) representing the
orientation of the end-effector in Cartesian space can be calculated according to the DH
parameters as

rx = arctan(c23s5 + s23c4c5 + s23c6s4, c23c5 − s23c4s5) (6)

ry = arctan(c6(c23s5 + s23c4c5)− s23s4s6,
√

r2
11 + r2

21) (7)

rz = arctan(s6(c1c4 − c2c3s1s4 + s1s2s3s4)− c6(s23s1s5 − c1c5s4 − c2c3c4c5s1 + c4c5s1s2s3)

−s6(c4s1 + c1c2c3s4 − c1s2s3s4)− c6(c5s1s4 + s23c1s5 − c1c2c3c4c5 + c1c4c5s2s3) (8)

where r11 = −s6(c4s1 + c2c3s4 − c1s2s3s4)− c6(c5s1s4 + s23c1s5 − c1c2c3c4c5 + c1c4c5s2s3) and
r21 = s6(c1c4 − c2c3s1s4 + s1s2s3s4)− c6(s23s1s5 − c1c5s4 − c2c3c4c5s1 + c4c5s1s2s3).

3. Industrial Camera Setup
The Intel RealSense D435 camera (as shown in Figure 4) is a dual-lens stereo-based

RGB–depth-type camera and provides depth perception in various industrial applications.
It has a 1920 × 1080 frame resolution, 30 fps frame rate, and 69 × 42 degree field of
view with the RGB sensor and a 1280 × 720 output resolution, 90 fps frame rate, and
87 × 58 degree field of view with the stereoscopic depth sensor. It has an ideal working
distance of 0.3 m to 3 m. All of these features are the reason why we prefer to use it
in our robotic applications. In our setup, we fixed our camera 750 mm away from the
object table frame. The connection between the camera and the PC is provided by USB
3.1 communication.

(a) (b)

Figure 4. Intel RealSense camera views: (a) Outer view. (b) Inner view.

3.1. Calibration of Camera and Robot Frames

The calibration of the camera and the robot allows the transformation of the image
coordinates (object frame {O}) into world coordinates (camera frame {C}, robot tool frame
{T}, and robot base frame {B}). By projecting the camera frame {C} onto the robot tool frame
{T}, the robot can operate directly within its own coordinate system (robot base frame
{B}), using orientation and position data. A precisely calibrated system is essential in this
field. These enhanced results help improve the accuracy and repeatability of the robot
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arm. Various calibration techniques are available depending on the specific requirements
of robotic applications [49]. For our purposes, we used the calibration plate method [50].

In this calibration method, the absolute positions on the robot tool frame {T} are
determined by means of a calibration plate. To achieve this, we need to take several images
of the calibration plate and four corner reference marks to be noted. With the help of a
measuring tape (with the measurement of the joint positions and the knowledge of the
forward kinematics of the robot), we can determine the position of the calibration plate
relative to the robot tool frame {T}. This calibration process gives the output of the image
coordinates (object frame {O}) obtained from the camera. Figure 5 shows the calibration
processes for the calibration plate and the robot’s end-effector.

Figure 5. Overall calibration system structure.

The calibration plate is mounted on a table with dimensions of 650 × 450 mm and
contains 7 × 5 square cells of 25 × 25 mm each. The distance between the origin of the
camera frame and the origin of the calibration plate frame is 750 mm. The camera resolution
is selected as 1280 × 720. The maximum resolution value of the X-axis is 1280 and the
maximum resolution value of the Y-axis is 720. The camera captures the image and defines
the four end-point pixel values A, B, C, D, and E on the calibration plate, as shown in the
upper right of Figure 5.

After the calibration process, we can formulate the position of a point (the center of
the object) obtained from the camera image on the X- and Y-axes relative to the robot’s tool
frame as follows:

T
OPx = (Xmax − Xact)Xcon (9)

where Xmax is the maximum resolution value (1280 pixels) of the X-axis in the camera frame
{C}, Xact is the measured resolution value of the X-axis in the camera frame {C}, and Xcon is
the conversion ratio (0.0565) of the X-axis between the camera frame {C} and the robot tool
frame {T} when the robot arm is in the home position.

T
OPy = (Ymax − Yact)Ycon (10)

where Ymax is the maximum resolution value (720 pixls) of the Y-axis in the camera frame
{C}, Yact is the measured resolution value of the Y-axis in the camera frame {C}, and Ycon is
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the conversion ratio (0.064) of the Y-axis between the camera frame {C} and the robot tool
frame {T} when the robot arm is in the home position.

To complete the calibration process, the values of pixels on the X- and Y-axes are
converted to mm according to the calibration plate information. These coordinates from
the camera need to be transformed into the coordinates of the robot by using the rotation
matrix in (2).

In practice, the calibration between the robot and the camera frames remains valid as
long as the physical positions of the camera and the robot base are unchanged. Therefore,
recalibration is not required during routine operation, even if the positions of the objects
on the production line vary. The calibration procedure itself is simple, involving the use of
a calibration plate with the setup, and typically takes only a few minutes to complete. This
makes the system suitable for long-term deployment in stable production environments.

3.2. Image Acquisition Using LabVIEW

In order to interface with the robotics and camera setup in industrial applications,
a robust software infrastructure is needed to acquire and process image data. In this
study, we used LabVIEW from National Instruments (NI) to access and acquire camera
data and also used the NI Vision library, which will be described in the next section, to
process the data from the acquired image. LabVIEW is a graphical programming language.
This program provides a good solution that is compatible with our existing industrial
automation infrastructure for real-time processes and also provides an easy connection
to any device or interface. All the software infrastructure for interfacing with real-world
signals, analyzing data, and driving our robot control system was developed on LabVIEW.

An independent software with real-time processing was developed to obtain images
from an industrial camera using the NI LabVIEW program. The LabVIEW-based image
acquisition software shown in Figure 6 consists of nine different formation blocks and
runs on a personal computer (PC) with a Windows 10 operating system (OS), connected
to the camera via a USB3.1 port. The images acquired with LabVIEW software are then
processed with LabVIEW’s NI Vision library. The camera image is first converted to a
2D rectangular form and then sent to processing. The depth resolution of the image is
in RGB format, with each pixel representing 8-bit red, green, and blue color values. The
developed LabVIEW-based image acquisition standalone software is explained in detail in
the following.

3.2.1. Camera Initialization

In this initialization section, it is necessary to provide details of the camera features
and the sensors used. Depending on the application requirements, the Intel RealSense
camera used may have various features and sensors. More than one camera device can be
connected to a PC and each camera may have more than one sensor. For example, the D435
model camera has a stereo sensor and an additional RGB sensor. Other types of cameras
may also have different types of sensors, such as an external IMU. Each RGB sensor may
have more than one stream, and each stream has a profile. For example, these profiles
may have frame rates, resolution, format, etc. Therefore, we need to initialize the camera
with the appropriate configuration according to our requirements. In our LabVIEW-based
software, the index is specified as ‘0’ to initialize our camera with one RGB sensor and one
stream profile at the beginning.



Sensors 2025, 25, 4824 11 of 31

Figure 6. The developed LabVIEW-based image acquisition standalone software.
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3.2.2. Depth Sensor Configuration

As shown in Figure 6, the depth sensor configuration is completed in the second stage
of our LabVIEW software. This stage is important for reading the density of the object. The
image density from the camera depth sensor is used to measure the Z-position of the points
on the image surface with respect to the camera frame. The Z-axis of the camera frame is
calculated according to the distance from the camera to the object whose image is taken
according to the density value. In our setup, the camera depth sensor has a 90 fps frame
rate and 87 × 58 degree field of view.

3.2.3. Exposure Gain

This stage is used to adjust the gain of the laser sensor to obtain better performance
from the depth sensor. The depth sensor has an auto-exposure function and automatically
adjusts the gain and exposure. In this study, we usually used low values; for example
16 fps for the frame rate and 300 mW for the laser power were found to be sufficient.

3.2.4. Setting Presets

At this stage of the software, the presets used for the depth and color settings are
coded. According to our configuration, the D435 camera has an RGB sensor and measures
depth using intensity. Different presets are derived for depth measurement with different
exposure gains and laser power values. The depth of the image, and therefore the intensity,
can be affected by various environmental factors (light, reflection, dust, etc.), low-level
sensor values, or image overlap, among many other factors.

3.2.5. Start Streaming

After the configuration of the camera and the image sensors, at this stage we start the
process of streaming the acquired images from the camera continuously and in real time.
Here, it is necessary to give an input for the capacity and number of images according to
the camera and sensor connected to the system. In the developed software, a camera is
connected to a sensor. Therefore, the capacity and stream count are set to ‘1’, as seen in
Figure 6.

3.2.6. Capturing and Process

This system captures images from the configured camera and the connected sensor.
The image details are outputted at this stage with height, width, frame details, camera
format, and image data types.

3.2.7. Interpret and Display Frames

The interpretation of image processing frames is primarily based on the frame capture
process. The images used are marked as images containing spatial depth information in
the X- and Y-axes and encoded in the Y16 grayscale format. This Y16 image represents
a 16-bit grayscale format where each pixel represents the ‘Y-luminance’ component of a
‘YCbCr’ color model. These images contain intensity values in the form of a 2D array.
The intensity component of the processed image is extracted according to the selected
reference image by developing it with the filter designed in the LabVIEW environment.
The results obtained are presented visually in both ‘depth image’ and ‘color image’ formats.
In addition, the final processed image is archived in the U16 (16-bit unsigned) grayscale
format for future verification after the process is stopped. This converted U16 format
represents pure intensity values of the image.
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3.2.8. Release Frames

The next image capture process is to release the captured frames from the camera and
the depth sensor. The memory and buffer are cleared for the next capture. The only input
in the memory will be the details of the captured frame.

3.2.9. Close Function

In this final stage of the image acquisition software, the entire camera and sensor
configuration is closed. The frames in the buffer are also closed to safely exit the process.

The stages outlined above in our LabVIEW-based software are used to capture images
from the camera. The settings and configuration of the software are selected according to
the fixed position of our camera for the image plane and our setup. The selected settings
and configurations may change when we change the setup. It is important to emphasize
that all the experimental studies described in the following were always performed with
the same setup and under the same physical conditions. After capturing the image, it is
sent to the NI vision system, which will be described in the next section, to find the correct
object from the image, calculate its coordinates, and measure its dimensions.

4. Image Processing with Analytics Solution Using NI Vision
The working concept of an image-guided robotics system (machine vision) is straight-

forward. A picture of an object is taken from an image sensor (camera), and a PC analyzes
the image to send the coordinates of the object to a robot arm so it can move to the desired
position. In this section, we explain the image processing techniques and our analytical
solution approach with the software developed using LabVIEW’s NI Vision library to
measure the size, frame, and pose of the objects (metal plates) from the images taken from
the LabVIEW-based software. In our analytical solution approach, we find all the C

O px, C
O py,

and C
O pz positions and C

Orx, C
Ory, and C

Orz rotations of the object frame {O} in the Cartesian
space, in the six axes, with respect to the camera frame {C}. The NI Vision library is used in
the LabVIEW software to find the C

O px and C
O py positions of the object and the C

Orz angle
with our software algorithm. The position C

O pz is calculated by matching the depth camera
intensity. Trigonometric inclination angle calculations are computed analytically in our
software algorithm to find the rotations C

Orx and C
Ory. All of these techniques are explained

in detail below.

4.1. Finding C
O px, C

O py, C
Orz Using NI Vision

In the process of finding the coordinates of the object, we use the NI Vision library
with the software algorithm we developed to find C

O px, C
O py, and C

Orz. In this process, the
reference image of the object to be found and selected is given to the algorithm. Then it
is necessary to process the image taken from the camera. There are various intermediate
methods in these image processing techniques. These are filtering, the histogram technique,
image enhancement, particle analysis, and pattern matching to find the NI Vision tool code,
as shown in Figure 7.
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Figure 7. The developed NI Vision-based image processing standalone software.

4.1.1. Initialization of Image Processing

After successful image acquisition, the captured image must be converted to the
required formats (binary, grayscale, and RGB). In binary format, the values of the image
pixel are 0 or 1. In grayscale format, image pixels take values in the range of 0–255
or 0–65,535 according to 8- or 16-bit values. After these formatting processes, pattern
matching techniques are applied in image analysis and processing methods in NI Vision.
The methods that must be performed for pattern matching are thresholding, particle
filtering, and histogram equalization. Then this output is used in the pattern matching
process for object detection.

As shown in the upper part of Figure 7, in the NI Vision-based software, the threshold
system consists of an image bit depth configuration and an image threshold configuration.
The threshold is used to obtain grayscale objects, as shown in Figure 8. An unsigned 16-bit
grayscale image is used from the captured and/or recorded image. Before the image enters
the thresholding process, a 16-bit depth modification must be applied to the image. Then,
values are entered for alignment of the system, camera position, and distance adjustment
in the image thresholding process. Low values such as 26,617.39 and high values such as
65,500.00 can be selected. The threshold values of the 16-bit image can be changed between
0 and 65,535.
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(a) (b)

Figure 8. The threshold stage consists of (a) grayscale input image and (b) grayscale output image.

4.1.2. Particle Filtering

The particle filtering technique at the second stage of the NI Vision software developed,
as shown in Figure 7, is used in image processing processes to distinguish objects with
certain characteristics (such as the unique shape of the brake pad metal plate in this
study). This method eliminates unwanted components in the image through filtering
processes applied at the neighborhood level. During the filtering process, each particle is
evaluated on the basis of criteria such as height, width, and mass (pixel density). When
the image is captured, the target object of interest is focused on. However, there may be
many unwanted details in this image that are not analyzed. Particle filtering eliminates
these unwanted regions. Although it is not possible to completely eliminate all unwanted
elements, a partially cleaned grayscale image is obtained as a result of the method shown
in Figure 9. This intermediate output provides a suitable basis for more complex analyses
to be performed in the following stages. Filtering results vary depending on the specified
pixel size ranges (e.g., width, height, and mass limits). Thus, particles that do not meet
certain criteria are removed from the image, creating a simpler and more processable image.

(a) (b)

Figure 9. Particle filtering stage consists of (a) particle filter input and output images and (b) particle-
filtered image.

4.1.3. Equalization

In the equalization stage, which is the third step of the NI Vision software developed,
as shown in Figure 7, the filtered image is converted to a grayscale image in 8-bit format.
That is, the value 0 represents black and the value 255 represents white. The preprocessed
grayscale image has only 0 and 1 representation. In the histogram equalization stage, the
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contrast of the grayscale image is increased and an evenly distributed output image is
obtained. This equalization stage is used to increase the pattern of the object as much as
possible and makes the pattern of the object more distinct, as shown in Figure 10.

(a) (b)

Figure 10. Equalization stage consists of (a) histogram input and output images and (b) equalized
image.

4.1.4. Pattern Matching

The pattern matching technique in the final stage of the NI Vision software developed,
as shown in Figure 7, is used to detect the shape of the image based on the reference image.
Scaled, implicit, and rotated parameters are used as a configuration to obtain the pattern
matching of the object. First, the maximum pattern range that we can obtain according to
the scaled values is given. Then, the visual field of the object is structured, and the total
pattern-matched object is obtained. Then, by applying the edge detection technique, a
calculation is made to obtain the position values C

O px and C
O py. For this calculation, the

start and end values of the object are taken in accordance with the pixel values. According
to the results, the center point of the coordinate values of the image that has now been
pattern-matched is calculated. This center point gives the C

O px and C
O py positions of the

object according to the camera frame {C}. The patterned object is compared with the
reference object to calculate the C

Orz angle of the object and the rotation angle in the Z-axis
in the 2D plane is calculated. As a result, we obtain the C

O px and C
O py positions of the center

coordinates of the object and the rotation angle C
Orz in the Z-axis using the pattern matching

technique. The output of the pattern matching stage is shown in Figure 11.

Figure 11. The pattern matching system’s output image.
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With this software we developed based on NI Vision, we calculate the positions
C
O px and C

O py and the rotation angle C
Orz of the center point of the object according to the

reference image.

4.2. Finding C
O pz Using Camera Intensity

In this section, the C
O pz position of the center point of the object is calculated from the

intensity values with the help of the depth-sensing feature of the Intel RealSense camera.
The different intensity values from the focal point of the camera to the object vary between
‘0’ and ‘1’. These intensity values also represent the color change. For example, the lowest
intensity value of ‘0’ represents the color white, and the highest intensity value of ‘1’
represents the color red. An example representation of the intensity pattern values can be
seen in Figure 12.

Figure 12. Camera intensity value display .

The intensity values detected at the center point of the object obtained in the previous
stage are converted to the distance in mm. This distance gives the C

O pz position of the center
point of the object relative to the camera frame {C}.

4.3. Finding C
Orx and C

Ory Using Angle-of-Inclination Analytic Method

In this section, we find the geometrical C
Orx and C

Ory rotation angles from the poses of
the object in Cartesian space using the angle-of-inclination technique. In this technique,
inclination angle calculations are performed with trigonometric concepts. The inclination
angle formulation can be defined as follows, where a line of the object in the horizontal
position is in the 2D plane with respect to the camera’s X and Y coordinates.

ϕ = tan−1(
∆Y
∆X

) (11)

where ϕ is the angle the line makes with the positive X-axis, ∆Y is the difference Y2 − Y1

between the starting Y1 and ending Y2 coordinate points on the Y-axis of the line, and
∆X is the difference X2 − X1 between the starting X1 and ending X2 coordinate points on
the X-axis of the line. The inclination angle of the object’s horizontal line relative to the
camera’s X-axis gives the rotation angle C

Ory, as in (11). In contrast, the inclination angle of
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the object’s horizontal line relative to the camera’s Y-axis gives the rotation angle C
Orx, as

given below.

ϕ = tan−1(
∆X
∆Y

) (12)

An example of an inclination angle calculation from our experimental study can be
seen in Figure 13. Here, when the first point of an object line with a positive slope is (X1, 0)
and the second point is (X2, Y2) on the X-Y plane, we can find the angle of inclination as
ϕ = tan−1( Y2

X2−X1
).

Figure 13. Calculation of the inclination angle (ϕ) of an object line.

As seen in Figure 14, the angle of inclination of a horizontal line is always 0◦.
The inclination of a non-horizontal line is ϕ, which is always considered to be within
0◦ < ϕ < 180◦, measured counterclockwise from the X-axis to the line.

(a) (b) (c)

Figure 14. Inclination angle (ϕ) of the line (object) representation: (a) horizontal inclination,
(b) positively sloped inclination, and (c) negatively sloped inclination

Using the angle-of-inclination technique and the intensity values coming from the
camera, we find the rx and ry rotation angles. If the object has an inclination relative to
the plane of the X-axis, we must first find the ry rotation angle. This angle of inclination
and angle plane are derived from the change in the camera’s intensity values. To find the
inclination angle of the object, we need to confirm how the object is placed on the plane
(with rx or ry rotation). The edge detection technique is applied to find the location of the
object on the plane surface. Using this edge detection technique, the starting and ending
pixel values of the object can be found. The pixel values of the object image on the X-axis
are incremented from the center point to the starting and ending pixel values. A similar
operation must be performed for the pixel values on the Y-axis. With these pixel increments,
the length of the object and also the rotations at which rx or ry it is placed on the axis are
calculated. That is, if the increment in the pixels on the X-axis successfully reaches the
starting or ending pixel values of the object, then it can be verified that the object to be
picked has a rotation angle of ry. Similarly, the rotation angle of rx is verified using the
increment in the pixel values on the Y-axis. For example, after the object’s edge detection is
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performed, the starting point of the determined object line is intersected on the X-axis, and
the inclination angle is calculated on the X-axis plane. In other words, if there is a height
difference between two edges, there is a clear change in the intensity of the image. In this
case, it is concluded that there is an angular rotation between the two edges. Then, it is
found which of the object line coordinate points belong to the X-axis or Y-axis plane. Then,
it is concluded that this object has rx or ry rotation angles.

5. Image Processing with Hybrid-Based Methods
Based on the comprehensive review of the literature presented in Section 1, the

methods most commonly used in recent studies on 6D pose estimation include PnP,
RANSAC, YOLO, and various hybrid algorithmic approaches that combine these tech-
niques. Therefore, in this study, we will compare our analytical solution-based 6D pose
estimation method with hybrid-based approaches YOLO + PnP/RANSAC. In hybrid-
based approaches, while the key points of the object are determined with YOLO as a deep
learning-based object detector, the 6D pose of the object is calculated with PnP/RANSAC
as classical geometric-based solution methods.

5.1. Detecting Object Key Points Using YOLO-v8

In this study, as the first and most important step in determining the 3D position
of the metal plates using methods based on deep learning, we use a YOLO-based pose
estimation model, which is one of the most widely used methods in this field in the
literature, to accurately and reliably detect key points in the 2D image. The YOLO
model detects five key points (corners and a reference point) on the metal plate with
high accuracy and speed. The reference point plays a critical key role in the 3D position
estimation of the object regardless of the visual orientation of the metal plate. The 2D
coordinates of the key points detected by YOLO are used for the 6D pose estimation of
the metal plate in the following sections.

In order to accurately detect the key points of the object, the YOLO model goes
through a comprehensive four-stage training process. Firstly, in the dataset preparation
stage, we use 2000 specially labeled plate images for model training. In each of these
images, five key points of the metal plate are automatically marked via the Roboflow SDK
in Python (ver.3.15) code. Secondly, in the training configuration stage, the model is trained
with a batch size of four for 100 epochs. A dynamic learning rate between 3.3233 × 10−5

and 8.911 × 10−5 is used to ensure that the model both gets a quick start and makes finer
adjustments as training progresses. Third, in the performance metrics stage, the final value
of ‘train loss’ obtained at the end of training is 0.2564. This low value shows that the model
exhibits high precision in key point estimations. In addition, mAP50(B) and mAP50-95(B),
which are mean average precision metrics (mAP) showing the generalization ability of the
model, are recorded as 0.9125 and 0.91472, respectively. These high mAP values confirm
that our model detects the metal plate points and bounding boxes with high accuracy and
reliability. Finally, in the stage of prevention of overfitting, an early stopping mechanism is
integrated to prevent the model from memorizing only the training data and to ensure that
it performs well on new images. In this way, the model is automatically stopped at epoch
76 instead of epoch 100, which prevents the model from running the risk of overfitting
and losing its generalization ability. Although the YOLO-v8 model used in this study was
trained on 2000 manually labeled images of brake pad plates, applying the same approach
to different object types would require additional annotation effort.
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5.2. Camera Calibration and Correcting Image Distortions Using OpenCV

Before transferring the results of model training obtained with YOLO to the pose
estimation stage with PnP methods, camera calibration is first performed to make accurate
measurements and correct 3D inferences. The Intel RealSense camera that we use is
calibrated in the software that we developed with Python code using the open-source
OpenCV library. With this calibration process, two basic features of the camera are learned.
One is the internal parameters of the camera, which are the focal length of the camera
in pixels and the coordinates of its optical center. The other is the radial and tangential
distortion coefficients, which cause various distortions in the image. Then, using the
internal parameters and distortion coefficients obtained, the undistorted position of each
pixel in the distorted (original) image is calculated and moved to these new positions, thus
obtaining a geometrically clearer image.

5.3. Six-Degrees-of-Freedom Pose Estimation Using PnP/RANSAC Algorithms

After detecting the key points of the object using YOLO-v8 and editing the camera
images using OpenCV, we now try to find the 6D pose of the object using PnP, RANSAC,
and their hybrid algorithms as classical geometric-based solution methods.

The main purpose of PnP algorithms is to calculate the 6D pose of the camera relative
to the object as a rotation matrix and a translation vector using the geometric relationship
between the projections of several points of the object whose 3D coordinates we know (five
key points, four corners, and one reference for the metal plate used in this study) on the 2D
image of the camera. In the literature [13], various PnP algorithms have been developed
for different situations and needs. Some methods that are considered appropriate for the
purpose of this study are derived from the most widely used PnP-based algorithms in
the literature.

5.3.1. Solving PnP with EPnP

In the efficient perspective-n-point method (EPnP) [51], all 3D points of the object
are defined as a weighted linear combination of four virtual control points (barycentric
coordinates). A linear equation based on the control points is obtained using 2D projection
equations. The rotation matrix and translation vector are calculated from the corresponding
control points in the object and camera frames. The EPnP method solves the PnP problem
quickly and easily.

5.3.2. Solving PnP with IPPE

The infinitesimal plane-based pose estimation method (IPPE) calculates the homogra-
phy matrix, which defines the projective transformation between two planes (the 3D plane
where the object is located and the 2D image plane of the camera) [52]. From this matrix,
which contains the internal and external parameters of the camera, the rotation matrix and
the translation vector are extracted with special mathematical decomposition techniques.
This method is ideal for planar plates (such as the metal plates used in this study).

5.3.3. Solving PnP Iteratively

The Iterative PnP method, first introduced by [53], starts with a possible pose of the
camera relative to the object and iteratively updates the camera pose using a non-linear
optimization to minimize the projection error obtained by projecting the 3D points onto
the 2D camera image plane using the current estimated pose. This optimization uses an
optimization technique such as Levenberg–Marquardt to analyze how the error varies with
the pose parameters and update these parameters in small amounts to reduce the error.
This process is continued until the error falls below a certain threshold value, the change in
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the parameters becomes very small, or a certain maximum number of iterations is reached.
This method generally provides higher accuracy but is slower than other methods.

5.3.4. Solving PnP with AP3P

This method uses geometric calculations between three known 3D points on the object
and their projections on the camera image [54]. These geometric calculations include both
the known distances between the 3D points and the angles in the triangles formed by these
3D point pairs with the camera’s optical center. These angles can be calculated using the
2D points in the image and the camera’s intrinsic parameters. With this information, an
equation structure is established for each point–optical center triangle by applying the
cosine theorem to the unknown distances from the camera to the 3D points. Then these
equations are algebraically manipulated into a fourth-degree polynomial equation with a
single variable. The roots of this polynomial give possible solutions for the distances and
can therefore yield up to four different pose estimates. Additional checks are made for the
correct solution (e.g., using a fourth point). This method is a type of PnP that can perform
6D pose estimation analytically with high accuracy.

5.3.5. Solving PnP with RANSAC and Hybrid Approaches

Although PnP algorithms work very well with correct data, in practice, there may be
some false matches when finding 2D counterparts of 3D points in the image (e.g., when
marking the corners of a metal plate or performing automatic matching). These false
matches, namely outliers, can seriously distort the PnP result. In this case, a useful method,
such as RANSAC, can be used to eliminate these false or irrelevant data and base the PnP
solution only on the correct matches (inliers) that fit our model.

RANSAC is not a PnP algorithm itself but rather a framework or wrapping method
that makes the above-mentioned PnP algorithms (EPnP, IPPE, Iterative, and AP3P) more
resilient to erroneous data [39]. RANSAC+PnP methods, RANSAC/EPNP, RANSAC/P3P,
RANSAC/IPPE, and RANSAC/ITERATIVE hybrid approaches, generate multiple PnP
solutions with randomly sampled point matches and try to find robust pose estimation
against outliers by selecting the one that provides the most inliers. In this way, the proba-
bility of PnP algorithms making large errors due to incorrect point matches is significantly
reduced, and much more reliable pose estimations are obtained.

6. Experimental Studies
The experimental setup consists of an industrial robot arm and a camera for real

pick-and-place industrial applications. In the setup, we will test both our own analytical
solution software algorithm and hybrid algorithms (YOLO+PnP/RANSAC) to estimate the
6D pose of the metal plates. As seen on the left in Figure 15, in our experimental setup, the
robot arm first moves from the home pose to the object picking pose. The target pose for
this movement in Cartesian space is estimated from camera images with analytical solution
or hybrid-based methods. As seen in the middle of Figure 15, the robot arm should hold
the metal plate with the vacuum–magnetic gripper in the correct pose so that it can place
the metal plate in the white-colored empty slot with a known pose with full precision, as
seen on the right of Figure 15. The empty slot used in the placement process here has an
offset of 2 mm wider than the X-Y dimensions of the metal plates.
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(a) (b) (c)

Figure 15. Real experimental study setup: (a) Robot arm at home position. (b) Robot arm at picking
position. (c) Robot arm at placing position.

6.1. Pick-and-Place Application Software

In pick-and-place applications of the Staubli robot arm, LabVIEW-based software is
developed for the CS9 controller for movement control of the robot arm. Figure 16 shows
the functional diagram of the LabVIEW-based pick-and-place application software for the
robot arm.

Figure 16. LabVIEW-based control software for the robot arm.

The LabVIEW-based robot control software includes four stages, as can be seen in
Figure 16. In the first initialization stage, the robot and system port identification numbers
and IP addresses are entered to establish a connection with the PC and the robot arm’s
CS9 controller. Then, the speed limits of the servo motors in the joints of the robot arm are
defined. For the initial setup, the maximum speed of the servo motors is set to 250 mm/s.
In addition, the Cartesian space coordinate data for the base frame of the robot arm
are entered.
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The second stage of this software is used to start the robot arm operation. Before any
movement of the robot arm, the first block in this stage must be ‘TRUE’. The ON/OFF
commands of the servo motors in the second block of this stage are used to activate the
servos of the robot arm. The servo motors must be turned ‘ON’ before the robot is moved.
Otherwise, the motion data are added to the buffer and executed when the servos are
turned ‘ON’.

The third stage of the software is used to determine the movements of the robot,
as seen on the right of the middle row of Figure 16. For pick-and-place operations, all
movements of the robot are defined to occur in Cartesian space. The pose data required
to define the movement of the robot arm’s end-effector from the current position to the
target pose for the desired pick movement are obtained from the image processing software
running simultaneously. The fixed pose of the desired location where the robot arm is
desired to release the picked object is defined here.

The code blocks in the last stage are used to stop the robot arm. To achieve this, the
relevant code block must first be FALSE before the robot arm shuts down. In addition, to
disable the servos in the robot arm, the servo motor blocks must be set to OFF before the
robot arm shuts down. Close session code blocks are used to close the robot arm session
after execution is complete or an emergency stop. This must be performed before shutting
down the controller; otherwise memory leaks may occur.

6.2. Object Picking Pose Scenarios

In order to compare the 6D pose estimation performance of the image processing
algorithms in Sections 4 and 5, the metal plates that the robot arm will pick are placed in
different poses. As seen in Figures 17–20, the object picking pose scenarios are selected as
negative slope, positive slope, flat horizontal, and yawed horizontal, respectively.

(a) (b)

Figure 17. Negative slope object picking pose scenario: (a) Full view of negative slope configuration.
(b) End-effector view of negative slope configuration.
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(a) (b)

Figure 18. Positive slope object picking pose scenario: (a) Full view of positive slope configuration.
(b) End-effector view of positive slope configuration.

(a) (b)

Figure 19. Flat horizontal-placed object picking pose scenario: (a) Full view of flat horizontal placing
configuration. (b) End-effector view of flat horizontal placing configuration.

(a) (b)

Figure 20. Yawed horizontal-placed object picking pose scenario: (a) Full view of yawed horizontal
placing configuration. (b) End-effector view of yawed horizontal placing configuration.
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6.3. Results and Discussion

To perform a comparative analysis, each pick pose of the metal plates to be picked by
the gripper of the robot arm for the four different scenarios mentioned above is determined
according to the robot tool frame {T} (calibrated when the robot arm is in the home position
according to the camera frame {C}) under the same real-world conditions. For this process,
first, the gripper of the robot arm is manually brought to the center point where it should
pick up the metal plate for each scenario. Then, using the forward kinematic equations
given in Section 2 and the encoder sensor data at the joints of the robot arm, the desired
pick poses of the metal plate relative to the robot base frame {B} are calculated. The desired
reference poses of the metal plate in the object frame {O} obtained for each scenario relative
to the robot tool frame {T} when the robot arm is in the home position are presented in
Table 2.

Table 2. Desired object poses relative to robot tool frame {T}.

Pose (m/◦) T
O px

T
O py

T
O pz

T
Orx

T
Ory

T
Orz

Negative Slope 0.226 0.206 0.265 2.1 −46.5 42.3
Positive Slope 0.509 0.182 0.263 2.0 43.0 12.0

Flat Horizontal 0.347 0.187 0.275 0.9 1.0 121.1
Yawed Horizontal 0.380 0.192 0.306 0.8 0.7 −90.0

Table 3 shows the poses of the metal plates calculated with respect to the robot
tool frame {T} for each scenario using our analytical solution-based 6D pose estimation
algorithm, which we developed based on NI LabVIEW and NI Vision.

Table 3. Estimation of object poses relative to the robot tool frame {T} using LabVIEW-based analytical
solution algorithm.

Pose (m/◦) T
O px

T
O py

T
O pz

T
Orx

T
Ory

T
Orz

Negative Slope 0.225 0.205 0.265 2.1 −46.9 42.0
Positive Slope 0.5105 0.181 0.263 2.5 43.8 12.5

Flat Horizontal 0.346 0.1883 0.275 1.3 1.0 120.9
Yawed Horizontal 0.3814 0.1903 0.306 1.1 1.1 −89.9

To observe the performance of our analytical solution-based 6D pose estimation algo-
rithm and compare it with other methods, the absolute differences between the estimated
object pose values and the real object pose values are shown in Table 4.

Table 4. Absolute differences between the estimated pose by the LabVIEW-based analytical solution
algorithm and the real object pose.

Pose Error (m/◦) ∆T
O px ∆T

O py ∆T
O pz ∆T

Orx ∆T
Ory ∆T

Orz

Negative Slope 0.001 0.001 0 0 0.4 0.3
Positive Slope 0.0015 0.001 0 0.5 0.8 0.5

Flat Horizontal 0.001 0.0013 0 0.4 0 0.2
Yawed Horizontal 0.0014 0.0017 0 0.3 0.4 0.1

Using the hybrid algorithms YOLO-v8 and PNP/RANSAC (four of which are EPnP,
IPPE, Iterative, and AP3P and four are their hybrid variations with RANSAC), the poses of
the metal plates for each scenario were calculated with respect to the robot tool frame {T},
and the estimated values with the lowest error rates are shown in Table 5.
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Table 5. Estimation of object poses relative to the robot tool frame {T} using YOLO+PnP/RANSAC
hybrid algorithms.

Pose (m/◦) T
O px

T
O py

T
O pz

T
Orx

T
Ory

T
Orz

Negative Slope 0.224 0.207 0.267 4.2 −46.3 43.5
Positive Slope 0.506 0.175 0.266 4.5 46.4 12.6

Flat Horizontal 0.342 0.194 0.274 1.8 1.2 121.8
Yawed Horizontal 0.376 0.194 0.299 0.9 3.1 −89.8

To observe the performance of the hybrid-based method and to compare the results
with the performance of our own developed analytical solution algorithm, the absolute
differences between the estimated object pose values of the hybrid-based method and the
real object pose values are shown in Table 6.

Table 6. Absolute differences between the estimated pose by the hybrid algorithm of YOLO +
PnP/RANSAC and the real object pose.

Pose Error (m/◦) ∆T
O px ∆T

O py ∆T
O pz ∆T

Orx ∆T
Ory ∆T

Orz

Negative Slope 0.002 0.001 0.002 2.1 0.2 1.2
Positive Slope 0.003 0.007 0.003 2.5 3.4 0.6

Flat Horizontal 0.005 0.007 0.001 0.9 0.2 0.7
Yawed Horizontal 0.004 0.002 0.007 0.1 2.4 0.2

According to the results in Table 4, when we analyze the performance of our LabVIEW-
based analytical solution algorithm, the estimation errors at the positions T

O px, T
O py, and

T
O pz are less than 2mm, and the estimation errors at the rotations T

Orx, T
Ory, and T

Orz are
less than 1◦. With this high-precision 6D pose estimation performance, the gripper of
the industrial robot arm picked the metal plates with different positions and orientations
in four scenarios, and then could precisely and 100% successfully place the metal plates
in the white empty slot. On the other hand, when we examine the performances of the
YOLO-based PnP/RANSAC hybrid pose estimation algorithms according to the results in
Table 6, the estimation errors of the positions T

O px, T
O py, and T

O pz are around 2–7mm and the
estimation errors of the rotations T

Orx, T
Ory, and T

Orz are around 1.2◦–3.4◦. Although there
are some poses estimated with relatively low error rates in estimating the 6D pose in each
scenario, in general, the robot arm must pick the metal plate in exactly the right position
and orientation in all six axes in order to successfully place it in the empty slot. With this
low-precision 6D pose estimation performance, the gripper of the industrial robot arm
could not grasp the metal plates with the correct position and orientation in four different
scenarios and therefore created situations where it could not place the metal plates exactly
in the white empty slot.

As reflected in the results of this study, there are several limitations that prevent
YOLO-based deep learning methods and hybrid methods for 6D object pose estimation
from being practically used in real-world industrial robotic pick-and-place applications.
For example, these approaches require much larger trained datasets for metallic, textureless,
or reflective objects that are frequently encountered in industrial environments, but creating
them is labor-intensive and costly. Moreover, high-performance GPUs are required to use
these methods to achieve real-time performance in industrial applications that require
speed, precision, and accuracy, such as the one in this study. In contrast, our proposed
analytics-based method achieves high-precision 6D pose estimation without the need for
large training datasets and high-performance GPUs, significantly reducing the overhead
associated with data preparation. The YOLO model required 2000 labeled images for
training in our setup; this process is not necessary for the deployment of the proposed
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analytical method. The comparative results demonstrate that our method achieves better
accuracy without the burden of data annotation or model retraining.

For the analytical method, each scenario was repeated at least 10 times, and the results
were found to be highly stable, with minimal variation between trials. Therefore, the values
reported in Table 3 represent typical outcomes that closely reflect average performance.
For the YOLO-based hybrid methods, each of the eight pose estimation variants was
also evaluated with multiple trials. Due to occasional variations in inferred key points
or pose estimation algorithms, the most representative and accurate result from these
repeated runs was selected for reporting in Table 5 to illustrate the practical potential of the
hybrid method.

To validate the real-time applicability of the proposed method, we measured the time
required for each step in the perception and control pipeline. The image acquisition time
using the RGB-D camera is approximately 5 ms. Image processing, including filtering,
equalization, and pose estimation, takes around 2 ms. The time to transmit the pose data
to the robot controller is approximately 3 ms. Thus, the full cycle time for capturing,
processing, and sending motion commands is approximately 10 ms. The robot’s motion
time from pick to place (covering 1.5 m at a speed of 10 m/s) is 150 ms, which means that
vision processing overhead contributes only 4.4% to the total cycle time. For comparison,
the hybrid method takes approximately 50 ms for the YOLO-v8-based detection and
another 200 ms for the PnP/RANSAC-based pose estimation, totaling 250 ms before the
robot actuation. This makes up 62.5% of the entire pick-and-place operation, indicating
a significantly higher processing delay. The comparison of timing metrics can be seen in
Table 7.

Table 7. Comparison of timing metrics between the proposed analytical and YOLO-based hybrid
methods.

Time-Consuming Steps The Proposed Analytical Method YOLO-Based Hybrid Method

Image Capture 5 ms 5 ms
Image Processing 2 ms 250 ms (50 ms + 200 ms)

Command Transfer 3 ms 5 ms

Total Before Robot Movement 10 ms 255 ms

Robot Motion Time 150 ms 150 ms

Total Pick-and-Place Time 160 ms 405 ms

Vision System Share 4.4% 62.5%

In this study, orientation error comparisons were conducted using Euler angles (rx, ry,
and rz), which can be affected by singularities, especially when the roll and pitch angles (rx

and ry) approach ±90◦. However, in our experimental setup, such singular configurations
are not physically possible due to the geometry of the object. The metal brake pad plates
used are approximately 8 mm thick and weigh 1.5 kg, making it mechanically implausible
for them to assume vertical (±90◦) poses on the production surface. All observed object
inclinations remained within moderate angular ranges, thus avoiding gimbal lock issues.

7. Conclusions
This work addressed the critical challenge of high-precision 6D pose estimation for

robotic pick-and-place applications in a real industrial production line. An integrated
system combining a Staubli TX2-60L industrial robot, an Intel RealSense RGB-D camera, and
a novel analytics-based software solution built in LabVIEW and NI Vision was successfully
developed. The proposed analytical method proved to be highly effective in accurately
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calculating the 6D pose of metal plates in real time. In extensive experimental trials in
four challenging scenarios, the system demonstrated exceptional performance, achieving
position estimation errors of less than 2 mm and rotation estimation errors of less than 1◦.
This level of precision allowed the robot to successfully perform the pick-and-place task in
all trials and accurately place the metal plates in a tight 2 mm tolerance slot.

In a comparative analysis, the developed analytical solution significantly outper-
formed popular hybrid methods that combined the YOLO-v8 deep learning-based object
detector with various geometric-based algorithms, such as PnP and RANSAC. The hybrid
method produced larger prediction errors that prevented the robot from reliably picking
up and placing the metal plates. These findings highlight the value of a dedicated analytics-
based approach for specific industrial applications where high accuracy and robustness are
crucial. The success of this research highlights that traditional geometry-focused machine
vision techniques can provide a more effective alternative to learning-based models such as
YOLO and its hybrid solutions for well-defined industrial problems, providing a validated,
practical, and highly reliable solution for automating complex manipulation tasks.

Although our study primarily addresses high-precision pose estimation within a semi-
static industrial setting, we recognize that real-world applications frequently introduce
complexities such as dynamic conveyors, moving targets, and fluctuating lighting or
occlusion. However, the modular nature of our proposed method allows for adaptation to
such dynamic environments. This would involve integrating elements such as high-speed
imaging, motion synchronization, or predictive control. Extending this methodology to
these more challenging scenarios would require custom setups, including robot-specific
control strategies, customized grippers, and potentially multiple camera configurations to
effectively manage occlusion and speed constraints.

The proposed method was experimentally validated using rigid and planar metallic
brake pad plates due to their relevance in the target industrial application. However, the
underlying analytical approach can be adapted to other types of objects with appropriate
modifications to perception or manipulation systems. For example, handling reflective
or non-planar objects may require different camera types (e.g., polarization or structured
light sensors), lighting control, or alternative end-effectors. The current system also demon-
strated robustness under cluttered scenes, with randomly oriented and overlapping objects.
Future work will explore extending the method to non-metallic or deformable objects,
integrating multi-view perception, and applying it in other industrial domains beyond
automotive assembly lines.
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