
Academic Editor: Andy Nguyen

and Yang Yu

Received: 17 June 2025

Revised: 9 July 2025

Accepted: 16 July 2025

Published: 17 July 2025

Citation: Huang, L.; Lu, K.; Zeng, L.

Single-Sensor Impact Source

Localization Method for Anisotropic

Glass Fiber Composite Wind Turbine

Blades. Sensors 2025, 25, 4466.

https://doi.org/10.3390/s25144466

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Single-Sensor Impact Source Localization Method for
Anisotropic Glass Fiber Composite Wind Turbine Blades
Liping Huang 1, Kai Lu 1 and Liang Zeng 2,*

1 School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China;
lipinghuang@xust.edu.cn (L.H.); kailu@stu.xust.edu.cn (K.L.)

2 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
* Correspondence: liangzeng@mail.xjtu.edu.cn

Abstract

The wind turbine blade is subject to multi-source impacts, such as bird strikes, lightning
strikes, and hail, throughout its extended service. Accurate localization of those impact
sources is a key technical link in structural health monitoring of the wind turbine blade. In
this paper, a single-sensor impact source localization method is proposed. Capitalizing on
deep learning frameworks, this method innovatively transforms the impact source localiza-
tion problem into a classification task, thereby eliminating the need for anisotropy com-
pensation and correction required by conventional localization algorithms. Furthermore,
it leverages the inherent coding effects of the blade’s material and geometric anisotropy
on impact sources originating from different positions, enabling localization using only a
single sensor. Experimental results show that the method has a high localization accuracy
of 96.9% under single-sensor conditions, which significantly reduces the cost compared to
the traditional multi-sensor array scheme. This study provides a cost-effective solution for
real-time detection of wind turbine blade impact events.

Keywords: acoustic emission; source localization; deep learning; wind turbine blades;
single sensor

1. Introduction
The turbine blades serve as the key component for efficient wind energy capturing.

In the pursuit of cost reduction and efficiency enhancement, the design of blades has
evolved to adopt a larger and lighter configuration, thereby concomitantly increasing their
complexity [1,2]. At present, the construction cost of blades constitutes approximately 20%
of the total cost of a wind turbine. Meanwhile, the blade failure accounts for 30–40% of total
wind turbine failures [3–5]. This is attributed to the complex structural characteristics and
harsh operating environments (e.g., lightning strikes, hailstorms, and foreign body impacts)
of wind turbine blades. Such environments render blades susceptible to non-structural
damage, including coating failure and leading-edge corrosion, as well as structural damage,
such as composite layer failure, adhesion failure, and tip/root damage [6–8]. Therefore, it
is imperative to accurately localize the impact source and designate damage-sensitive areas
to ensure the safe operation of wind turbine blades.

For impact source localization, strain sensing methods are constrained by inherent
bandwidth limitations, impeding effective analysis of high-frequency impact transient
responses [9,10]. Ultrasonic detection methods face challenges in the real-time localization
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of impact sources due to the inherent conflict between preset excitation modes and the ran-
dom characteristics of impact events [11–13]. In contrast, acoustic emission (AE) technology
may be a promising candidate, as it can timely capture the stress waves in a wide frequency
range and accurately localize the impact source [14–19]. However, the AE technique faces
the challenge that its trigger threshold mechanism results in the loss of absolute signal
delay information. This has led to the common adoption of the time difference of arrival
(TDOA) method for signals received from several sensors at different spatial locations in
existing studies [20–23]. This method establishes hyperbolic equations by converting the
time difference into distance difference to finally obtain the source location. However, it is
noted that a known wave velocity in all directions is required.

Consequently, a number of enhanced methodologies have been proposed. Al-Jumaili
et al. [24] employed the Delta T method to create a training map using artificial sources in a
specific region, and determined the AE source location through a clustering algorithm and a
“minimum difference” method. Bhandari et al. [25] constructed a model based on empirical
data that leverages a response surface developed from critical parameters (e.g., velocity
variation, attenuation rate, distance from the sensor to the source, and fiber orientation)
to update velocity data. Jones et al. [26] proposed a Bayesian source localization strategy,
in which the source position is learned with respect to the corresponding arrival times
of multiple sensors. Zhou et al. [27] employed 16 piezoelectric sensors and proposed a
constrained total least squares (CTLS) method for jointly estimating the acoustic emission
source and the wave velocity using TDOA measurements. Sikdar et al. [28] utilized eight
AE sensors to obtain the response and dispersion characteristics of acoustic emission in a
sandwich composite structure. Those methods can yield precise localization outcomes in
anisotropic mediums; however, the deployment of multiple sensors concomitantly elevates
the structural health inspection system’s complexity and expense.

Deep learning has significant advantages in learning the propagation characteristics
of acoustic waves in non-uniform media through multi-layer convolutional neural net-
works [29–31]. It could eliminate the need for manual definition of acoustic velocity tensor
parameters in anisotropic materials, and further, its hierarchical structure progressively ex-
tracts complex information from raw AE signals [32–34]. Thus, it may provide a promising
candidate for impact source localization in complex mediums, e.g., wind turbine blades.

In this paper, a deep learning-based single-sensor impact localization method is pro-
posed for the objective of reducing the sensor elements while retaining the localization
precision. This method is distinct from prior techniques that necessitate the reduction
or elimination of anisotropy through velocity compensation. Its innovation lies in the
transformation of geometry complexity and material anisotropy characteristics into po-
sitioning advantages, thereby enabling single-sensor impact localization. The rest of the
paper is organized as follows: Section 2 introduces the methodology. Section 3 describes
the experimental setup in detail, including wind turbine blade spar specimens, sensor
configuration, data acquisition, and experimental signal processing. Section 4 presents
the localization results, error analysis, and comparative studies with alternative feature
combinations. Finally, Section 5 draws the conclusions.

2. Methodology
As demonstrated in Figure 1, the wind turbine blade principally consists of the skin,

the spar, and the webs. The spar constitutes the primary component that provides support
to the wind turbine blade, with its principal function being to resist wind loads and serve
as the principal load-bearing structure. It is a pivotal component in determining the overall
performance and stability of the blade. Therefore, subsequent studies will focus on the spar
of the wind turbine blade.
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Figure 1. Wind turbine blade structures.

The spar is distinguished by its variable cross-sections, anisotropy, and material inho-
mogeneity, which collectively engender a high degree of complexity in the propagation of
acoustic emission signals within it. These structural characteristics result in the manifesta-
tion of diversified propagation characteristics when AE signals transmit from disparate
locations to the sensor. It is evident that disparities in propagation patterns are ultimately
reflected in variations in signal features. The extraction of these signal features, along with
the establishment of their correlation laws with spatial location, has the potential to facili-
tate impact localization with a single sensor and thereby constitute a possible alternative
to traditional sensor array localization methods. To achieve that, this section proposes a
methodology, including two major parts, i.e., feature matrix construction and impact source
localization via EfficientNetV2-S, which transforms the impact source localization problem
into a classification problem. Figure 2 gives the general progression of the method.
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Figure 2. Overall framework of the proposed impact source localization method.
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2.1. Feature Matrix Construction
2.1.1. Frequency-Domain Feature Selection

Firstly, the Fourier transform (FT) is employed, converting the original waveform into
frequency domain,

F(ω) =
∫ ∞

−∞
f (t)e−iωtdt, (1)

where f (t) is the AE signal. Either the real and imaginary parts of F(ω) or the amplitude
and phase of that are able to uniquely and completely characterize the original signal,
thereby ensuring that the information is retained without distortion. As the phase is quite
fragile to measurement noises, the real and imaginary parts are taken as frequency-domain
features. However, those features are extremely redundant. If they are all used for the
model training, it is very time-consuming and unnecessary. Therefore, the key problem
lies in how to effectively compress the data volume of frequency-domain features while
preserving sufficient information for impact localization.

To address this issue, the Kneedle algorithm is introduced, and its steps are given as
follows [35,36]:

(1) F(ω) is rearranged in accordance with the amplitude value of each frequency from
high to low, giving rise to the reordered spectrogram Fs.

(2) Smoothing splines are employed to retain the waveform of the reordered spectrogram
as

F′
s =

{(
x′i , y′i

)
∈ R2∣∣ x′i , y′i ≥ 0

}
, (2)

where F′
s denotes the dataset fit to a smoothing spline of the frequency point x′s and the

corresponding amplitude value y′s.

(3) The points of the smooth curve are normalized as

Dsn = {(xsni , ysni )}, where

xsni =
(x′i−min{x′})

(max{x′}−min{x′}) , ysni =
(y′i−min{y′})

(max{y′}−min{y′}) .
(3)

where Dsn denotes the normalized smoothed data.

(4) The difference curve (i.e., Dd) between the smoothed curve Dsn and the line connecting
its first and last points is calculated, i.e.,

Dd =
{(

xdi
, ydi

)}
, where

xdi
= xsni , ydi

= 1 − ysni − xsni .
, (4)

(5) Local maximum points are identified in the difference curve that correspond to
candidate knee points where the original curve converges to a level;

Dlmx =
{(

xlmxi
, ylmxi

)}
, where

xlmxi
= xdi

,

ylmxi
= ydi

∣∣∣ ydi−1
<ydi

, ydi+1 < ydi
.

, (5)

(6) The dynamic threshold is set upon the sensitivity parameter, designated S, which
serves to ascertain whether the knee point has been attained;

Tlmxi
= ylmxi

− S
n − 1

n−1

∑
i=1

(
xsni+1 − xsni

)
, (6)

where Tlmxi
denotes the threshold for local maxima in the difference curve.
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(7) In the event of a continuous decrease in the data until the next local maximum of
the difference curve is reached and the data falls below the threshold of the current
local maximum, the current local maximum point is recognized as the knee point,
as illustrated in Equation (7). Conversely, if the difference increases, the threshold is
reset to 0 and the next local maximum point is sought.

Kneedle =
{

Dlmxi

∣∣∣Tlmxi
≤ ydj

, dj = lmxi, lmxi + 1, . . . , lmxi+1 − 1
}

, (7)

The numerical value of K denotes the serial number of the relevant Kneedle point in
the original curve. The frequency point exhibiting an amplitude greater than that at the
corresponding frequency of K is determined as G. The frequency components preceding
G are designated as the primary frequency components. This is done by extracting the
real and imaginary parts of the previously obtained frequency. This process enables the
compression of frequency data. Specifically, the extracted primary frequency is designated
as ωp, and the corresponding frequency of the Kneedle point is denoted as ωk.

Fp =
{(

Re
{

F
(
ωp

)}
, Im

{
F
(
ωp

)}) ∣∣ abs
{

F
(
ωp

)}
≥ abs{F(ωk)}

}
. (8)

2.1.2. Time-Domain Feature Selection

Similarly to the frequency-domain features, the original time-domain signals also
contain a substantial number of discrete data points, and direct processing results in an
exponential increase in computational complexity. To address this issue, time-domain
one-dimensional pooling is applied to compress the original long sequence signal into a
compact sequence. It could reduce the data dimensionality by statistical aggregation (e.g.,
mean, maximum, etc.) of local regions of the signal, while preserving the main time-domain
features of the signal (e.g., arrival time, waveform characteristics, etc.) [37].

Mean pooling is able to better reflect the overall trend of the region by averaging the
local area, while having a better smoothing effect [38]. Its mathematical expression is

Tpi =
1
m

i·s
∑

(i−1)s+1
f (t), i = 1, 2, . . . , H, (9)

where Tp is the pooled time-domain signal; s is the pooling step size; m is the pooling
window size; f (t) is the original time-domain signal.

H is the length of the pooled signal and N is the length of the signal. The calculation
formula is,

H =

[
N − m

s

]
+ 1, (10)

The implementation of the average pooling method results in the weakening of the
transient information contained within the acoustic emission signal. However, the integra-
tion of the frequency-domain characteristics can facilitate the consideration of both global
trends and local mutations. This, in turn, provides the feasibility of real-time localization of
the impact source based on acoustic emission.

2.1.3. Feature Matrix Construction and Grayscale Map Transformation

In the construction of the feature matrix, a multi-feature fusion method is employed
in order to ensure full utilization of the frequency- and time-domain information of the
signal. Specifically, the real parts of frequency-domain features determined by (8) are used
as the first part of the matrix, the imaginary ones are used as the second part, and the
time-domain one-dimensional average pooling of the signal is taken as the third part. It is
ensured that the weights of the three parts are consistent. This construction method has
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been demonstrated to preserve the frequency-domain characteristics of the signal (through
the real and imaginary parts) whilst simultaneously extracting the main trends in the time
domain (through the average pooling operation). The formation of a comprehensive feature
matrix provides a rich information base for the subsequent generation of a grayscale map
and neural network classification.

In this study, the grayscale map is constructed for visualizing one-dimensional signal
feature data and extracting features as an input. The generation process contains two key
steps.

Firstly, the 1D signal feature data after multi-feature fusion is converted into matrix
form. Specifically, the matrix M is constructed as follows:

M =
{{

Re
{

F
(
ωp

)}}
,
{

Im
{

F
(
ωp

)}}
, {Tp}

}
. (11)

Secondly, the matrix element values are linearly mapped to the 0–255 grayscale interval
by the grayscale mapping algorithm.

M′
i,j =

Mi,j − Mmin

Mmax − Mmin
× 255, (12)

where Mmin and Mmax are the minimum and maximum values in the matrix, respectively,
and M’ is the normalized matrix.

The matrix M’ is then mapped to a grayscale image, where each element of the matrix
corresponds to a pixel value in the resulting grayscale map. Subsequently, this grayscale
image is utilized as input to the deep learning network.

2.2. Impact Source Localization via EfficientNetV2-S
2.2.1. Deep Learning Model Selection

The EfficientNet model is selected for impact source localization, whose core feature is
the combination of compound scaling and depthwise separable convolution (DW Conv),
thereby enhancing the model’s performance through lightweight design and efficient
feature extraction [39]. In this section, the mechanism of DW efficient convolution and its
synergy with composite scaling will be briefly explained.

The objective of composite scaling is to optimize the scaling of the three dimensions of
the network in a synergistic manner. Depth is defined as the number of network layers, and
increasing the depth would enhance the nonlinear representation of the network. Width
is defined as the number of channels per layer, and increasing the width improves the
richness of the feature maps but significantly increases the computational effort. Resolution
is defined as the size of the input image, and increasing the resolution helps to capture
detailed features but consumes more memory. The three dimensions should be scaled
concurrently at a constant ratio to attain a balance between optimal performance and
computational efficiency [40]. Its mathematical form is

Depth : d = αϕ, Width : w = βϕ, Resolution : r = γϕ (13)

where α, β, γ are the base scaling factors for each dimension and ϕ is the global scaling
factor. The optimal scaling α·β2·γ2 ≈ 2 is determined by grid search to ensure that the
amount of computation grows linearly with ϕ.

Due to the limited arithmetic power, the implementation of the composite scaling
approach requires an efficient convolution approach. Depth separable convolution extracts
spatial features by depth convolution and extracts channel features by point-by-point con-
volution, thereby reducing the computation significantly. It is divided into two steps, i.e.,:

Step 1. Depthwise Convolution
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Each input channel is spatially filtered independently, using a single-channel convolu-
tion kernel with the same number of input channels. The computation is H × W × C × L
× L, where H × W is the feature map resolution, C is the number of input channels, and L
is the convolution kernel size.

Step 2. Pointwise Convolution
The number of output channels is adjusted using a 1 × 1 convolutional kernel cross-

channel fusion features. The computation is H × W × C × C′, where C′ is the number of
output channels. The standard convolution is computed as H × W × C × C′ × L2, and
the total computation of the depth-separable convolution is only 1/L2 + 1/C′ that of the
standard convolution.

EfficientNetV2-S, as a variant of the second generation of the EfficientNet series,
has been shown to optimize the training speed by reducing redundant modules while
maintaining performance [39]. Its lightweight design of the model effectively avoids the
overfitting risk of traditional depth models in small-sample scenarios. Furthermore, the
multi-scale feature fusion mechanism of the model can adaptively capture the complex
spatial and temporal correlation features derived from the strong anisotropy of wind
turbine blade materials during the propagation process of AE waves.

2.2.2. Impact Source Localization

To achieve impact source localization, the method proposed in this paper integrates
signal feature extraction with deep learning classification models. The following key steps
are to be noted:

(1) Acoustic Emission Signal Acquisition: Capturing the shock-event-triggered wide-
frequency-domain stress wave signals via a single PZT sensor;

(2) Feature Extraction: Involving the use of Fourier transform to extract the real and
imaginary components in frequency domain, and the compression of time-domain
signals by average pooling to preserve their arrival delays and waveform features;

(3) Grayscale Map Transformation: Involving the integration of frequency-domain and
time-domain features into a two-dimensional matrix, and then that matrix is normal-
ized and mapped to a 128 × 128 grayscale image;

(4) Model Training and Classification: The grayscale map is to be entered into the
EfficientNetV2-S model, with the resultant probability distribution of 64 regions
being outputted through the Softmax layer. This completes the classification and
identification of the location of the impact source.

The process establishes the mapping relationship between acoustic emission signal
features and spatial location through a data-driven approach, thus avoiding the dependence
on wave velocity and medium isotropy of traditional methods. As illustrated in Figure 3,
the complete flow from the original signal to the result of the localization is visualized, thus
providing a framework for subsequent experimental validation.
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Figure 3. Detailed steps of impact source location.

3. Experiments
3.1. Experimental Setup

To verify the capability of the proposed single-sensor impact source localization
method, experiments are conducted on a wind turbine blade spar specimen. As shown in
Figure 4, the spar constitutes a heterogeneous structure composed of glass-fiber reinforced
plastic (GFRP) and foam (i.e., Figure 4b). The specimen’s chord length is measured as
600 mm, the width is 570 mm, while the cross-section varies continuously from one end
to the other, e.g., the thickness increases from 34 mm to 40 mm. The monitoring area is
subdivided into 64 regions; each has the dimensions of 40 mm × 40 mm (see Figure 4c).
The impact is simulated by Φ5 mm steel ball falling freely. The AE signals are captured by a
single PZT and recorded by a Tektronix DPO5054B oscilloscope (Tektronix, Inc., Beaverton,
OR, United States) with a sampling frequency of 2 MHz and a data length of 10,000 points.
Each region is subjected to 15 random impacts of the ball. A total of 960 experimental
signals are generated by traversing all 64 regions.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

320mm Sensor

Foam

Foam

GFRP

(a) (b) (c)

Figure 4. Experimental setups: (a) front of specimen, (b) cross-section, and (c) schematic diagram of
grid division.
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3.2. Experimental Data Processing

For illustration, Figure 5 displays the time-domain waveforms of AE signals as the
ball drops into regions 1, 19, 37, and 56, respectively. To demonstrate the process of feature
extraction, the AE signal of region 56 is taken as an example.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(ms)

region 1

region 19

region 37

region 56

Figure 5. Time-domain waveforms of AE signals collected from different regions.

Firstly, Fast Fourier Transform (FFT) is employed, converting the time-domain signal
into frequency domain. Then, the amplitude spectrum is calculated and displayed in
Figure 6.
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0.02
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m
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itu
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(d

B
)

Figure 6. Frequency spectrum of AE signal in region 56.

Kneedle algorithm (Section 2.1) is utilized for automatic identification of the demar-
cation point between primary and secondary frequencies in the amplitude spectrum, e.g.,
Figure 6. This process involves the retention of the primary frequencies and the compres-
sion of data. As the value of sensitivity S determines the K value obtained by the Kneedle
algorithm, it is essential to determine S in advance. If S is set too low, the algorithm exhibits
excessive sensitivity, resulting in high variance. As S increases, the algorithm becomes more
conservative. The choice of S has been extensively discussed in [35]. Based on its findings,
Kneedle algorithm achieves the best results as S is set to 1. Therefore, this parameter value
is also taken for subsequent analyses of this study.

Subsequently, the amplitude spectrum A(f ) is sorted by amplitude from high to low
in order to obtain the rearranged amplitude list A(fr) and the corresponding frequency
list fr; see Figure 7a. After that, the data is smoothed and then normalized by using
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Equation (3) to ensure that the horizontal and vertical coordinates of A(fr) are in the range
of 0–1. Substituting A(fr) and fr into Equation (4), the difference curve could be constructed.
Finally, Equations (5)–(7) are used to calculate the knee point, with the sensitivity S taking
1. The result is displayed in Figure 7a, where the knee point appears at the 108nd point
in the sorted amplitude spectrum, i.e., A(fr) = 0.00369 V and K = 108. Subsequently, the
maximum frequency point with an amplitude of 0.00369 V is identified in Figure 7b, and
the G index is determined as 130.

Kneedle
(108,0.000369)

  
(a) (b) 

Figure 7. Amplitude ranking distribution of region 56: (a) amplitude plots sorted from largest to
smallest, (b) feature point selection.

By the same way, the K values for all 960 experimental signals are obtained; see
Figure 8. The mean value of K (i.e., 97) and the corresponding G (i.e., 102) is taken for the
extraction of the primary frequency components. The real part Re(f_k) and the imaginary
part Im(f_k) of the complex spectrum corresponding to each primary frequency are saved
separately.

 

Figure 8. Knee point distribution across all 960 experimental signals (S = 1).

In accordance with the G value (i.e., 102), the input image size of EfficientnetV2-s model
takes 128 × 128, with the smallest integer multiple of 128 being selected for p = 1 as 128 × 1
> 102. Subsequently, the real parts of the 102 primary frequency points are arranged into
one row (128 points per row), padding the remaining positions with zeros. The imaginary
parts are then treated in the same way. This constitutes a 2 × 128 frequency-domain feature
matrix. The sequence of events in this section is illustrated in Figure 9.
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Figure 9. Frequency-domain feature extraction process.

For time-domain feature extraction, the average pooling method is applied to the
original time-domain signal with the step length and window length both taking 20. As
the original AE signal contains 10,000 data points, the length of the pooled signal could be
calculated from Equation (10) as 500. In this case, the length of the time-domain features,
Lt, takes 128 × 4 = 512 > 500, with 12 additional zeros appended to its end; see Figure 10.
The time-domain feature length is then reorganized into a 4 × 128 feature matrix.

Figure 10. The time-domain signal related to region 56 after one-dimensional average pooling.

To ensure the consistency of the weights of frequency-domain features and time-
domain features, it is necessary to ensure that the length of the frequency-domain features
is equivalent to that of the time-domain features. Hence, the real and imaginary parts
in Figure 9 are duplicated separately, thereby expanding the frequency-domain feature
matrix (i.e., the left part of Figure 11). After that, the frequency-domain feature matrix and
the time-domain feature matrix are spliced vertically into an 8 × 128 feature matrix and
stretched vertically so that the grayscale image has a size of 128 × 128, as illustrated in
Figure 11. That grayscale image is the input to the neural network, i.e., EfficientnetV2-S.

a1

a1

b1

b1

a2

a2

b2

b2

a3

a3

b3

b3

…

…

…

…

a127

a127

b127

b127

a128

a128

b128

b128

Time-domain characteristic matrixFrequency-domain feature matrix

c1

c129

c257

c385

c2

c130

c258

c386

c3

c131

c259

c387

…

…

…

…

c127

c255

c383

c511

c128

c256

c384

c512

128 128

Grayscale imaging 4 128p× ×

 
Figure 11. Feature matrix to grayscale map.

4. Results and Discussions
4.1. Impact Source Localization via the Proposed Method

The 960 experimental signals collected from the experiments are divided into training,
validation, and test sets in a ratio of 11:2:2, while ensuring that the number of categories is
consistent across each dataset. The grayscale images within the training set are utilized for
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EfficientnetV2-S model training, with the parameters for that model listed in Table 1. An
incremental learning strategy is employed which is capable of adapting the regularization
according to the dimensions of the image. During the initial stage of straining, the network
is first exposed to images of reduced size and with weak regularization, then the image size
is increased and stronger regularization is introduced. The initial model parameters are as
follows: the image size is set to 0, the random augmentation is set to 5, the Mixup alpha
is set to 0, the dropout rate is set to 0.1, the learning rate is set to 0.001, and the RMSProp
optimizer has decay of 0.9 and momentum of 0.9. The model has been trained for a total of
300 epochs, with a batch size of 32 and a total batch size of 832. For illustration, Figure 12
gives the model training process as the grayscale image in Figure 11 is taken for input.

Table 1. Parameters for EfficientNetV2-S model.

Stage Operator Stride Channels Layers Kernel_Size

0 Conv 2 24 1 3
1 Fused-MBConv1 1 24 2 3
2 Fused-MBConv4 2 48 4 3
3 Fused-MBConv4 2 64 4 3
4 MBConv4 2 128 6 3
5 MBConv6 1 160 9 3
6 MBConv6 2 256 15 3
7 Conv&Pooling&FC - 1280 1 1

  
(a) (b) 

Figure 12. Model training process: (a) correctness curve, (b) loss curve.

To discuss the effects of time- and frequency-domain features on localization perfor-
mance, four feature combination schemes are considered. Specifically, in scenarios 1 and 2,
the construction of the grayscale map is constructed by the real part and imaginary part
in frequency domain, respectively. In scenario 3, both real and imaginary parts are used,
thereby preserving the frequency features. In scenario 4, besides the frequency features,
the time-domain average pooled features are also incorporated. To ensure fairness, except
for the features used, the training set division, model architecture, and hyperparameter
settings are all the same. The comparison of performance under the four feature combi-
nation schemes is presented in Table 2. For scenarios 1 and 2, the accuracies of the test
sets are only 68.8% and 75.8%, respectively, indicating that it is difficult to capture the
spatial coding characteristics of the signal by using either the real or imaginary part alone.
In scenario 3, the fusion of real and imaginary parts has been demonstrated to obviously
enhance the accuracy of the test set to 86.7%. This outcome validates the efficacy of integral
frequency-domain features in enhancing the model’s capacity to differentiate different
regions. The incorporation of time-domain pooling features in scenario 4 enhances the ac-
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curacy of the test set to 96.9%, thereby demonstrating that the supplementary time-domain
features augment the model’s sensitivity to impact source locations. In addition, statistics
are conducted on cases of inaccurate positioning and the results are also listed in Table 2.
Xerror and Yerror denote the localization errors of the inaccurate cases in the x-coordinate
and y-coordinate, respectively. It can be seen that most of the misclassified cases in scenario
4 locate the impact source into its adjacent region, i.e., Xerror ≤ 1 and Yerror ≤ 1.

Table 2. Localization accuracy and statistics of misclassified cases under different feature combinations.

Feature Combinations
Localization

Accuracy
Statistics of Misclassified Cases

Xerror ≤ 1 & Yerror ≤ 1 Xerror > 1 or Yerror > 1

Real part only 68.8% 16 24
Imaginary part only 75.8% 11 20

Real + Imaginary parts 86.7% 8 9
Real + Imaginary parts

+ Time domain features 96.9% 3 1

4.2. Error Analysis

In this section, only the fourth scheme is considered. In that case, among the 128 sam-
ples in the test set, only 4 are misclassified, achieving an impact localization accuracy of
96.9%. Figure 13 shows the localization results of all 128 samples. In this figure, black dots
represent the true class labels of the samples. Green circles centered on these dots indicate
classifications correctly predicted by the proposed method. The four red circles offset
from their respective black dots (i.e., those connected to red circles via blue dashed lines)
denote misclassified samples, with their positions identifying the algorithm-predicted class
regions. Table 3 lists the related localization errors in x-coordinate and y-coordinate. Three
of them are positioned adjacent to the correct positions, resulting in a maximum deviation
of one grid unit in either the x or y coordinate. The reason for this misclassification may be
illustrated by Figure 14. In the experiment, although the monitoring area was divided into
64 regions, the landing location of the ball within each region is random. Consequently,
it is possible that during one trial in the test set, even though the ball lands within region
54, its landing point might actually be closer to a landing point from a trial in the training
set that occurred in region 55. This could cause its signal characteristics to be classified as
belonging to region 55.

Table 3. Results of localization errors.

Actual Region Predicted Region Xerror Yerror

1 3 2 0
54 55 1 0
55 63 0 1
56 64 0 1
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actual Correct prediction errorPrediction error

 

Figure 13. Localization results of the four misclassified samples.

54 55

Test point = Region 54, but D1>D2 

Training point Test point

 

Figure 14. An example illustrates the reason for misclassification.

It is noteworthy that all localization results exhibiting only one grid error may be
regarded as accurate. The reason may be twofold. Firstly, in the actual testing process,
when conducting a detailed inspection of suspected damaged areas, the inspection scope
is often appropriately expanded to the surrounding adjacent areas. Secondly, the error of
this method is measured in grid units. As the grid division is refined, this spatial error
decreases accordingly, making the advantage of this regional localization method more
prominent. Although, this operation will inevitably increase the size of the training model
and the time of sample data acquisition.

Ultimately, the experimental results indicate that the combination of frequency-domain
features and time-domain features fully characterizes the variable cross-sectional geometric
configuration and anisotropic material properties of wind turbine blades. In addition, the
proposed impact source localization method could achieve a high localization accuracy
with a single sensor, demonstrating its good applicability and application prospects.
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5. Conclusions
This paper proposes a single-sensor impact source localization method based on Effi-

cientNetV2. The method leverages the complex geometric configuration and the anisotropic
material properties of wind turbine blades, thereby ensuring that AE signals from impact
sources at different locations exhibit unique spatial coding characteristics. Combined with
deep learning tools, it achieves high-precision regional localization. Some conclusions are
drawn as follows:

(1) If features in both frequency and time domains are exploited, a 96.9% localization
accuracy is achieved, and there is only one sample in the test set that produces
a localization error be larger than one grid, demonstrating the effectiveness and
accuracy of the proposed method.

(2) The method converts the impact source localization problem into a classification task.
Its spatial localization accuracy depends on the granularity of region division—the
finer the division, the smaller the localization error.

(3) The method achieves precise localization of impact sources on wind turbine blade
structures without requiring prior knowledge of wave velocity, imposes no restrictions
on material properties, and utilizes only a single sensor. It may provide an economic
yet efficient monitoring solution for wind turbine blades.

(4) The current validation is limited to single impact events. Performance under simul-
taneous multi-impact events requires further investigation due to potential signal
superposition effects. In addition, while the method imposes no material restrictions
theoretically, its performance on other composite materials (e.g., carbon fiber blades)
remains untested.
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