
Academic Editors: Xiao Wu and

Kiyoshi Toko

Received: 1 July 2025

Revised: 31 July 2025

Accepted: 1 August 2025

Published: 3 August 2025

Citation: Xie, Z.; Tian, Y.; Jia, P. A

Few-Shot SE-Relation Net-Based

Electronic Nose for Discriminating

COPD. Sensors 2025, 25, 4780.

https://doi.org/10.3390/

s25154780

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Few-Shot SE-Relation Net-Based Electronic Nose for
Discriminating COPD
Zhuoheng Xie 1,† , Yao Tian 2,3,† and Pengfei Jia 4,5,*

1 School of Mechanical Electrical and Information Engineering, Shandong University, Weihai 264209, China;
202200800061@mail.sdu.edu.cn

2 School of Future Technology, Xi’an Jiaotong University, Xi’an 710049, China; tianyaochina@stu.xjtu.edu.cn
3 State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
4 School of Electrical Engineering, Guangxi University, Nanning 530004, China
5 Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment, Guangxi University,

Nanning 530004, China
* Correspondence: jiapengfei200609@126.com
† These authors contributed equally to this work and should be considered co-first authors.

Abstract

We propose an advanced electronic nose based on SE-RelationNet for COPD diagnosis with
limited breath samples. The model integrates residual blocks, BiGRU layers, and squeeze–
excitation attention mechanisms to enhance feature-extraction efficiency. Experimental
results demonstrate exceptional performance with minimal samples: in 4-way 1-shot tasks,
the model achieves 85.8% mean accuracy (F1-score = 0.852), scaling to 93.3% accuracy
(F1-score = 0.931) with four samples per class. Ablation studies confirm that the 5-layer
residual structure and single-hidden-layer BiGRU optimize stability (h_F1-score ≤ 0.011).
Compared to SiameseNet and ProtoNet, SE-RelationNet shows superior accuracy (>15%
improvement in 1-shot tasks). This technology enables COPD detection with as few
as one breath sample, facilitating early intervention to mitigate lung cancer risks in
COPD patients.

Keywords: chronic obstructive pulmonary disease (COPD); electronic nose; few-shot gas
classification; relation network; lung cancer

1. Introduction
Lung cancer is a highly lethal malignancy that originates from bronchial mucosa

or glands. Only 15% of patients are diagnosed in the early stage, while 85% are diag-
nosed at an advanced stage [1–3]. Late diagnosis is often due to similar symptoms with
viral diseases, leading to a high mortality rate of around 90% [4]. Early detection is
crucial in reducing mortality rates, making cancer prevention and detection significant
research topics.

Chronic obstructive pulmonary disease (COPD) is one of the top ten non-infectious
diseases worldwide. It is a chronic inflammatory lung disease that causes obstruction in
the airflow from the lungs [5]. Research indicates that approximately 1% of COPD patients
develop lung cancer annually [6]. Moreover, published studies [7,8] have demonstrated
that COPD can serve as a critical and reliable predictor for screening lung cancer risk.
The validity of this finding was confirmed by the COPD Lung Cancer Screening Score
(COPD-LUCSS), which exhibited a strong correlation between COPD and lung cancer risk.
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Several methods have been proposed for testing chronic obstructive pulmonary dis-
ease (COPD), including gas chromatography–mass spectrometry (GC-MS) [9,10], spirome-
try [11–13], sputum cytometry, chest radiography [14], and fluoroscopic bronchoscopy. De-
spite their established roles, each method presents significant limitations. These drawbacks
include requirements for specialized personnel, complex and time-consuming procedures,
high associated costs, and in some cases, patient invasiveness. Recently, electronic nose
(E-nose) applications have emerged as a promising alternative, offering a comparatively
easy and fast approach for detecting COPD [15]. Table 1 summarizes the key characteristics
and limitations of the mentioned COPD detection methods compared to the emerging
electronic nose technology.

Table 1. Comparison of COPD detection methods. Accuracy, speed, cost, complexity, personnel
requirement, and invasiveness are key factors differentiating traditional methods from electronic
nose technology.

Detection
Method Accuracy Speed Cost Complexity

Personnel
Require-

ment
Invasive? Key Limitations

Gas
Chromatography–

Mass
Spectrometry

(GC-MS) [9,10]

High Slow
(hrs) High High Specialized No

Time-consuming,
expensive

equipment and
maintenance,

complex sample
prep and analysis

Spirometry
[11–13] Moderate Moderate Low–

Mod Moderate Trained No

Effort-dependent,
may miss early

disease, requires
patient cooperation

Sputum
Cytometry Variable Moderate Mod Moderate Trained No

Sample variability,
requires specialized

staining/analysis

Chest
Radiography
(X-ray) [14]

Low–
Mod Fast Low–

Mod Low Trained (in-
terpretation) No

Low sensitivity for
early COPD, limited

specificity (other
lung conditions

look similar)

Fluoroscopic
Bronchoscopy High Slow High High Specialist Yes

Invasive, requires
sedation/anesthesia,
risk of complications,

expensive

Electronic Nose
(E-nose) [15]

High
(Emerging)

Fast
(mins)

Lower
(Poten-

tial)
Lower Minimal

Training No

Requires algorithm
develop-

ment/validation,
sensor drift/

calibration needs

The electronic nose (E-nose) is a tool designed to simulate the structure and operation
of the human nose, which can assist or replace humans in gas research [16]. It comprises
three parts: a sensor array, signal processing, and pattern recognition, which together
simulate the biological olfactory system’s response to odor. In recent years, e-noses have
supported remarkable achievements in medical diagnosis [17–19], environmental monitor-
ing [20,21], food safety [22–24], and intelligent agriculture [25–27]. Selecting appropriate
sensors can ensure that the electronic nose accurately captures the signal characteristics of
the target gas [28], while designing excellent pattern recognition algorithms can efficiently
utilize these features to significantly enhance the performance of the electronic nose [29]. To
enable e-noses to have anthropomorphic or even surpass human gas analysis capabilities,
researchers must continuously explore effective gas-recognition algorithms to adapt to
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various research contexts. In the field of gas classification and concentration prediction,
the feasibility of traditional machine learning models such as support vector machine
(SVM) [30], XGBoost [31], kernel principal component analysis (KPCA) [32], random for-
est [33], and deep learning models such as convolutional neural network (CNN) [34] and
long short-term memory (LSTM) [35] has been demonstrated one after another.

Current research on e-noses tends to combine long-term data collection with machine
learning or deep learning for high performance, although this requires a large number of
gas samples for training and a fixed e-nose device. Using too few samples for training can
cause overfitting, while using a different sensor array risks bias in the results obtained from
the model trained on the old device. Collecting a large number of breath samples is costly
for medical institutions, and models trained with many samples can only be used on a
specific device, making widespread e-nose use for COPD detection challenging.

Humans can learn new things quickly and accurately with only a few samples. For
instance, a person who smells jasmine once can recognize the scent very easily due to
their prior knowledge from other experiences. The idea behind FSL is to leverage prior
knowledge and train a model with only a small number of samples when faced with a new
task. FSL can solve problems such as traditional machine learning algorithms overfitting
due to limited data and the inability to directly use deep neural networks and other algo-
rithms that require large amounts of labeled data due to difficulties in labeling or noise.
In recent years, FSL based on metric learning has rapidly developed in computer vision
and natural language processing. The strategy is to learn prior knowledge to calculate
similarities between any two samples and classify unknown samples. Various methods
have been proposed, including siamese networks (SiameseNets) [36], matching networks
(MatchingNets) [37], prototypical networks (ProtoNets) [38], and Relation Networks (Rela-
tionNets) [39], achieving better results in different tasks. Using FSL for e-nose detection
enables the device to determine if a new sample is from a COPD patient by training a deep
learning network with only a small number of breath samples, promoting the application
of e-nose detection for COPD.

In this paper, we construct a model called SE-RelationNet based on the idea of metric
learning, and the research performed is as follows: (1) Construct a relational network with
residual blocks and bi-directional gate recurrent unit (BiGRU) blocks as the main body,
and add squeeze–excitation blocks (SEblock) to improve the performance of the model.
(2) Learning prior knowledge from a common gas dataset and solving the problem of
detecting patients’ breath in COPD under small-sample situations.

The article outlines the experimental configuration and gas-sampling method in
Section 2, introduces the proposed SE-RelationNet in Section 3, discusses the performance
of the experiments in Section 4, performs ablation and contrast experiments in Section 5,
and concludes in Section 6.

2. Materials and Environments
FSL requires learning problem-solving experience from prior knowledge, with the

dataset providing this knowledge referred to as the meta-training set and the dataset
used for solving the problem known as the meta-testing set. To ensure compatibility with
the same neural network, samples from both sets need to be transformed into the same
format before being fed into the model. Generally, the meta-training set should contain
more categories to represent prior knowledge, and the meta-training and meta-testing sets
should strongly correlate for better transferability [40].

To tackle the challenge of screening COPD patients using only a limited number of
labeled breath samples, appropriate selection of the meta-training and validation sets
is crucial. Selection criteria include the use of a gas sensor-array collection, with each



Sensors 2025, 25, 4780 4 of 22

sample containing the process of starting and stopping the flow of the target gas, and the
transformation of both datasets into the same shaped matrix during preprocessing. We
chose the “Gas sensor arrays in open sampling settings Data Set” [41] as the meta-training
set, containing samples of over 10 common gases collected under normative conditions.
Meanwhile, we selected the “Electronic nose dataset for COPD detection from smokers
and healthy people through exhaled breath analysis,” including a range of breath samples
from COPD patients, general population, smokers, and air samples [42]. These samples
can simulate scenarios with very few labeled samples (1–4 per class), where traditional
machine learning methods may lead to overfitting. Thus, small-sample learning methods
are required in such cases. The two datasets have different collection methods, data
formats, and sensor arrays, demonstrating the generality of the model with less stringent
requirements for sensor arrays and collection methods. In the following, we will briefly
describe these two datasets and illustrate the preprocessing methods.

2.1. Meta-Training Set

The meta-training dataset was sourced from the UCI Machine Learning Repository
and was curated by Alexander Vergara et al. For a comprehensive understanding, please
refer to paper [43]. This dataset was gathered using an array of 72 sensors, organized into
nine groups, within a turbulent wind-tunnel environment infused with various gases. To
identify the most discriminative sensors, we implemented a mutual information (MI)-based
feature-selection approach evaluating both static and dynamic response characteristics.
Mutual information quantifies the dependency between sensor features and gas categories.
For a discrete feature X (e.g., Xmean or Xslope and class label Y, it is computed as:

MI(X; Y) = ∑y∈Y ∑x∈X p(x, y) log
p(x, y)

p(x)p(y)
(1)

where p(x,y) is the joint probability distribution, and p(x), p(y) are marginal distributions.
Higher MI values indicate stronger relevance for classification. Continuous features were
discretized using histogram binning (20 bins) to enable probability estimation. For each
sensor, temporal average response Xmean) captured static properties while maximum
instantaneous slope (Xslope = max |∇ data|) quantified dynamic sensitivity. Sensors were
ranked by combined MI score MIcombined, with the top eight sensors selected based on their
discriminative power for gas classification tasks. The MIcombined is computed as:

MIcombined =
1
2

(
MI(Xmean, Y) + MI(Xslope, Y)

)
(2)

Detailed information regarding the placement, type, contribution score, and specific
gas sensitivities of these sensors is provided in Table 2.

The arrangement of the study involved altering the horizontal distance between the gas
source and the sensor array. Data was collected for 11 different gases at six varying distances,
with the sensors functioning under five distinct operational conditions. Additionally, the
wind speed within the tunnel was modified to three separate levels. Each experimental
configuration was subjected to 20 repetitions, and for each repetition, sensor data was
logged at a 10 ms interval across a total duration of 400 s, resulting in 40,000 data points
per sample.

To ensure stable sensor readings, the wind tunnel was initially flooded with pure air
for the first 20 s. Subsequently, the experimental gas was introduced from the 20 s mark
until 200 s. From 200 to 400 s, the tunnel was once again ventilated with pure air to cleanse
the system. A visual representation of the gas release over time is depicted in Figure 1.



Sensors 2025, 25, 4780 5 of 22

Through this methodology, a comprehensive dataset comprising 1800 samples for each gas
type was amassed.

Table 2. Location, type, and sensitive gas of selected sensors in meta-training set ([x, y] denotes the
yth sensor of the xth group).

No. Location Type Mean
Contribution

Slope
Contribution

Contribution
Score

Sensitive
Gas

1 <4,4> TGS2600 0.5131 0.6426 0.5778 Hydrogen, carbon, monoxide
2 <5,2> TGS2612 0.9244 0.7229 0.8236 Methane, propane, butane
3 <5,3> TGS2610 0.5159 0.4822 0.4991 Propane
4 <5,4> TGS2600 0.8593 1.0441 0.9517 Hydrogen, carbon, monoxide

5 <5,5> TGS2602 0.4782 0.5130 0.5130 Ammonia, H2S, volatile organic
compounds (VOC)

6 <5,6> TGS2602 0.5004 0.5228 0.5116 Ammonia, H2S, VOC

7 <5,7> TGS2620 0.4925 0.5665 0.5295 Carbon, monoxide, combustible
gases, VOC

8 <5,8> TGS2620 0.5246 0.5920 0.5583 Carbon, monoxide, combustible
gases, VOC

Figure 1. Gas release rate in wind tunnel over time during meta-training set collection.

During the preparation of the meta-training set, samples with missing data were
discarded to maintain the integrity of the dataset. This step was crucial to align the shape of
the meta-training set with that of the meta-testing set for effective few-shot learning (FSL).
To condense the data, the recordings from each sensor were averaged per second, resulting
in 100 data points per second. This reduction led to each sample being represented as a
[400, 8] matrix, reflecting 400 s of data from eight sensors. To extract the most pertinent
time-series information, the data window was further narrowed down to the segment
spanning from 17 to 257 s. This truncation provided a refined sample representation in the
form of a [240, 8] matrix, capturing the essential trends in sensor response.

The finalized meta-training set includes 11 gas classes, each uniquely identified by
name, molecular formula, concentration, and the number of samples collected, as listed
in Table 3.



Sensors 2025, 25, 4780 6 of 22

Table 3. Correspondence of gas class, molecular formula, concentration, and sample size in meta-
training set.

Class Molecular Formula Concentration (ppm) Number of Gas Samples

Acetaldehyde C2H4O 500 1800
Acetone C3H6O 2500 1800

Ammonia NH3 10,000 1800
Benzene C6H6 200 1800
Butanol C4H9OH 100 1500

Carbon monoxide C O 4000 1571
Carbon monoxide C O 1000 449

Ethylene C2H4 500 1800
Methane CH4 1000 1800
Methanol CH4O 200 1800
Toluene C7H8 200 1800

2.2. Meta-Testing Set

Our meta-testing set was obtained from Mendeley Data, collected and produced by
Cristhian Manuel et al. Refer to their paper for more details. The dataset was created to
aid the diagnosis of chronic obstructive pulmonary disease and contains four categories
of samples: breath of COPD patients (COPD), breath of smokers (SMOKERS), breath of
healthy people who do not smoke (CONTROL), and air (AIR). The number of samples in
each category is shown in Table 4.

Table 4. Correspondence of gas classes and their respective quantities in meta-testing set.

Class The Number of Samples

COPD 40
Smokers 8
Control 20

Air 10

A sensor array of eight sensors was used, with each sample collection involving the
subject blowing into the gas while the sensors collected 500 sets of data per second for a
total duration of 8 s. This resulted in a matrix of shape [4000, 8], which provided a more
complete picture of the approximate trend of the sensor response changes. For each type of
sample, we drew a variation curve of the average value of the response of each sensor, as
shown in Figure 2.

To ensure that the meta-testing set had the same sample shape as the meta-training
set, we used the equal time-interval extraction method to extract 240 out of 4000 recording
points. This allowed us to obtain a matrix with a shape of [240, 8].

2.3. Experimental Environment

This experiment was conducted using Python v3.9 and implemented on the PyTorch
(v1.13.0) deep learning framework. All models were computed using CUDA with a version
of 11.7 for optimized performance.

2.4. Signal Preprocessing

To enhance the robustness and generalization ability of the model, we performed the
following signal-preprocessing steps:

(1) Normalization: First, we normalized all sensor data to make them have the same scale.
This eliminates the differences in response intensities between different sensors and
makes the model more sensitive to the range of input data.
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(2) Channel Shuffling: During each training round, we randomly shuffle and rearrange
the sensor channels for all samples within the batch. This aims to prevent the model
from over-relying on a specific channel order, thereby enhancing its ability to calculate
similarity under different channel orders. Essentially, this is a data augmentation
technique that increases the number of training samples and enables the model to
learn more generalizable feature representations.

  
(a) (b) 

(c) (d) 

Figure 2. Average voltage values recorded by each sensor for each class of breath: (a) Air; (b) Control;
(c) COPD; and (d) Smokers.

3. Methodology
In this section, we introduce the SE-RelationNet which comprises an embedding

module fϕ and a metrics module gφ. The embedding module extracts sample features
using a deep network structure, while the metrics module calculates similarity between
two feature matrices. Section 3.1 explains how to use this network for few-shot learning,
Section 3.2 covers the embedding module, and Section 3.3 discusses the metrics module.

3.1. Training Method of SE-RelationNet

The overall structure of the SE-RelationNet is illustrated in Figure 3. To tackle the few-
shot classification task, the model is trained using the N-way K-shot method. Specifically,
N classes are selected and K samples are randomly drawn from each class to construct the
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support set S = {(xi, yi)}m
i=1(m = K× N). Then, P samples are drawn from the remaining

part of each category to construct the query set Q =
{(

xj, yj
)}n

j=1(n = P×N). The training
process for K = 1 and K > 1 is explained separately.

Figure 3. The overall structure of the SE-RelationNet.

i. K = 1. Few-shot learning with K = 1, also known as one-shot learning, involves pro-
cessing a sample xj(j = 1, 2, . . . , P× N) in the query set using a sample xi(i = 1, 2, . . . , N)

in the support set through an embedding module fϕ to obtain features. The feature-merging
operator C(−,−) then combines the obtained features, resulting in input C

(
xi, xj

)
for the

metrics module gφ. This generates a similarity score ci,j between 0 and 1, which represents
the similarity of xi with xj.

ci,j = gϕ(C( fϕ(xi), fϕ(xj))), i = 1, 2, . . . , N (3)

ii. K > 1. In the K-shot case with K > 1, the embedding module averages the samples of
each class in the support set to obtain the features for that class. The resulting features for
each class are then combined with the samples in the query set and input into the metrics
module. The metrics module then outputs similarity scores between the samples in the
query set and each class of samples in the support set.

To train the model, we use mean square error (MSE) loss, which is typically used for
regression problems that resemble classification problems in the label space {0,1}. However,
since our model predicts similarity scores, the problem can also be viewed as a regression
problem, as shown in the following equation:

ϕ, φ← argmin
ϕ,φ

m

∑
i=1

n

∑
j=1

(ri,j − 1(yi == yj))
2 (4)

Once the model is trained with multiple randomly generated tasks, it can determine
the degree of similarity between any two samples to a certain extent. During the testing
session, the N-way K-shot task is performed several times on the meta-testing set. The
class with the highest degree of similarity to the unknown class of samples is selected as
the class for that sample, and the model is evaluated using metrics such as accuracy rate.

3.2. Embedding Module

The embedding module is the first module through which the sample data passes.
Whether it is a meta-training set sample or a meta-testing set sample, it is in the form of a
matrix with the shape [240, 8], representing the data recorded by 8 sensors at 240 recording
points. The embedding module extracts abstract features from this time series for further
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processing by the metrics module. Its output is a matrix with the shape [63, 30]. Figure 4
depicts the structure of the embedding module.

Figure 4. The structure of the embedding module, with residual blocks in a line in the blue box.

The ability of a neural network to extract abstract features improves with increasing
depth. However, a network that is too deep can suffer from gradient dispersion and
gradient explosion. Traditional solutions such as normalized initialization and batch
normalization may slow down the original problem to some extent, but they introduce new
problems. One of these problems is the degradation of network performance. Kaiming He
proposed residual blocks as an effective solution to this problem. Hence, we added three
residual blocks to our network [44].

Each residual block comprises pathway F1 and pathway F2. Pathway F1 includes three
convolutional layers and one SEblock, while pathway F2 consists of only one convolutional
layer. Assuming that x is the input of the residual block and y is the output, w1 and
w2 are the parameters of pathway F1 and pathway F2, respectively, which are also the
objects we need to optimize. The equation below shows the relationship between the input
and output:

y = F1(x, {w1}) + F2(x, {w2}) (5)

During backpropagation, gradient fading may occur if the pathway between layers
is too long. However, using a shorter pathway F2 can mitigate this issue by propagating
gradients across fewer layers. Leaky ReLU is a modified linear activation function with
f (x) = max (ax, x), where a < 1 (usually set to 0.01). It has better convergence and generaliza-
tion capabilities compared to traditional ReLU and can improve the accuracy and stability
of deep neural networks. When a value of 0.01 is used for parameter a, the shapes of the
leaky ReLU function and the ReLU function can be plotted as illustrated in Figure 5.
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Figure 5. Comparing the shapes of leaky ReLU and ReLU functions.

In the network, we incorporated the SEblock, an attention mechanism illustrated in
Figure 6, to enhance its performance [45]. The SEblock selectively emphasizes informative
features by adaptively recalibrating them based on their relevance. The basic idea is
as follows:

(1) Squeeze (Fsq). Aggregates the features of each channel by averaging pooling:

zc = Fsq(xc) =
1
X

T

∑
i

xc(i) (6)

Figure 6. Structure of SEblocks.

Here, zc is the compressed channel vector, xc is the c-th channel of the input feature
map, and T is the dimension of each channel.

(2) Extraction (Fex). The compressed vectors undergo two fully connected layers to
produce channel weights. To improve computational efficiency, we set a reduction
factor ratio and halve the number of neurons in the first layer by 1

ratio while using
ReLU as a nonlinear function. The second layer has the same number of neurons as
the input and applies the sigmoid function to confine the weights between 0 and 1.
These fully connected layers are parameterized by w′1 and w′2.

s = Fex(z) = f2( f1(z,
{

w′1
}
),
{

w′2
}
) (7)

Here, f 1 and f 2 are two consecutive fully connected layers used to process. This step
enables SEblocks to use the global information of each channel and selectively emphasize
the channel features.

(3) Scale (Fsc). The importance score of each channel is obtained from the “Extraction“ stage,
which we use to reweight the channels. This involves sequentially multiplying each
channel with its corresponding weight to produce the calibrated attention channels.

x̃c = Fsc(xc, sc) = sc · xc (8)
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3.3. Metrics Module

To obtain the similarity between unknown and known category samples, we concate-
nate them and input them into the “metrics” module illustrated in Figure 7. The metrics
module consists of a convolutional layer for abstract feature extraction, BiGRU blocks (a
variant of GRU for time-series feature extraction), SEblock for improved expressiveness,
and a fully connected layer to process the output data from the BiGRU block. Finally, the
sigmoid function is applied to the output to produce a probability score between 0 and 1,
indicating the predicted category of the unknown sample.

Figure 7. Structure of metrics module with BiGRU block in blue box.

The BiGRU block, illustrated in Figure 7, introduces the concept of hidden state to
extract time-series features by learning the information at each moment and combining
it with the information before and after [46]. Compared to traditional fully connected
layer networks, this results in improved feature-extraction performance. The input–output
relationships for each layer can be expressed as follows:

rt = f (Wrxt + Urht−1 + br) (9)

This calculates the “reset gate” value. It decides how much of the past hidden state
ht−1 to forget or reset based on the current input xt. A value close to 0 means discarding
most past information, while a value close to 1 means retaining it. This helps the model
ignore irrelevant historical data when processing new inputs.

zt = f (Wzxt + Uzht−1 + bz) (10)

This computes the “update gate” value. It determines how much new information
from the current input should update the hidden state. For example, if zt is near 1, the
hidden state relies heavily on past values; if near 0, it prioritizes new inputs. This gate
balances between retaining long-term memory and incorporating fresh data.

h′t = tanh(Whxt + Uh(rt ⊙ ht−1)+bh) (11)
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This generates a “candidate” for the new hidden state. It combines the current input
xt with a filtered version of the past hidden state (using the reset gate rt). The tanh function
ensures the output is normalized, preventing extreme values. Essentially, this step proposes
a new state based on selective past and current information.

ht = zt ⊙ ht−1 + (1− zt)⊙ h′t (12)

This produces the final hidden state ht by blending the previous hidden state ht−1 and
the candidate h′t, using the update gate zt as a weighting factor. If zt is high, the state leans
toward history; if low, it favors the new candidate. This allows the BiGRU to adaptively
learn sequential patterns, such as trends in breath sample responses.

To optimize model performance, we set the number of hidden layers in the BiGRU
block to 1.

4. Experiments and Analysis
In this section, we begin by setting appropriate parameters for the SE-RelationNet and

assessing its performance.

4.1. Parameter Optimization of the SE-RelationNet

SE-RelationNet’s training benefits from setting optimal parameters for improved
accuracy and faster convergence. The trial-and-error method is used to select the best
parameters, which are listed in Table 5 for easy replication of the model.

Table 5. Parameter setting of SE-RelationNet.

Parameter Names Parameter Values

Optimizer Adam
Loss function Mseloss

Training epochs 1001
Testing epochs 50

Batch num per class during training 20
BiGRU’s hidden layers 1

Learning rate 0.0001
Seed 512

Dropout 0.3
ratio 16

4.2. Selection of Evaluation Indicators

To evaluate the SE-RelationNet model, we used four metrics: mean_accuracy, h_accuracy,
mean_F1-score, and h_F1-score. Additionally, we employed a confusion matrix as a common
visualization tool for supervised learning, which can be seen in Table 6.

Table 6. Confusion matrix.

Reference
Positive Negative

Prediction
Positive TP FP

Negative FN TN

The formula for accuracy, which is the most commonly used evaluation metric for
classification tasks, is as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(13)
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The F1-score is a reconciled mean of precision and recall, proposed as a more robust
indicator than accuracy due to susceptibility to sample equilibrium. Its formula is:

precsion =
TP

TP + FP
(14)

recall =
TP

TP + FN
(15)

F1− score =
2× prcesion× recall

precsion + recall
(16)

For each round the model is trained, we will test the model using a meta-test set, and
each test yields accuracy and F1-score. Let the n different accuracy’s obtained be a1, a2, . . .,
an, and the n different F1-scores are f1, f2, . . ., fn. To accurately measure the model effect,
we take the average of these two metrics separately:

For each training round, the model is tested on a meta-test set to obtain accuracy and
F1-score. Let the n different accuracy scores be a1, a2, . . ., an, and the n different F1-scores be
f1, f2, . . ., fn. To accurately measure the model’s effectiveness, we calculate the average of
these two metrics separately:

mean_accuracy =
1
n

n

∑
i=1

ai (17)

mean_F1− score =
1
n

n

∑
i=1

fi (18)

To assess the dispersion of a1, a2, . . ., an, we assume that they follow a t-distribution
and introduce the distance h_accuracy, which represents the distance between the right
endpoint of the 95% confidence interval and the mean_accuracy. The formula for calculating
h_accuracy is as follows:

h_accuracy = sem · x (19)

sem =
σ√
n

(20)

where sem and σ are the standard error and standard deviation of n accuracy, respectively,
and x are the positions of the right end quantile of the t distribution at a confidence level
of 95% and a degree of freedom of n − 1. h_accuracy is calculated in the same way as
h_F1-score. When mean_accuracy and mean_F1-score are larger, the stronger the ability of the
model to predict correctly. The smaller the h_accuracy and h_F1-score values, the higher the
confidence level of the model and the less randomness present in the model performance
due to training.

For every 20 epochs trained by the model, we conduct a test containing 50 epochs
on the meta-testing set (each epoch consisting of randomly divided N-way K-shot tasks)
to obtain accuracy and F1-score. Figure 8 shows a line graph with epoch as the horizontal
axis and accuracy or F1-score as the vertical axis. The graph indicates that both metrics
exhibit an overall upward trend until the 600th epoch, after which they fluctuate around a
certain value.

Select the records between 700 and 1000 epochs with accuracy and F1-score to find their
indicators as shown in Table 7.

Table 7 shows that mean_accuracy and mean_F1-score increase with increasing K when
there is no clear trend in the metrics. However, this increasing trend is not significant when
K is greater than 1. This suggests that increasing K within a certain range can improve the
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model’s effectiveness, but using a larger K implies a larger sampling scale, which may not
necessarily lead to better results beyond a certain point.

Table 7. Model performance metrics under four training methods.

mean_accuracy h_accuracy mean_F1-score h_F1-score

4-way 1-shot 0.858 0.010 0.852 0.011
4-way 2-shot 0.896 0.005 0.890 0.006
4-way 3-shot 0.922 0.008 0.919 0.008
4-way 4-shot 0.933 0.007 0.931 0.008

 
(a) (b) 

Figure 8. (a) Accuracy with epochs in meta-testing set testing. (b) F1-score variation with epochs in
meta-testing set testing.

The marginal improvement from K = 1 to K = 4 stems from the inherent properties
of the learned embedding space and the metric mechanism. Our model focuses on ex-
tracting abstract feature representations (or “class prototypes”) through the embedding
module, with K primarily influencing the robustness of prototype construction during
metric comparison.

(1) K = 1 performance: The strong baseline accuracy (e.g., >0.85 mean_F1-score in 4-way
tasks) indicates effective generalization, as a single sample suffices to capture core class
characteristics. However, individual sample noise or outliers can degrade prototype fidelity.

(2) K > 1 refinement: Increasing K averages out noise and incorporates diverse sample
variations, enhancing prototype stability. This explains the gradual accuracy rise up
to K = 4.

(3) Asymptotic behavior beyond K = 4: Once K exceeds a threshold (~4 in our experiments),
prototypes saturate in representational quality. Further samples yield diminishing
returns, as the embedding space already encodes class-discriminative features efficiently.

This phenomenon mirrors human cognition: recognizing a new object after one expo-
sure (K = 1) is possible but error-prone; repeated exposures (K > 1) refine mental prototypes
until stability is achieved. Thus, the limited K-scaling gain validates the embedding space’s
optimality—a few samples suffice for near-peak generalization.
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5. Results and Discussion
In this section, we performed ablation experiments to identify the optimal number of

residual block layers, assess the suitability of BiGRU blocks, and evaluate the effectiveness
of the attention mechanism. Additionally, we included two few-shot learning models as
controls for the proposed model.

5.1. Making Changes to the BiGRU Block

To investigate the rationality of the BiGRU with a single hidden layer, we designed
control experiments for the BiGRU. The control group replaced the BiGRU with one hidden
layer (group 1) with a BiGRU with two hidden layers (group 2), a BiGRU with three hidden
layers (group 3), a GRU block with one hidden layer (group 4), a BiLSTM block with
one hidden layer (group 5), a RNN block with one hidden layer (group 6), and a LSTM
block with one hidden layer (group 7), respectively. To ensure the evaluation reflects the
model’s performance at convergence, records between 700 and 1000 epochs were selected
for aggregation. This interval was chosen because, as illustrated in Figure 8, the F1-score for
all models, particularly SE-RelationNet, exhibited minimal fluctuations and stabilized after
approximately 700 training epochs. The calculated mean_F1-score and h_F1-score within
this stable period provide a reliable assessment of the model’s generalization capability, as
shown in Table 8.

Table 8. Mean_F1-score obtained by four training methods when using six different modules.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

4-way 1-shot 0.852 0.845 0.842 0.816 0.823 0.808 0.819
4-way 2-shot 0.890 0.869 0.874 0.893 0.902 0.855 0.880
4-way 3-shot 0.919 0.904 0.919 0.919 0.915 0.878 0.893
4-way 4-shot 0.931 0.915 0.915 0.925 0.926 0.882 0.905

The results show that the BiGRU block with one hidden layer (group 1) consistently
outperformed deeper variants (groups 2 and 3) across all few-shot settings (Table 7).
This superiority arises primarily from reduced overfitting risk and computational effi-
ciency. Deeper networks introduce more parameters, making them prone to memoriz-
ing noise rather than learning generalizable features in the limited-data context of our
meta-testing set. The single-layer architecture avoids this degradation and manages gra-
dients more effectively. Furthermore, the bidirectional design (group 1) significantly out-
performed the unidirectional GRU (group 4), particularly in the challenging 1-shot task
(0.852 vs. 0.816 mean_F1-score), due to its enhanced contextual awareness by processing
sequences in both forward and backward directions, capturing complex temporal patterns
in sensor responses (Figure 2). While BiLSTM (group 5) showed competitive performance
in some tasks (e.g., 4-way 4-shot), the GRU-based model (group 1) generally achieved
higher or comparable mean_F1-scores (e.g., 0.852 vs. 0.823 in 4-way 1-shot), making it
better suited for our small-sample learning scenario. Therefore, BiGRU with one hidden
layer is the best design.

The results show that the BiGRU block with one hidden layer and the convolutional
layer outperformed the other structures, but the former showed higher stability compared
to the latter. Overall, the BiGRU block with one hidden layer is the better design.

5.2. Selection of the Number of Residual Block Layers

Prof. Kaiming He’s study suggested that the number of layers in the residual block
should be at least two, as a single layer would not be meaningful [47]. To examine the
suitability of using five layers of residual blocks, we conducted an experiment where
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we varied the number of layers in the embedding module and selected records between
700 and 1000 epochs to obtain the mean_F1-score and h_F1-score. Additionally, we replaced
each residual block with five concatenated convolutional layers to investigate the necessity
of using residual blocks. The resulting histogram is shown in Figure 9.

  
(a) (b) 

Figure 9. (a) mean_F1-score for different numbers of residual block layers under four training methods.
(b) h_F1-score for different numbers of residual block layers under four training methods.

To provide a deeper analysis of the results in Figure 9, we observe that the 5-layer
residual block consistently outperforms other configurations across all few-shot tasks
(4-way 1-shot to 4-way 4-shot). Specifically, for the 4-way 4-shot task, the mean_F1-score
peaks at 0.931 with an h_F1-score of 0.008, indicating not only high accuracy but also
exceptional stability. This optimal performance is attributed to the residual blocks’ ability
to mitigate gradient vanishing while enabling sufficient depth for feature abstraction.
In contrast, fewer layers result in lower mean_F1-scores due to inadequate hierarchical
representation learning. Conversely, while not tested beyond five layers, excessive depth
(implied by the trend) could increase computational latency and overfitting risks, as seen
in the marginal decline in stability for non-residual configurations. Additionally, the
reduced h_F1-score for 5-layer blocks underscores their robustness to input variations,
which is critical for small-sample COPD detection where data noise is prevalent. This
analysis confirms that a 5-layer residual design achieves an optimal trade-off between
model complexity and generalization, directly supporting our architectural choice for
SE-RelationNet.

5.3. Control Experiments with Other Models

We chose SiameseNet and ProtoNet as the control networks for SE-RelationNet, which
are described below.

The SiameseNet is a basic one-shot learning method that has been adapted to also
handle few-shot problems with K > 1. Its structure is shown in Figure 10. The embedding
module outputs a feature vector, which is used to compute the similarity between a pair
of samples in the query set and support set. This is achieved by averaging the feature
vectors of the support set samples and subtracting from the feature vectors of the query set
samples. The absolute values are then input to the metrics module, which consists of two
fully connected layers, and outputs a number between 0 and 1 representing the similarity
of the two samples.
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Figure 10. The structure of the SiameseNet.

ProtoNet is a few-shot learning method, with the structure shown in Figure 11. K
samples of each class in the support set are projected into the Euclidean space by the
embedding module, and the average value is taken as the prototypical vector of that
class. Samples in the query set are projected by the embedding module, and the Euclidean
distance from the prototypical vector of each class is calculated. Finally, the Softmax
function is used to evaluate the probability that the samples belong to each category.

Figure 11. The structure of the ProtoNet.

The learning rates for SiameseNet, ProtoNet, and SE-RelationNet are 0.0001, 0.00001,
and 0.0001, respectively. We selected the F1-score recorded between 700 and 1000 train-
ing rounds and calculated the mean_F1-score and h_F1-score. The results are shown
in Figure 12.
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(a) (b) 

Figure 12. (a) mean_F1-score for SE-RelationNet and its control networks after training in four ways.
(b) h_F1-score for SE-RelationNet and its control networks after training in four ways.

Figure 12 shows that in the one-shot learning task, the mean_F1-score of both the
SiameseNet and the ProtoNet is less than 0.7, while the SE-RelationNet is higher than 0.8.
The lower h_F1-score of the SiameseNet and the ProtoNet indicates that they have higher
stability; in the one-shot learning task, the SE-RelationNet has higher accuracy and lower
stability. In the few-shot learning task with K > 1, the SE-RelationNet has higher accuracy
and lower stability, but its stability gets significantly improved as N increases.

The trend of F1-score with epoch for the three models is plotted in Figure 13 under
4-way 1-shot and 4-way 4-shot training methods. Regardless of the training method, the
ProtoNet can reach convergence after very few training rounds, while the SiameseNet and
the SE-RelationNet need more than 100 training rounds to converge.

Figure 13. Trend of F1-score with epoch using different training methods for three models.
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6. Conclusions
In this paper, we propose an electronic nose based on SE-RelationNet for identifying

COPD patients by analyzing their breath samples when the number of labeled samples is
limited. SE-RelationNet consists of an embedding module and a metric module, and we
conducted several ablation experiments on its structure to optimize its performance. The
results showed that using a 5-layer residual block and a BiGRU block with one hidden layer
as the metric module achieved the highest accuracy and stability. Compared to SiameseNet
and ProtoNet, our model demonstrated superior performance, achieving a mean accuracy
of 93.3% in 4-way 4-shot tasks and outperforming SiameseNet by 15.2% in F1-score under
one-shot conditions.

However, two limitations require attention:

(1) Cross-device generalizability: While SE-RelationNet reduces sensor dependency
(Sections 2.1 and 2.2), performance fluctuations occur when meta-training/meta-
testing sensor arrays differ significantly (h_accuracy ≤ 0.010 in Table 7).

(2) Clinical-scale validation: Current validation used curated public datasets. Real-world
clinical trials with diverse patient cohorts are needed to assess robustness against
comorbidities like asthma or pneumonia.

Future work will focus on:

(1) Extending the model to multi-class COPD severity detection (mild/moderate/severe)
using VOC profiles, leveraging the COPD-LUCSS risk correlation.

(2) Integrating lung cancer biomarkers (e.g., aldehyde/ketone signatures) into sensor
arrays for joint screening.

(3) Addressing the above limitations through hybrid sensor-fusion algorithms and multi-
center clinical trials.

SE-RelationNet’s relocatability enables researchers to build the e-nose using com-
mon sensor arrays, requiring only minimal breath samples (as few as one per class) for
COPD detection. This facilitates early lung cancer risk stratification in high-risk COPD
populations, ultimately promoting accessible point-of-care diagnostics. To translate COPD
discrimination into lung cancer risk stratification, we propose:

(1) Multi-class COPD subtype detection—Extend SE-RelationNet to classify COPD sever-
ity (mild/moderate/severe) using VOC profiles, leveraging the established COPD-
LUCSS risk correlation.

(2) Biomarker integration—Incorporate lung cancer-specific biomarkers (e.g., alde-
hyde/ketone signatures) into the sensor array, enabling simultaneous COPD/lung
cancer screening.

(3) Hybrid risk modeling—Develop algorithms combining COPD subtypes, biomarkers,
and clinical factors to generate quantifiable risk scores.

(4) Prospective validation—Conduct multi-center trials to validate stratification efficacy
prior to clinical deployment.

(5) This framework bridges the gap between our technology and actionable cancer-
prevention strategies.
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