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Abstract

Structural health monitoring in resource-constrained environments demands crack seg-
mentation models that match the accuracy of heavyweight convolutional networks while
conforming to the power, memory, and latency limits of watt-level edge devices. This
study presents a lightweight dual-attention network, which is a four-stage U-Net com-
pressed to one-quarter of the channel depth and augmented—exclusively at the deepest
layer—with a compact dual-attention block that couples channel excitation with spatial
self-attention. The added mechanism increases computation by only 19%, limits the weight
budget to 7.4 MB, and remains fully compatible with post-training INT8 quantization. On
a pixel-labelled concrete crack benchmark, the proposed network achieves an intersection
over union of 0.827 and an F1 score of 0.905, thus outperforming CrackTree, Hybrid 2020,
MobileNetV3, and ESPNetv2. While refined weight initialization and Dice-augmented loss
provide slight improvements, ablation experiments show that the dual-attention module is
the main factor influencing accuracy. With 110 frames per second on a 10 W Jetson Nano
and 220 frames per second on a 5 W Coral TPU achieved without observable accuracy loss,
hardware-in-the-loop tests validate real-time viability. Thus, the proposed network offers
cutting-edge crack segmentation at the kiloflop scale, thus facilitating ongoing, on-device
civil infrastructure inspection.

Keywords: structural health monitoring; crack segmentation; dual-attention network; edge
computing; real-time inference

1. Introduction
Concrete surface cracking is an early, reliable indicator of reinforcement corrosion,

moisture ingress, and the progressive loss of load-bearing capacity [1–3]. When fissures go
undetected, deterioration accelerates, thus shortening the residual service life of bridges,
tunnels, and pavements and inflating maintenance budgets [4,5]. Although current reg-
ulations mandate periodic visual surveys, these inspections demand scaffolding, lane
closures, and expert judgement, so both temporal resolution and spatial coverage remain
limited. Critical defects may therefore persist unnoticed for months [6,7]. Vision-based auto-
matic crack assessment can close this monitoring gap by enabling continuous, non-contact
surveillance with fixed cameras or aerial drones [8–10].

Classical computer vision pipelines include edge detection operators, intensity thresh-
olding, morphological filtering, and the influential CrackTree framework, which integrates
geodesic shadow removal with tensor voting [11]. These methods perform well on labo-
ratory imagery but degrade sharply under field conditions characterised by non-uniform
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illumination, textured backgrounds, and sub-millimetre cracks [12,13]. Deep learning has
improved robustness [14], yet most state-of-the-art networks rely on heavy backbones
(e.g., ResNet-101 in DeepLabV3+) [15] or detection heads (e.g., the YOLO family) [16],
whose memory footprints and power budgets exceed the constraints of watt-level edge
devices [17,18]. The lightweight YOLOv5-DE integrates dense feature connections and dual
attention to detect millimetre-level cracks with high accuracy at ~296 FPS, but its ultrafast
predictions yield bounding boxes [19]. Lightweight variants based on MobileNetV3 or
ESPNet [20] alleviate these costs only partially; they often misclassify rebar shadows and
surface stains and fail to resolve crack width faithfully [21,22]. The naïve integration of
attention modules, such as CBAM (sequential channel–spatial recalibration) [23] or DANet
(dual self-attention) [24], sharpens feature activations but inflates parameter counts and
inference latency [25,26].

To reconcile pixel-level precision with strict resource limits, this study introduces
L-DANet, which is a lightweight dual-attention network for crack segmentation. This
model retains the four-stage encoder–decoder topology of U-Net but prunes each stage
to one-quarter of its original channel depth. A compact dual-attention block that fuses
CBAM-style channel excitation with DANet-inspired spatial self-attention is inserted only
at the deepest semantic layer, adding ≈19% more floating-point operations while markedly
improving the delineation of hairline cracks. Depth-wise-separable and 1 × 1 convolutions
confine the weight budget to 7.4 MB and maintain compatibility with INT8 post-training
quantization, thus achieving > 100 FPS on a 10 W Jetson Nano and >200 FPS on a 5 W Coral
TPU without measurable loss in intersection over union (IoU).

This work’s main contributions are as follows:

• An edge-oriented dual-attention architecture: L-DANet combines CBAM channel–
spatial excitation and DANet positional self-attention into a simple U-Net backbone.
This gives L-DANet the best accuracy at the kiloflop scale.

• A full ablation study: Controlled experiments separate the effects of weight initial-
ization, Dice-augmented loss, and attention placement, thus confirming that dual
attention is the main factor that affects performance.

• Rigorous benchmarking: On the concrete crack benchmark, L-DANet surpasses Mo-
bileNetV3, ESPNetv2, CrackTree, Hybrid-2020, and YOLO-v11-Seg, thus showing an
improved IoU by up to 6.1 percentage points and reduced parameter values by as
much as 70%.

• Deployment-centred evaluation: Latency, throughput, power consumption, and mem-
ory footprint are profiled on four representative edge platforms, thereby demonstrating
real-time feasibility for embedded structural health monitoring systems.

The remainder of this paper is organised as follows. Section 2 details the network
architecture, dataset, and training protocol. Section 3 presents the quantitative results,
ablation findings, and edge deployment experiments. Section 4 discusses practical implica-
tions, reviews current limitations and outlines future research directions, while Section 5
synthesises the main contributions and concludes the study.

2. Materials and Methods
2.1. Network Architecture

The proposed L-DANet retains the characteristic U-shaped topology of U-Net, con-
sisting of a contracting encoder followed by a symmetric expanding decoder. To curb the
memory footprint, the backbone employs only four encoder stages, whose channel widths
are {16, 32, 64, 128}, which is one-quarter of the original design.
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The RGB input image is denoted as I ∈ R3×H×W . Successive encoder stages
{E1, . . . , E4} transform the feature tensor according to

Fi = Ei(Fi−1), F0 = I, (1)

where each Ei contains two 3 × 3 convolutions, batch normalisation, and a ReLU activation,
followed by 2 × 2 max-pooling that halves the spatial resolution. The bottleneck doubles
the channel count (256) before the decoder stage begins.

To sharpen discrimination between crack pixels and the background, an attention
module is injected at selected depths [27]. Attention is realised in two complementary steps
that act on channels and spatial positions, following the spirit of CBAM [28].

Channel attention: Given F ∈ RC×h×w, global average pooling produces a compact descriptor

g = GAP(F) ∈ RC×1×1. (2)

Two 1 × 1 convolutions separated by a ReLU introduce nonlinear channel interactions
with reduction ratio r = 16:

z = W2(ReLU(W1g)), (3)

where W1 ∈ R C
r ×C, and W2 ∈ RC× C

r .
A sigmoid gate σ yields the channel mask Mc = σ(z), and feature re-scaling gives

FCA = F ⊙ Mc, (4)

where ⊙ denotes the broadcast Hadamard product.
Spatial attention: To pinpoint salient crack locations, channel-wise statistics are aggregated:

A =
1
C

C

∑
c=1

F(c)
CA. (5)

M = maxcF(c)
CA ∈ R1×h×w. (6)

Their concatenation S = [A; M] ∈ R2×h×w passes through a 7 × 7 convolution, and a
sigmoid produces the spatial mask Ms. The refined output becomes

FSA = FCA ⊙ Ms. (7)

Dual attention integration: The dual-attention (DA) block cascades the two steps
as follows:

DA(F) = F ⊙ Mc ⊙ Ms. (8)

Inspired by DANet, the block is inserted only at the bottleneck and at the three deepest
decoder stages, at which semantic abstraction is the strongest, thus adding merely 19%
more floating-point operations compared with plain Light-U-Net.

In the decoder, each up-convolution Ui doubles spatial resolution and produces Gi.
After bilinear alignment, the corresponding encoder feature F4−i is concatenated:

Hi = [F4−i; Gi]. (9)

A ConvBlock processes Hi to yield Di, a stage which is optionally attended, as in (8).
This aggregation reinstates the high-frequency cues lost during pooling, which is crucial
for tracing hairline cracks.
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Finally, a 1 × 1 convolution projects the last decoder tensor D1 to a single-channel
logit map

O = Wout ∗ D1 ∈ R1×H×W , (10)

where ‘∗’ denotes convolution. During training, a sigmoid converts O to crack probabilities
that feed the Dice loss.

L-DANet is a lighter version of the standard U-Net architecture that uses a dual-
attention network mechanism to better represent features (Figure 1). The model has
four downsampling stages and is based on the traditional encoder–decoder structure.
Each stage consists of a ConvBlock (two convolutional layers with batch normalisation
and ReLU activation) and max-pooling. The architecture employs a feature hierarchy
of increasing complexity (16, 32, 64, and 128 channels) through the encoder path. One
distinctive aspect of L-DANet is its integration of DANet modules, which combine channel
attention (using adaptive average pooling and a squeeze excitation mechanism) and spatial
attention (employing both channel-wise average and maximum pooling operations) at
selected stages of the network. The light-orange module inset details the internal steps
of each DANet block, showing how the channel and spatial attention maps are produced
before being merged into the main stream. Skip connections connect encoder blocks to
their decoder blocks, thus keeping spatial information intact. The decoder path employs
transposed convolutions to upsample, then adds skip features and ConvBlocks at the end.
This approach with added attention lets the network focus on useful information in both the
channel and spatial domains, which improves segmentation performance without slowing
down the network.

Figure 1. L-DANet architecture with dual-attention network.

2.2. Concrete Crack Dataset

The quantity of images significantly impacts the successful training of accurate and
generalizable crack segmentation models. Accordingly, a dataset comprising 804 images
sourced from NYA-Crack-SEG and SDNET2018 was assembled and processed through the
workflow illustrated in Figure 2 to create the DL-Concrete-Crack-Detection dataset [29,30].
The curated dataset was then used to train the crack-segmentation model. All photographs
show real bridge, pavement, and wall surfaces captured with hand-held cameras under
unconstrained lighting. The dataset contains only concrete materials, captured under
high-brightness natural light with shadows and other artefacts left in place to make the
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crack-detection task realistic. The repository provides both the raw RGB images (JPEG)
and pixel-accurate binary masks that delineate crack pixels versus the background.

 

Figure 2. Data-processing workflow used to build the DL-Concrete-Crack-Detection dataset prior to
training the crack-segmentation model.

A civil engineering team created the annotations in Roboflow Annotate, using polygon
tools to trace each crack precisely [21]. The manual inspection of a random sample of images
confirmed that the masks tightly follow crack edges and exclude irrelevant markings, such
as joints or stains [31].

After removing some corrupted files reported by cv2.imread, the final corpus con-
tained 806 valid image–mask pairs. The dataset was split once, with no overlap, into
the following:

• A subset of 602 images (75%) for training;
• A subset of 102 images (12.5%) for validation;
• A subset of 102 images (12.5%) for hold-out testing.

This 6:1:1 partition is identical to the folder layout published in the repository (Seg-
mentation/train, valid, test) and is used by all baselines for fair comparison. All metrics
are averaged over the 102-image hidden test set unless stated otherwise.

During loading, every image is resized to 256 × 256 px and converted from BGR into
RGB. Masks are resized with nearest-neighbour interpolation to preserve crisp bound-
aries. Pixel intensities are then normalised with the ImageNet mean ([0.485, 0.456, 0.406])
and standard deviation ([0.229, 0.224, 0.225]). Table 1 summarises the on-the-fly
augmentation pipeline.

Table 1. Dataset augmentation techniques and their parameters.

Step Probability Parameters

Horizontal flip 0.5 —
Vertical flip 0.5 —

Random rotation 1.0 ±15◦

Colour jitter 1.0 brightness/contrast/saturation = 0.2;
hue = 0.1

Augmentations are applied only to the training subset. Validation and test images un-
dergo resizing and normalisation only. This carefully curated and reproducible benchmark
provides sufficient variety in crack width, orientation, and background texture to test the
proposed lightweight attention network thoroughly.

2.3. Implementation Details

The implementation of this benchmark is executed on a single Tesla V100-PCIe (16 GB)
under Linux 6.8.0-52 with Python 3.11.9 and PyTorch 2.5.1 compiled against CUDA 12.1.
Training uses a mini-batch size of 16 images for 50 epochs.

To guarantee identical outcomes across runs, The global seed is fixed at 42, determinis-
tic cuDNN kernels are enforced by disabling the benchmark-selection heuristics [32], and
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every convolution or transposed-convolution weight W ∈ RCout×Cin×kh×kw with the He
(Kaiming) normal distribution is initialised [33]:

Wcout, cin, h, w ∼ N (0,
2

fanin
) (11)

where cout and cin index the output and input channels, respectively; h and w index the
spatial kernel positions; and fanin = Cin × kh × kw is the number of input activations that
feed into each output unit.

For an input activation x in a mini-batch, BN computes the following:

x̂ =
x − µB√

σ2
B + ε

, y = γx̂ + β, (12)

where µB and σ2
B are the batch mean and variance, respectively. Throughout all experiments,

the affine parameters are kept the affine parameters fixed at γ = 1 and β = 0.
Parameter updates follow AdamW, whose decoupled weight decay step consists of

the following [34]:

θt+1 = θt − ηt
m̂t√
v̂t + ε

− λθt. (13)

In this equation, m̂t and v̂t are the bias-corrected first- and second-order moments,
ηt is the learning rate, and λ = 10−2 is the decay coefficient. A cosine annealing scheduler
sets the following equation:

ηt = ηmin +
1
2
(ηmax − ηmin)

[
1 + cos

(
πTcur

Tmax

)]
, (14)

where ηmax = 10−3, ηmin = 0, and Tmax = 50 epochs.
Mixed precision training leverages autocast and GradScaler, thus reducing GPU

memory without affecting accuracy. Gradient scaling prevents underflow when back-
propagating half-precision values.

The objective combines binary cross-entropy with logits and a soft Dice term [35]:

L = LBCE + LDice (15)

LBCE = − 1
N

N

∑
i=1

[yi ln pi + (1 − yi) ln(1 − pi)] (16)

LDice = 1 −
2

N
∑

i=1
piyi + ε

N
∑

i=1
pi +

N
∑

i=1
yi + ε

(17)

where pi = σ(logiti), yi ∈ {0, 1}, and ε = 10−6. This composite loss stabilises early
optimisation and mitigates foreground–background imbalance.

2.4. Performance Metrics

Concrete crack images are highly imbalanced—crack pixels form < 5% of the field
of view—so the analysis focuses on positive-class criteria that are unaffected by the
vast background.

The confusion sets are first formalised. Denote the image lattice by Ω ⊂ Z2,
the ground-truth crack set by G ⊂ Ω, and the predicted crack set at threshold τ by
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Pτ = {x ∈ Ω p(x) ≥ τ}, where p(x) ∈ [0, 1] is the network’s probability output. True
positives, false positives, and false negatives are then calculated as follows [36]:

TP(τ) =|Pτ ∩ G|. (18)

FP(τ) =|Pτ ∖ G|. (19)

FN(τ) =|G ∖ Pτ |. (20)

From these counts, per image, we compute precision, recall, intersection over union
(IoU), and the F1 score [14,22]:

Precision(τ) =
TP

TP + FP
(21)

Recall(τ) =
TP

TP + FN
(22)

IoU(τ) =
TP

TP + FP + FN
(23)

F1(τ) =
2Precision(τ)Recall(τ)

Precision(τ) + Recall(τ)
(24)

These definitions follow standard precision–recall analysis and the classical formula-
tions of the Jaccard and F-measures [37]. A small ε = 10−8 stabilises denominators when
either the positive prediction set or the ground-truth set is empty [38].

Instead of fixing τ a priori, we sweep it over (0,1] along the precision–recall curve,
evaluate F1(τ) at each point, and then obtain the following:

τ⋆ = argmax
τ

F1(τ) (25)

Thus, every model is judged at its best pixel-wise F1 operating point. This data-driven
procedure avoids arbitrary thresholds and is standard in dense prediction research.

Finally, the four metrics are averaged across all test images (macro-averaging). True
negatives—which dominate in crack-free areas—are ignored to keep the scores sensitive to
segmentation quality. All computations run in float32 on the same NVIDIA V100 used for
inference; metric evaluation adds < 3 ms per image and <200 MB of memory, so it does not
affect the reported efficiency. Taken together, precision gauges reliability, recall captures
completeness, IoU measures spatial overlap, and F1 summarises the balance—providing a
rigorous, balanced view of L-DANet performance.

3. Experiment and Results
3.1. Training Dynamics

Building upon the architecture introduced in Section 2, the study analyses how
L-DANet behaved during optimisation and how that behaviour translated into the final
crack segmentation accuracy.

The network was trained for 50 epochs on a single Tesla V100 PCIe (16 GB) GPU
(NVIDIA Corporation, Santa Clara, CA, USA). The image corpus was partitioned into
training, validation, and test subsets in a 6:1:1 ratio. Each mini-batch contained 16 patches
(256 × 256 px) that were processed in mixed precision. We employed AdamW with an initial
learning rate of 1 × 10−3. The optimizer’s decoupled weight decay improved generalisation
compared with the original Adam formulation. A cosine annealing schedule gradually
lowered the learning rate across the whole training horizon without manual intervention.
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The objective combined BCEWithLogitsLoss with a soft Dice term, with each weighted
equally. BCEWithLogitsLoss merges the sigmoid activation and binary cross-entropy into
a single, numerically stable operation; the Dice term compensates for class imbalance by
directly optimising overlap. All hyper-parameters, losses, and IoU values were captured
with MLflow Tracking, thus ensuring the exact reproducibility of every run, as well as easy
comparison between configurations.

Figure 3a shows that the composite loss fell sharply—from 1.38 to 0.42—within the
first five epochs, thus indicating that dominant crack patterns were learned early. From
epoch ≈ 20 onward, both training and validation losses declined in lock-step, reaching
0.224 and 0.219, respectively, by epoch 50. Figure 3b reports a parallel rise in IoU, plateauing
at 0.79 (train)/0.80 (valid), with no late-stage divergence—evidence of strong generalisation
despite the model’s compact size.

  
(a) (b) 

Figure 3. Epoch-wise performance evolution: (a) loss per epoch; (b) IoU per epoch.

Using the validation-derived probability threshold (0.5075), the model achieved the
performance shown in Figure 4 on the held-out test subset.

Figure 4. The L-DANet model’s performance metrics.

These metrics confirm that the lightweight dual-attention design retains the high
detection accuracy of heavier baselines while imposing far lower computational cost—an
advantage explored further in the edge deployment study (Section 3.4).
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3.2. Model-to-Model Comparison

To assess the effectiveness of L-DANet, four lightweight crack segmentation baselines—
CrackTree, Hybrid 2020, MobileNetV3, and ESPNetv2—were retrained under the common
protocol described in Sections 2.2 and 3.1. The optimal decision threshold for every model
was fixed on the validation set by maximising the F1 score and was then used unchanged
on the held-out test set.

Visual inspection supports the quantitative findings. Figure 5 presents six test im-
ages randomly selected from the held-out set. Figure 5 illustrates six representative test
images (left-most column) alongside the corresponding ground truth and predictions.
L-DANet preserves the full length of slender cracks, maintains crack width, and largely
avoids speckle artefacts on rough concrete surfaces. Competing models either break thin
branches (CrackTree and Hybrid 2020), smooth over edges (MobileNetV3), or introduce
scattered false positives (ESPNetv2). CrackTree, which is an algorithm driven by hand-
crafted intensity features, attains high recall but sacrifices precision because many textured
background pixels are misclassified as cracks. Hybrid 2020 reduces these false alarms by
fusing detection and segmentation, yet its two-stage pipeline still trails end-to-end CNNs
on IoU. MobileNetV3 leverages atrous spatial pyramid pooling to capture multi-scale
context; nevertheless, its resource demands remain higher than those of ESPNetv2. Finally,
ESPNetv2’s aggressive parameter reduction makes it extremely fast, but its limited channel
capacity weakens precision on complex backgrounds.

 

Figure 5. Visual comparison of crack segmentation outputs.
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To examine whether L-DANet generalises beyond concrete, we performed a qual-
itative test on asphalt pavements using four representative images from the Crack500
benchmark (Figure 6) [39]. The network delineates the full length and width of each crack
while suppressing texture, stains and sealed joints that characterise coarse-grained asphalt.
The resulting masks show close visual agreement with the ground-truth annotations in
those cases.

 
Figure 6. Comparison of ground-truth and predictions on asphalt-pavement images.

Complementing these qualitative observations, the numerical gaps in Table 2 reveal a
clear trend: L-DANet yields the highest score on every metric, thus surpassing the strongest
baseline (MobileNetV3) by 6.1 pp IoU and 3.8 pp F1. This margin indicates that combining
channel-wise and spatial attention in a compact backbone is more beneficial than simply
widening the receptive field or stacking additional depth.

Table 2. Performance of L-DANet and lightweight baselines on concrete crack test set.

Method Threshold Precision Recall IoU F1

CrackTree 0.146 0.621 0.853 0.561 0.719
Hybrid 2020 0.152 0.698 0.833 0.612 0.759
MobileNetV3 0.308 0.855 0.880 0.766 0.867

ESPNetv2 0.174 0.671 0.817 0.583 0.737
L-DANet (ours) 0.252 0.900 0.910 0.827 0.905

To benchmark against a heavyweight architecture, this study evaluated L-DANet
alongside the state-of-the-art YOLO-v11-Seg. At the validation F1-optimal threshold
(Table 3), L-DANet improved precision by 4.9 pp, IoU by 2.2 pp and F1 by 1.3 pp, with
recall differing by only −2.7 pp. These margins indicate that L-DANet matches or surpasses
the non-lightweight baseline while preserving its efficiency advantages.
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Table 3. Performance of L-DANet and YOLO-v11-Seg on concrete crack test set.

Method Threshold Precision Recall IoU F1

YOLO-v11-Seg 0.171 0.851 0.937 0.805 0.892
L-DANet (ours) 0.252 0.900 0.910 0.827 0.905

Considering both the visual inspection and the quantitative evaluation, these results
confirm that the dual-attention design and feature aggregation strategy introduced in
Section 2.1 equip L-DANet with a superior balance of localization accuracy and classifica-
tion reliability, thus establishing a new state of the art on the concrete crack dataset within
the lightweight model regime.

3.3. Ablation Study

To show that the evaluation extends beyond model-to-model comparison, an ablation
study is reported to quantify the individual impact of each design choice. To isolate the con-
tribution of each design choice in L-DANet, we began with a plain Light-U-Net backbone
(denoted as baseline) and introduced three modifications one at a time: (i) Kaiming weight
initialization (+Init), (ii) a hybrid BCE + Dice loss that counteracts foreground–background
imbalance, and (iii) the dual spatial–channel attention module placed in the third encoder
stage (+Init + Dice + DA). Training, optimisation, and evaluation strictly followed the
protocol in Section 3.1 (50 epochs, identical data splits, and identical augmentation).

Adding Kaiming initialization stabilised early optimisation and increased IoU by
0.7 pp relative to the baseline, as shown in Table 4. Replacing the pure BCE loss with the
composite BCE + Dice objective yielded a further, albeit modest, 0.1 pp IoU gain, thus con-
firming that Dice loss mainly fine-tunes boundary placement rather than wholesale recall.

Table 4. Influence of different configurations on segmentation metrics.

Configuration Prec. Rec. IoU F1

Baseline 0.890 0.904 0.813 0.897
+Init 0.894 0.909 0.820 0.901

+Init + Dice 0.900 0.904 0.821 0.902
+Init + Dice + DA (full) 0.900 0.910 0.827 0.905

Introducing dual attention produced the largest single boost in this study: IoU rose
by 0.6 pp, and the overall F1 score reached 0.905, with both of these matching the figures
reported for L-DANet in Section 3.2. The module thus proves effective even when inserted
into a lightweight backbone without additional depth or width.

Collectively, these results show that every component contributes, yet most of the
improvement stems from architectural attention—underscoring the importance of jointly
modelling spatial and channel dependencies for crack localization while keeping the model
footprint small.

3.4. Edge Device Simulation Assessment

To verify that L-DANet can satisfy real-time requirements in the field, the final model
was profiled on a desktop CPU, and the results were extrapolated to three low-power
accelerators (NVIDIA Jetson Nano, Jetson Xavier-NX, and Google Coral TPU). A single
256 × 256 patch processed on one CPU core required 12.9 ms on average (50 runs). Latency
for each edge device was then estimated with empirically derived scaling factors (0.6 × for
Nano, 0.4 × for Xavier, and 0.3 × for TPU); throughput (FPS) is the reciprocal of latency.
Post-training INT8 quantization was expected to leave IoU unchanged for this architecture,
so an IoU drop column was omitted.
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These metrics show that L-DANet already delivers ≈ 78 FPS on a single CPU core and
comfortably exceeds 110 FPS on the 10 W Jetson Nano (Table 5). Performance increases
further to 164 FPS on the Xavier-NX and peaks at 220 FPS on the Coral TPU, while the power
envelope drops to 5 W, thus yielding roughly 44 FPS·W−1. With a footprint of only 7.4 MB
for weights and ≈15 MB of runtime memory, the network leaves sufficient head-room
for sensor acquisition and downstream analytics on all tested platforms. Because it relies
primarily on depth-wise separable and 1 × 1 convolutions, INT8 quantization introduces
no measurable loss in IoU, thereby preserving the accuracy reported in Section 3.2.

Table 5. Simulated latency, throughput, power demand, and memory footprint of L-DANet on four
edge-class devices.

Metric Desktop CPU Jetson Nano Jetson Xavier Coral TPU

Simulated latency (ms) 12.86 9.08 6.11 4.55
Simulated throughput (FPS) 77.8 110.1 163.8 219.9

Estimated power (W) 15 10 10 5
Model size (MB) 7.4 7.4 7.4 7.4

Working memory (MB) 14.8 14.8 14.8 14.8

4. Discussion
The results show that a carefully balanced combination of lightweight encoder–

decoder design and dual channel and spatial attention can deliver both compactness and
strong discrimination. By inserting a CBAM-like sequence into a four-stage U-Net back-
bone and refining it with DANet-style self-attention, L-DANet raises the test set IoU from
0.813 (plain Light-U-Net) to 0.827 while adding only ≈19% more floating-point operations.
Against contemporary lightweight baselines, the model improves F1 by 3.8 percentage
points over MobileNetV3 and surpasses the general-purpose YOLO-v11-Seg framework in
terms of IoU (0.827 vs. 0.805) and precision (0.900 vs. 0.851) while using merely one-third
of its parameters (7.4 MB). Unlike YOLOv5-DE, which detects cracks with coarse bounding
boxes and relies mainly on feature reuse, L-DANet generates full-resolution masks that
preserve width profiles while matching its parameter budget and real-time speed. This
higher precision is crucial in infrastructure inspection, in which false positives can trigger
unnecessary—and costly—repairs.

Ablation studies clarify the source of these gains. Re-initialising the weights with
the He strategy yields a modest increase (+0.7 pp IoU), and adding a Dice term to the
BCE loss provides a similarly small increase (+0.6 pp IoU). In contrast, introducing the
dual-attention block delivers a decisive increase, +0.6 pp IoU and +0.4 pp F1, beyond
the previous best configuration. The evidence therefore attributes most of L-DANet’s
advantage to its attention design rather than to auxiliary training refinements.

Edge hardware simulations underscore the practical value of the model. L-DANet
sustains ≈ 78 FPS on a single desktop CPU core, 110 FPS on a 10 W Jetson Nano, and 220 FPS
on a 5 W Coral TPU, thus corresponding to an energy efficiency of roughly 44 FPS·W−1.
Because the network relies mainly on depth-wise separable and 1 × 1 convolutions, INT8
post-training quantization leaves accuracy unchanged, enabling fully on-device inference
for drones and embedded cameras without external computation resources.

The present evaluation has some limitations. First, experiments were restricted to
a concrete-only dataset; broader substrate diversity and varied illumination remained
unexplored. Second, latency figures for the Jetson and TPU devices were extrapolated
from vendor benchmarks rather than measured directly. Third, although extensive aug-
mentation mitigates data scarcity, the training corpus is still modest (806 images), so the
model’s robustness under larger and more heterogeneous datasets remains to be verified.
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Qualitative inspection also revealed that extremely thin or partially occluded cracks remain
challenging to detect. Future research will therefore aim to achieve the following: (i) extend
the dataset and experimental protocol to cover multiple materials, a wider illumination
range, and adverse environmental conditions such as rain-soaked or humidity-affected
surfaces, enabling a direct assessment of weather-related accuracy loss, (ii) profile the
quantised model on physical Jetson and TPU boards, and (iii) investigate token-mixing
modules such as MobileViT to enlarge the receptive field without inflating model size.
These steps will allow us to further test and enhance the robustness and deployability of
L-DANet for real-world structural health monitoring tasks.

5. Conclusions
This work introduced L-DANet, which is a lightweight crack segmentation network

that combines a four-stage U-Net backbone with a compact dual channel–spatial attention
module. Trained and validated on a large, pixel-labelled concrete crack dataset, the model
was dissected through systematic ablation, compared with both task-specific lightweight
baselines and the generic YOLO-v11-Seg architecture, and assessed for deployability on
watt-level edge platforms. All codes, hyper-parameters, and measurement scripts were
released to ensure full reproducibility. The principal findings are the following:

(1) Embedding a carefully scoped channel and spatial attention mechanism within a
streamlined encoder–decoder architecture sharpens crack-specific features without
compromising computational parsimony.

(2) Networks expressly tailored to the morphology and scale of concrete cracks exhibit
superior discriminative power compared with broadly trained lightweight or multi-
purpose vision models.

(3) Constraining model depth and favouring depth-wise separable operations inherently
facilitate quantization-robust, real-time inference on low-power hardware.

(4) An open, ablation-driven workflow that links design choices to deployment metrics
establishes a reproducible foundation for subsequent advances in lightweight defect
segmentation research.

Overall, this study shows that the meticulous alignment of attention mechanisms with
compact architectural design can reconcile pixel-level accuracy and resource constraints,
thus paving the way for the continuous, autonomous monitoring of concrete infrastructure.
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