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Abstract

The Bearing–Angle algorithm effectively improves the observability of vision-based motion
estimation for moving targets by combining the dimensional information of target detection
frames. However, the robustness of this algorithm will be significantly reduced when
the observation error increases due to sudden changes in the target motion state. To
address this shortcoming, this paper proposes a visual target motion estimation algorithm
called the Dynamic Bearing–Angle, which aims to improve the accuracy and robustness
of target motion analysis in dynamic scenarios such as unmanned aerial vehicle (UAV).
The algorithm innovatively introduces a dual robustness mechanism of dynamic noise
intensity adaptation and outlier suppression based on M-estimation. By adjusting the noise
covariance matrix in real time and assigning low weights to the outlier observations using
the Huber weight function, the Dynamic Bearing–Angle algorithm is able to effectively
cope with non-Gaussian noise and sudden target maneuvers. We validate the performance
of the proposed algorithm with numerical simulations and real sensor data, and the results
show that the Dynamic Bearing–Angle maintains good robustness and accuracy under
different noise intensities.

Keywords: target motion estimation; robustness enhancement; target detection frame jitter

1. Introduction
Vision-based target motion estimation algorithms have gained prominence due to their

cost-effectiveness, high information density, real-time responsiveness, and adaptability to
dynamic environments. Compared with communication-based methods, vision approaches
are inherently immune to electromagnetic interference and require no additional hardware
or specialized detection algorithms, making them highly integrable and extensible. These
advantages have driven their extensive application in UAV swarms, counter-UAV detection,
and drone pursuit missions [1–3].

Vision-based motion estimation algorithms rely on bounding boxes derived from
visual target detection in pixel coordinates to infer target kinematics. Based on the type
of input information, these algorithms are broadly categorized into two classes: Bearing-
Only [4] and Bearing–Angle [5,6]. The Bearing-Only method, the earliest and most widely
used approach, estimates target position and velocity by combining the pixel coordinates of
bounding box centers (obtained from detection algorithms) with a pinhole camera model
to compute spatial bearing vectors [7,8].
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The Bearing-Only algorithm suffers from significant limitations. This approach ex-
hibits high sensitivity to variations in the physical dimensions of targets under different
viewing angles. When rapid or substantial changes in the target size occur, the algorithm’s
accuracy and robustness degrade considerably [9,10]. To address this issue, the observer
must perform lateral motion orthogonal to the target’s bearing vector, providing addi-
tional perspectives to enhance observability. Aidala et al. [11] theoretically demonstrated
that velocity estimation remains unbiased under such conditions, while position bias can
be reduced through optimized observer trajectories. Consequently, researchers have ex-
plored controlled observer motion patterns to improve observability in three-dimensional
space [12–14]. However, these observer maneuvers often conflict with mission-specific
motion requirements. Building upon Bearing-Only research, Ning et al. proposed the
Bearing–Angle algorithm [5]. By fusing bearing vectors with angular span measurements,
the Bearing–Angle fully utilizes previously underexploited bounding box dimension infor-
mation, significantly enhancing observability. This innovation eliminates dependence on
high-agility lateral maneuvers, permitting direct approach trajectories toward targets—a
feature particularly advantageous for downstream control tasks. Furthermore, the Bearing–
Angle employs Pseudo-Linear Kalman Filtering (PLKF) [15], which avoids complex Ja-
cobian computations in traditional nonlinear filtering through state reparameterization,
thereby improving numerical stability.

However, our field deployment reveals critical limitations of traditional Bearing-
Only and its derivative Bearing–Angle approaches in real-world UAV motion scenarios.
These methods exhibit excessive dependence on the accuracy of bounding boxes provided
by upstream detection trackers, demonstrating high sensitivity to detection noise [16,17].
Unfortunately, during abrupt UAV maneuvers, the bounding box precision from detection
algorithms suffers rapid fluctuations, causing significant jitter with varying amplitudes
(Figure 1). This phenomenon severely degrades the measurement accuracy of both the
Bearing–Angle and the angular spans (Figure 2). Moreover, the frequent and nonlinear
nature of bounding box jitter introduces substantial noise uncertainty throughout the
estimation pipeline.

Figure 1. Schematic diagram of visual localization error analysis. (a) Detection effects during typical
phases of UAV continuous motion: The UAV performs a horizontal “acceleration-constant velocity-
deceleration” maneuver. Phases T1– T3 exhibit significant rightward acceleration, while phases
T3–T5 transition to deceleration with sustained rightward motion. Detection results are visualized
through dual markers: Red bounding boxes represent real-time outputs from a well-trained YOLOv5
model [18], and green ground-truth boxes denote professionally annotated references. Their centers
are marked by red and green dots, respectively, where spatial offsets directly reflect localization
errors. (b) Spatiotemporal comparative analysis of the T3–T5 deceleration phase: Jitter in bounding
boxes caused by motion blur and sensor noise is quantified. Smaller jitter occurs at slower UAV
speeds, while rapid motion induces severe jitter, with pixel offsets of bounding box centers reaching
20–30 pixels.
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Figure 2. Bounding frame without noise influence and without jitter in the pixel coordinate system
under ideal conditions (as shown in (a) in the figure). In reality, the bounding box is disturbed by
noise, and the left and right boundary positions of the bounding box, the position of the center point,
and the size of the boundary fluctuate (as shown in (b) in figure), which in turn affects the observed
values of Bearing and Angle.

Under such circumstances, the assumption of fixed noise covariance contradicts the
time-varying nature of noise statistical characteristics in real-world scenarios, rendering
this framework incapable of adapting to sudden target maneuvers or intense external
interference. Conventional filtering algorithms fundamentally fail to address the degrada-
tion in state estimation performance caused by non-Gaussian noise arising from abrupt
changes in UAV motion states. These limitations highlight the imperative need to develop
adaptive nonlinear filtering architectures capable of coordinating observation uncertainty
with dynamic environmental constraints.

Therefore, to effectively manage and suppress these noise sources while enhancing
algorithmic robustness and accuracy, we propose a novel Dynamic Bearing–Angle motion
estimation algorithm. This algorithm establishes a dual robust mechanism integrating
“outlier suppression via weighting” and “dynamic noise intensity adaptation” through the
fusion of M-estimation into dynamic filtering: (1) The Huber weight function introduced via
M-estimation assigns low weights to abnormal observations such as sudden outliers caused
by transient intense jitter in detection bounding boxes, significantly enhancing robustness
against non-Gaussian noise including impulsive and heavy-tailed noise. (2) Concurrently,
the real-time adaptive adjustment of noise covariance matrices through dynamic filtering
precisely tracks variations in noise statistics, accelerates adaptation to system dynamic
changes such as target maneuvers, and reduces convergence time.

In summary, our principal contributions are threefold:

• We propose a dynamic filtering mechanism based on real-time noise statistics with
dynamic smoothing factor adjustment. This addresses the parameter mismatch issue
of traditional fixed covariance models in non-stationary noise scenarios, thereby
improving estimation accuracy and convergence speed.

• We innovatively integrate M-estimation with filtering algorithms by dynamically allo-
cating observation weights through the Huber robust loss function. This approach
assigns low weights to abnormal data caused by sudden jitter in detection bounding
boxes or sensor outliers, overcoming the dependency of traditional filtering on Gaus-
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sian noise assumptions. The enhanced robustness effectively prevents outliers from
dominating state estimation.

• A Dynamic Kalman Filter framework is constructed based on a dual robust mechanism
of weights to suppress outliers and dynamic adaptation of noise intensity in parallel.
It suppresses observational anomalies through the anti-differential property of M-
estimation and compensates model uncertainty through the adaptive property of
dynamic filtering. The filtering framework can handle more complex noise types and
significantly extends the generalizability of the algorithm in high-noise and strong
dynamic scenarios.

2. Related Works
Vision-based target motion estimation methods like Bearing-Only and Bearing–Angle

face limitations in noise robustness and observability. This section systematically reviews
the theoretical frameworks and practical challenges of existing techniques from two di-
mensions: vision-based estimation algorithms and adaptive filtering methods, providing a
theoretical reference for the proposed Dynamic Bearing–Angle algorithm.

2.1. Visual-Based Target Motion Estimation

In the field of vision-based target motion estimation, Bearing-Only and Bearing–Angle
methods provide critical theoretical frameworks for position and velocity estimation by
measuring target azimuth angles and angular spans through monocular or binocular vision.
However, their practical implementation faces multiple challenges. The noise amplifica-
tion characteristics of nonlinear systems significantly magnify minor visual measurement
errors during geometric inversion. Bearing-Only methods rely on strongly coupled nonlin-
ear relationships between azimuth vectors and observer positions, causing the extended
Kalman filter (EKF) to accumulate linearization errors during abrupt target maneuvers,
which may lead to algorithm divergence [7,19,20]. While Bearing–Angle methods im-
prove observability by incorporating angular measurements, the nonlinear correlation
between target physical dimensions and distances further complicates state estimation,
imposing stricter demands on noise suppression capabilities [21]. Observability constraints
also limit application scenarios: Bearing-Only methods require high-order observer ma-
neuvers (e.g., continuous lateral motion) to satisfy observability conditions [8], which
conflicts with mission objectives of platforms like UAVs and risks observability matrix
degradation under non-ideal observer motions in 3D dynamic environments. Although
Bearing–Angle methods reduce maneuver dependency, target size sensitivity introduces
new uncertainties, where dimensional estimation errors propagate nonlinearly to directly
degrade distance accuracy.

Regarding the trade-off between computational efficiency and estimation precision,
existing methods are constrained by algorithm complexity and real-time requirements.
Pseudo-Linear Kalman Filters (PLKFs) achieve computational efficiency through linear
approximations [5,9], but their neglect of non-Gaussian noise and measurement matrix
correlations induces progressive biases. Particle filters can address strongly nonlinear prob-
lems [22], yet their computational complexity struggles to meet real-time demands in sce-
narios like UAV obstacle avoidance. Three-dimensional extension schemes (e.g., spherical
coordinate models [7]) enhance spatial adaptability but introduce additional state uncertain-
ties due to latitude angle singularities. Furthermore, robustness limitations hinder method
generalization: Bearing-Only methods easily lose observability under constant-velocity
linear target motions [23], while Bearing–Angle methods exhibit sensitivity to time-varying
target dimensions, necessitating online parameter identification mechanisms. Neither
approach sufficiently models non-Gaussian noise characteristics in dynamic environments,
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resulting in systematic biases for Gaussian-assumption-based filters in complex scenar-
ios [24]. These challenges collectively highlight the core bottleneck of current vision-based
motion estimation technologies: achieving balanced optimization among noise suppression,
real-time performance, and environmental adaptability remains a critical unresolved issue.

2.2. Adaptive Filtering Algorithm

In the field of visual target motion estimation, adaptive filtering techniques have
emerged as core solutions to address challenges including nonlinear noise amplification,
observability constraints, and real-time requirements through dynamic adjustment of noise
models and state estimation strategies.

Within adaptive filtering, three representative methods—Sage–Husa [25], Adaptive
Particle Filter (APF) [26], and Adaptive Unscented Kalman Filter (AUKF) [27]—demonstrate
distinct advantages and limitations. The Sage–Husa algorithm significantly enhances sensor
data accuracy and reliability through real-time estimation of system and measurement noise
statistics. Its adaptive parameter adjustment mechanism dynamically optimizes Kalman
gain and covariance matrices, improving robustness in nonlinear and non-Gaussian sys-
tems while maintaining computational efficiency approximately 10% lower than traditional
Kalman filters. However, this method exhibits higher implementation complexity requiring
meticulous tuning of multiple parameters and demonstrates sensitivity to initial noise
statistics where improper initialization may degrade filtering performance. In contrast, the
Adaptive Particle Filter (APF) excels in harmonic suppression and reactive power com-
pensation scenarios through dynamic compensation capabilities, effectively eliminating
multiple/high-order harmonics while avoiding resonance issues. Nevertheless, its high
hardware costs and limited filtering capacity restrict applications in large-scale power
grids or high-voltage environments. For nonlinear system state estimation, the Adaptive
Unscented Kalman Filter (AUKF) preserves data distribution characteristics via unscented
transformation and integrates adaptive noise adjustment mechanisms, achieving high-
precision state estimation in complex scenarios such as autonomous vehicle perception
and control. Despite superior nonlinear processing capabilities and adaptability, AUKF’s
mathematical complexity and computational demands pose challenges for real-time critical
systems like high-frequency visual tracking.

Additionally, the adaptive Kalman filtering algorithm proposed by A. H. MOHAMED
and K. P. SCHWARZ in 1999 [28] has exerted significant influence in the field of INS/GPS
integrated navigation. This algorithm significantly enhances the performance and robust-
ness of Kalman filtering in complex environments through adaptive adjustment of noise
covariance matrices. Similarly, the adaptive covariance-tuning Kalman filtering method
developed by AKHLAGHI et al. [29] in 2017 has demonstrated excellent performance
in dynamic state estimation for power systems. While these methods share conceptual
similarities with our research, our dynamic Kalman filtering algorithm exhibits unique in-
novations in three critical aspects: application scenarios, dynamic adjustment mechanisms,
and system modeling approaches.

3. Method
To address the robustness issues in dynamic noise scenarios, this chapter presents the

Dynamic Bearing–Angle algorithm, establishing a dual robust mechanism of “dynamic
noise intensity adaptation-outlier suppression”. It introduces the data processing flow,
system modeling, and estimator design, leveraging the Huber weight function and adaptive
covariance adjustment to enhance anti-interference capabilities.
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3.1. Dynamic Bearing–Angle Overview

The architecture in Figure 3 clearly shows the entire flow of the Dynamic Bearing–
Angle algorithm from data acquisition to state estimation and how these steps are integrated
into a unified framework. It acquires image data of the target using a monocular camera.
After capturing the image data of the target, it is fed into the 2D target detector to predict
the bounding box information (center point coordinates and size information) of the
target. Subsequently, the inner reference matrix, outer reference matrix, and bounding box
information of the camera are combined to solve the Bearing and Angle measurements
in the world coordinate system. Finally, these measurements, combined with the self-
localization information obtained by the observer using the VIO, are injected into the target
motion estimator to estimate the motion state of the target.

Figure 3. Overview of Dynamic Bearing–Angle. The Dynamic Bearing–Angle algorithm firstly cap-
tures the target image sequence by a monocular camera, extracts the target bounding box information
by using the 2D target detector and tracker, and at the same time parses the VIO self-localization
information according to the image sequence acquired by the observer. Then, the azimuth and angle
measurements of the target are calculated by combining the internal and external reference matrices
of the camera, the VIO self-localization information of the observer, and the target bounding box
information. Finally, the measured values are input into the target motion estimator to predict the
target’s motion trajectory information.

3.2. System Modeling

The motion state matrix and observation matrix are modeled for the UAV motion
estimation nonlinear system problem. The target motion state equation can be expressed as

xk+1 = Fxk + QK. (1)

where xk = [PT , VT , ℓ]T ∈ R7 is the state vector at the time k, containing the target’s position
PT , velocity VT , and physical dimensions ℓ (one-dimensional physical linear dimensions).
Qk is the process noise that satisfies zero-mean Gaussian white noise, and Q is the co-
variance matrix of the process noise that satisfies Q = diag(0, 0, 0, σ2

v , σ2
v , σ2

v , σ2
ℓ ) ∈ R7×7.

F is the state transfer function, and, in combination with the sampling time δt, it can be
expressed as

Fxk =

 I3×3 δtI3×3 03×1

03×3 I3×3 03×1

01×3 01×3 1

xk ∈ R7×7. (2)
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The exclusion of direct acceleration modeling in this framework stems from the obser-
vation that the motion of targets can be approximated as uniform linear motion in most
scenarios, particularly over short time intervals. This assumption enables model simplifica-
tion by allowing the state transition function F to be described through a dual-integration
model. The dual-integration model postulates linear temporal evolution of both velocity
and position parameters, which provides sufficient approximation for numerous practi-
cal applications. Moreover, acceleration parameters are generally not directly retrievable
through visual measurement systems. Even when acceleration components exist, their
influence on visual measurements may prove negligible or unstable, especially during brief
observation periods. Thus, the inherent unobservability of acceleration components could
introduce additional uncertainties and measurement noise if forcibly incorporated into the
state transition function.

According to the corresponding physical model [13], we can obtain the mathematical
expressions of the measurement equations corresponding to the bearing vector g and the
tension angle θ of the target:

g =
Rw

c P−1
camqpix

∥Rw
c P−1

camqpix∥
=

PT − PO
r

, (3)

θ = arccos
l2
le f t + l2

right − s2
pix

2l2
le f tl

2
right

= 2arctan(
ℓ

2r
) ≈ ℓ

2r
. (4)

For the vectors g, Pcam ∈ R3×3 is the internal reference matrix of the camera, Rw
c is

the rotation matrix from the camera frame to the world frame; qpix = [xpix, ypix, 1]T ∈ R3;
(xpix, ypix) is the center coordinate under the pixel coordinate system of the detection frame;
PO is the position of the observer, PT is the position of the target, and r = ∥PT − PO∥ is
the distance between the target and the observer. Then, for θ , lle f t and lright are the pixel
distances from the center of the camera to the left and right midpoints of the bounding box,
respectively, and spix denotes the size of the pixel of the bounding box.

After obtaining the measurements, we relate the target state to the measurements
using the measurement equation, which is expressed as

zk = h(xk) + Rk. (5)

where zk is the observation vector. h(xk) is a nonlinear observation model that maps the
state vector xk to the observation space. Rk is the observation noise vector, which represents
the uncertainty in the observation process and is usually assumed to be zero-mean Gaussian
white noise.

The covariance matrix of the observation noise R is the covariance matrix of the obser-
vation noise Rk. If the measurement noise of bearing vector g and angle θ are independent
and have known noise variances σ2

µ and σ2
w, respectively,

R =

[
σ2

µ I3×3 03×1

01×3 σ2
w

]
(6)

Specifically, the observation model h(xk) can be written as

h(xk) =

[
hg(PT , PO)

hθ(PT , PO, ℓ)

]
=

[ PT−PO
∥PT−PO∥

2arctan( ℓ
2∥PT−PO∥ )

]
(7)
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In order to find the Jacobian matrix Hk = [Hg, Hθ ]
T for the observation equation, it is

necessary to find the Jacobian matrix Hg for the bearing vector g and the Jacobian matrix
Hθ for the angle θ, respectively:

Hg =
∂hg(xk)

∂xk
=


∂gx
∂Tx

∂gx
∂Ty

∂gx
∂Tz

0 0 0 0
∂gy
∂Tx

∂gy
∂Ty

∂gy
∂Tz

0 0 0 0
∂gz
∂Tx

∂gz
∂Ty

∂gz
∂Tz

0 0 0 0

 (8)

Hg =
∂hθ(xk)

∂xk
=

[
∂θ

∂PTx

∂θ
∂PTy

∂θ
∂PTz

0 0 0 ∂θ
∂ℓ

]
(9)

where Tx, Ty, and Tz represent the components of the target’s position vector PT in the
world coordinate system.

Solving Equations (8) and (9) jointly and combining the known conditions r = ∥PT − PO∥,
the complete Hk is expressed as

Hg =


∂gx
∂Tx

∂gx
∂Ty

∂gx
∂Tz

0 0 0 0
∂gy
∂Tx

∂gy
∂Ty

∂gy
∂Tz

0 0 0 0
∂gz
∂Tx

∂gz
∂Ty

∂gz
∂Tz

0 0 0 0
∂gz
∂Tx

∂gz
∂Ty

∂gz
∂Tz

0 0 0 0

 (10)

3.3. Dynamic Bearing–Angle Estimator
3.3.1. Estimator Construction

After establishing the state transition equations and measurement equations through
modeling, target motion estimation can be achieved using filtering algorithms. However,
conventional filtering algorithms fail to adequately address the dynamic noise issues inher-
ent in UAV target motion estimation tasks. To overcome this limitation, this paper proposes
a novel Dynamic Kalman Filter and constructs a Dynamic Bearing–Angle Estimator ac-
cordingly. The comprehensive workflow is illustrated in Figure 4. The proposed algorithm
comprises four distinct phases: Initialization, Time Update, Measurement Update, and
Dynamic Adjustment.

1. Initialization step: In the initialization step, we need to establish the initial process
noise covariance matrix Q0 and measurement noise covariance matrix R0, as well as
the initial state estimate x̂+0 and state covariance matrix P+

0 . Here, “+” indicates that
the estimate is a posteriori. Also, we initialize the M-estimation parameter δ.

2. Time Update step: We then perform Time Update; at which point, we need to predict
the state and predict the state covariance matrix separately:

x̂−k = F(x̂+k−1), (11)

P−
k = F[1]

k−1P+
k−1F[1]T

k−1 + Qk−1. (12)

Here, “−” indicates that the estimate is a priori. F[1]
k−1 denotes the state transfer

function at time step k − 1 , and “[1]” in the equation is to distinguish between
different time steps.
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Figure 4. Flowchart of Dynamic Bearing–Angle Estimator.

3. Measurement Update step: We need to calculate the residuals first:

dk = zk − hk(x̂−k ), (13)

εk = [zk − hk(x̂+k )], (14)

It is important to note that dk is the difference between actual measurements and
predicted measurements based on a priori estimates, dk = [dT

g , dθ ]
T ; εk is the dif-

ference between actual measurements and predicted measurements based on a
posteriori estimates.
Then, we introduce outlier suppression based on M-estimation by constructing a
weight matrix Wk ∈ R4×4 using the Huber loss function to dynamically weight the
residual components:

wk,i =


1 if

∣∣∣ dk,i
δk,i

∣∣∣ ≤ δ

δk,i∣∣∣∣ dk,i
δk,i

∣∣∣∣ if
∣∣∣ dk,i

δk,i

∣∣∣ > δ
(15)

where σk,i is the standard deviation of the observation noise, and the effect of outliers
is suppressed by a threshold δ. The threshold parameter is set to δ = 1.345

√
tr(Rk)/4,

where Rk is the observation noise covariance matrix, and tr(Rk)/4 denotes the average
noise variance of the observation vector. This setup ensures that δ matches the
expected level of the observation noise without the need for manual parameterization.
The filtering update using the weighting matrix and solving for the weighted posterior
residual covariance after calculating the computational Jacobi matrix obtain

Sk = H[1]
k−1P−

k−1H[1]T
k−1 + WkRkWk, (16)

Update the Kalman gain:
K̄k = P−

k H[1]T
k [Sk]

−1, (17)

H[1]
k denotes the Jacobi matrix of the measurement function at time step k − 1.

The a posteriori state estimates and covariances are finally obtained:

x̂+k = x̂−k + K̄k[dk], (18)
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P+
k = {I − K̄k H[1]

k }P−
k . (19)

4. Dynamic Adjustment step: At this time, the system needs to manually adjust the
process noise and measurement noise covariance matrices relying on experience
and trial and error. In reality, however, the process noise and measurement noise
of the system are not fixed, especially in the dynamic situation that the UAV is in,
where the noise characteristics may change over time. In this condition, manual
adjustment of the covariance matrix may not be able to accommodate these changes in
a timely manner. We propose to optimize the performance of the filter by dynamically
adjusting the covariance matrix using the errors in the analytical prediction and
update steps in order to overcome the problems posed by the system in a dynamic
noise environment.
For the process noise covariance matrix Q, we use the difference between the actual
measurements and the predicted measurements based on a priori state estimation to
dynamically adjust, which ensures that the system can accurately change dynamically.
For the measurement noise covariance matrix R, we adjusted it using the difference be-
tween the actual measurements and the predicted measurements based on a posteriori
state estimation to ensure that the filter accurately modeled the measurement error.
These two approaches work together to enable the original Kalman filter to automat-
ically adapt to changes in the noise characteristics of the system and improve the
accuracy and robustness of the state estimation. The detailed calculation formula is
as follows:

Qk = αQk−1 + (1 − α)(K̄kdkdT
k K̄T

k ), (20)

Rk = αRk−1 + (1 − α)(εkεT
k + H[1]

k P−
k H[1]T

k ). (21)

Also, considering that the system is in a dynamically changing environment, the
extreme noise characteristics may cause the system sensitivity to be too high when
a fixed value of α may lead to unstable filter performance. Therefore, we include a
dynamic adjustment rule for the smoothing coefficient α in adjusting the covariance
matrix, which dynamically adjusts its value according to the magnitude of real-time
data or noise.
We use the variance adjustment of the prior residual series. To illustrate, a larger-
than-expected variance in the prior residual series may indicate an underestimation
of measurement noise, which can then be reduced. Specifically, the sample variance
of the prior residual series is first calculated as a measure of prior residual intensity:

σ2
d =

1
N

N

∑
i=1

(di − d̄)2. (22)

Based on the relations between the variance of the prior residual sequence and the mea-
surement noise covariance, we designed the following formula for adaptive adjustment:

αk =
Rk

σ2
d + Rk

∈ (0, 1]. (23)

For systems with suboptimal initial conditions or inaccurate models, dynamic tuning
can help the filter converge to the correct state estimate more quickly. Adaptive tuning
can improve the robustness of the filter in the face of external disturbances or internal
system uncertainties. This adaptive setting approach can further improve the perfor-
mance of the filter, especially when the noise intensity of the system changes rapidly.
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3.3.2. Estimator Coupling Relationship Analysis

The DEKF and M-estimation fusion mechanism proposed in this paper does not
work independently but creates a synergistic effect through the closed-loop coupling of
cross-level noise suppression and covariance adaptation. Two aspects are developed below.

1. Hierarchical Complementation of Noise Suppression and Statistical Adaptation:
The M-estimation weighs the discrete outliers generated by the sudden jitter of the
detection frame through the Huber weight function to construct an anomaly filter
barrier in the observation layer, while the DEKF tracks the continuously time-varying
characteristics of sensor noise through real-time updating of the noise covariance
matrices Q and R. The M-estimation is based on a combination of the following
two methods. When the jitter of the detection frame generates sudden noise, the
estimation M first reduces the weight of the noise so that the residual sequence of the
DEKF covariance calculation is closer to the true distribution; DEKF then adjusts Q
and R based on the ‘’purified” residuals to form a cascading effect of ‘’suppression
followed by adaptation”. The DEKF then adjusts Q and R according to the ‘’purified”
residuals, forming a cascade effect ‘’suppression and adaptation”.

2. Lost Loop for Error Compensation in Nonlinear Systems:
In the target maneuvering scenario, DEKF compensates for the uncertainty of the
state transfer model by adjusting the Q matrix, while M-estimation mitigates the
error amplification caused by the nonlinearity of the measurement model through
weight assignment. The two form a mathematical coupling through the residual
sequence: the weight matrix generated by M-estimation reconstructs the observation
noise covariance, while the covariance updating formula of DEKF relies on the sta-
tistical properties of the weighted residuals, which ultimately results in a positive
iterative cycle of “outlier suppression → covariance optimization → state estimation
accuracy enhancement”.

4. Numerical Simulation Experiments
To validate the algorithm performance, three simulation scenarios (target stationary,

linear motion, and cooperative maneuvering) are designed. By comparing with baselines
like Bearing-Only, the estimation accuracy and convergence speed under different noise
intensities are analyzed, verifying the algorithm’s effectiveness in dynamic environments.

4.1. Simulation Experiment Setup

• Implement details

The hardware device is Intel (R) Core (TM) i7-10700F CPU @ 2.90 GHz with 16 GB of
installed memory, Windows 10 Home Edition 64-bit operating system, and Matlab 2023a as
the numerical simulation software platform.

• Metrics

To quantitatively assess the performance of the algorithm, we evaluate the algorithm
using two performance metrics, Average Distance Error and its 99% Error Bound. Average
Distance Error is a measure of the average distance error between the estimated target
position and the true target position. It gives a visual indication of the accuracy of the
estimated position, with smaller errors indicating more accurate estimates.

errorADE =
1
N

N

∑
i=1

∥Pi
ture − Pi

estimate∥. (24)
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Pi
ture and Pi

estimate are the true and estimated positions of the i-th time, respectively,
and N is the number of measurements.

99% Error Bounds is based on the concept of confidence intervals; for 99% error
bounds, we can use the following formula to estimate:

errorEB = tβ/2,N−1 ×
s√
N

. (25)

tβ/2,N−1 is the critical value of the t-distribution, corresponding to the confidence
level (99%) and the degrees of freedom (N − 1), s is the standard deviation, and N is the
sample size.

• Baselines

The baseline methods compared in the numerical simulation experiments are Bearing-
Only and Bearing–Angle. Bearing-Only estimates the target state by calculating bearing
vectors through the pixel coordinates of the center of the target detection bounding box
combined with the pinhole camera model. It is sensitive to changes in target size and
requires the observer to perform lateral movements to enhance observability, conflicting
with the mission requirements of unmanned aerial vehicles (UAVs). Bearing–Angle, by
fusing bearing vectors with the angular span of the detection bounding box, utilizes
dimensional information to improve observability and supports direct target-approaching
trajectory planning. It employs PLKF to simplify calculations but relies on the accuracy of
bounding boxes and is sensitive to noise. In the experiments, public codes of both methods
and parameter settings optimized for this task were used for fair comparison to validate
the effectiveness of the Dynamic Bearing–Angle.

4.2. Numerical Simulation Experimental Scenario Setting

We follow the numerical simulation data generated in the literature [5] for three
scenarios to evaluate the performance of the proposed Dynamic Bearing–Angle algorithm.

The initial covariance matrix of the estimated state is set to P(t0) = 0.1I. The target
size is a circle with diameter ℓ = 1. The target size is a circle with diameter B. The target
size is a circle with diameter B. The update rate of the system is 50 Hz.

We use the same parameter values in all simulation examples to verify the robustness
of the algorithm. Better performance can be achieved if the parameters are well tuned for a
specific scenario. We perform an Nx = 100 Monte Carlo simulation for each scenario.

• Numerical Simulation Scenario 1:

The target is at rest, and the observer moves in a circle around the target. At this point,
the target is located at PT = [0, 10]T , and the observer is moving at a speed of 3 m/s around
a circle with a radius of 5 m. The initial estimated state of the system is P̂O(t0) = [0, 13]T ,
v̂O(t0) = [0, 0]T , ℓ̂O(t0) = 1.6.

• Numerical Simulation Scenario 2:

The target is at rest, and the observer moves closer to and further away from the target
in a straight line. At this point, the target is at P̂O(t0) = [0, 10]T , and the observer moves
back and forth towards the target in a straight line with constant acceleration −2 m/s2.

The initial conditions are PO(t0) = [0, 5]T , vO(t0) = [0, 4]T .
The initial estimated state of the system is P̂O(t0) = [0, 13]T , v̂O(t0) = [0, 0]T ,

ℓ̂O(t0) = 0.8.

• Numerical Simulation Scenario 3:

The target moves at a constant velocity, and the observer is controlled by proportional
navigation guidance (PNG) laws to approach the target. In the process, both orientation and
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angle are changed. For the target velocity, the observer velocity vT = [ 1√
2

, 1√
2
]2 magnitude

is constant at 3 m/s, and the velocity direction is controlled by the PNG law [30]. The
navigation gain of the PNG law is selected as 1. The initial estimation of the target state is
the same as in Scene 1.

4.3. Comparison with the State of the Arts

In this section, we evaluate three algorithms, Bearing-Only [4], Bearing–Angle [5],
and Dynamic Bearing–Angle; we set up three different motion scenarios, and in the same
scenarios, we set up randomly fluctuating measurement noises with standard deviations
of 0.01, 0.015, and 0.03, respectively. The average distance error of each algorithm was
calculated and compared under each noise condition. It should be noted that these three
orders of magnitude of noise used for testing were determined by the maximum noise
conditions encountered in actual testing (which can be derived from the values of the center
offset of the detection frame shown in Figure 1b combined with Equations (3) and (4)).

• Results under scenario 1:

Figure 5a demonstrates the estimation knots of each algorithm under motion scenario
1 and that the standard deviation of observation noise is 0.01. At this time, the observation
noise is small, the observation error of the system has a relatively limited impact on the
performance of the algorithms, and the average distance errors corresponding to the three
algorithms are kept small. From the figure, we can observe that the Dynamic Bearing–Angle
response is the fastest, which may be the case when the noise is small or the system state
changes slowly, and the dynamic tuning may allow the filter to obtain better estimation
results without a large number of iterations.

Figure 5b shows the estimation results of the different algorithms when the standard
deviation of the noise increases to 0.015. The effect of observation noise on the performance
of the algorithm gradually increases, and the stability of the system localization decreases.
Bearing-Only is affected by only a single measurement noise in the simpler motion sce-
narios because it only relies on the target’s azimuthal angle information; thus, its stability
decreases, but it can still maintain convergence after a period of adjustment. On the other
hand, Bearing–Angle needs to combine the target’s azimuth and angle information, so its
stability is greatly affected by the noise, which generates large measurement fluctuations,
and although the final localization accuracy error can be converged to a smaller value, its
stability is poorer. In contrast, the Dynamic Bearing–Angle algorithm can still deal with
the interference caused by the noise better, showing excellent robustness, significantly
better than the other two algorithms. However, due to its dynamic adjustment, the final
localization accuracy error is slightly worse than that of Bearing-Only and Bearing–Angle.

When the noise standard deviation further increases to 0.03 (as shown in Figure 5c),
the observation noise of the system has a significant impact on the algorithm performance.
At this time, both Bearing-Only and Bearing–Angle fail to converge; the Dynamic Bearing–
Angle response speed and localization accuracy are also reduced, but the algorithm still
maintains its robustness and significantly outperforms the other two algorithms.
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Figure 5. The motion scenarios are the results of numerical simulations for 100 Monte Carlo
runs for three different noise scenarios when the observer moves in a circle around the target
(Columns (a–c) show the experimental results for different noise intensities, respectively). The ’‘*”
denotes the initial position, the solid line denotes the true trajectory, the dashed line denotes the
estimated trajectory, the solid circle denotes the observer and the target, and the hollow circle denotes
the estimated target position. The second row of the figure shows the average distance error, which is
used to measure the estimation error of the distance between the observer and the target.

• Results under scenario 2:

Figure 6a shows the estimation results of each algorithm under motion scenario 2
and with an observation noise standard deviation of 0.01. It can be seen that Bearing-
Only diverges because the system motion state does not have the corresponding lateral
acceleration, and Bearing–Angle and Dynamic Bearing–Angle converge and are able to
locate the target position more accurately, which proves that these two algorithms have
strong observability. We also note that Dynamic Bearing–Angle still has a faster response
than the other algorithms.

When we increase the standard deviation of the observation noise to 0.015 and 0.03
(as shown in Figure 6b and Figure 6c, respectively), then Bearing-Only diverges and
Bearing–Angle and Dynamic Bearing–Angle converge. However, as the noise increases,
Bearing–Angle fluctuates and convergence slows down due to the change in the motion
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state of the system. In contrast, Dynamic Bearing–Angle still maintains better response
speed, stability, and localization accuracy, which fully demonstrates the superiority of the
algorithm proposed in this paper.

Figure 6. Numerical simulation results for 100 Monte Carlo runs for three different noise scenar-
ios when the observer makes reciprocal linear motion towards the target for the motion scenario.
(Columns (a–c) show the experimental results for different noise intensities, respectively). The ’‘*”
denotes the initial position, the solid line denotes the true trajectory, the dashed line denotes the
estimated trajectory, the solid circle denotes the observer and the target, and the hollow circle denotes
the estimated target position.

• Results under scenario 3:

Figure 7a illustrates the estimation results of each algorithm in Scene 3 in motion and
with a standard deviation of 0.01 in the observation noise. It can be seen that both Bearing–
Angle and Dynamic Bearing–Angle successfully converge before the collision occurs. Due
to the small lateral motion of the observer and its weak observability, Bearing-Only is
completely unable to estimate the state of the target. When we increase the observation
noise to 0.015 and 0.03 (as shown in Figure 7b and Figure 7c, respectively), Bearing–Angle
is affected by the larger noise, and although there is a tendency to converge eventually, the
localization accuracy fluctuates to a greater extent with the noise increase in the process. In
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contrast, the Dynamic Bearing–Angle algorithm proposed in this paper always maintains
high robustness and localization accuracy and is less affected by noise.

Figure 7. Numerical simulation results for 100 Monte Carlo runs for three different noise scenarios
when the motion scenario is a target moving at a constant velocity and the observer is controlled by
the proportional navigation guidance (PNG) law to approach the target. (Columns (a–c) show the
experimental results for different noise intensities, respectively). The ’‘*” denotes the initial position,
the solid line denotes the true trajectory, the dashed line denotes the estimated trajectory, the solid
circle denotes the observer and the target, and the hollow circle denotes the estimated target position.

4.4. Comparison with Other Adaptive Filtering Algorithms

To further validate the robustness of the proposed algorithm in dynamic noise environ-
ments, this section benchmarks the Dynamic Bearing–Angle framework against four classical
adaptive filters: Sage–Husa [25], Adaptive Unscented Kalman Filter (AUKF) [27], Adaptive
Particle Filter (APF) [26], and Adaptive Extended Kalman Filter (AEKF) [29]. Experiments
are conducted under the three typical scenarios described in Section 4.2, with three levels
of measurement noise intensity applied to each scenario.

Figures 8–10 evaluate the effectiveness of the proposed optimizer compared to other
adaptive filtering algorithms. When integrating the Sage–Husa adaptive filter into the
Dynamic Bearing–Angle framework, the algorithm exhibits rapid convergence but also
susceptibility to divergence. This behavior originates from its design logic of dynamically
adjusting noise parameters. During the initial phase, real-time updates to statistical esti-
mates of system and measurement noise enable swift adaptation to environmental changes,
resulting in fast convergence. However, this adaptability introduces vulnerability: when
external noise abruptly exceeds the algorithm’s predefined adjustment range or accumu-
lates beyond a threshold, continuous corrections to noise parameters gradually deviate
from ground truth. Such deviations form a positive feedback loop through the coupling of
state estimation and noise adjustment, sharply increasing error sensitivity and ultimately
triggering exponential divergence in estimation results.
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Figure 8. Results using the Dynamic Bearing–Angle algorithmic framework with different optimiza-
tion algorithms for scenario 1. The ’‘*” denotes the initial position, the solid line denotes the true
trajectory, the dashed line denotes the estimated trajectory, the solid circle denotes the observer and
the target, and the hollow circle denotes the estimated target position.

When employing AUKF as the optimizer, the algorithm exhibits fluctuating precision,
a consequence of inherent contradictions in its hybrid architecture. While deterministic
sampling strategies capture state distributions in nonlinear systems more efficiently than
stochastic methods, the introduced noise parameter adaptation mechanism disrupts the
stable propagation process. In dynamically changing environments, periodic mismatches
arise between the adjustment step size of noise estimation and the deterministic state
propagation path. These mismatches force the algorithm to oscillate between “tracking
current observations” and “maintaining historical trajectories,” manifesting as time-varying
precision fluctuations akin to a damped system oscillating near equilibrium.

The APF optimizer demonstrates high precision but slow convergence, reflecting
fundamental principles of probabilistic sampling. By deploying a large particle swarm
to exhaustively search the state space, followed by iterative weight filtering and resam-
pling to focus on high-probability regions, the algorithm accurately characterizes complex
non-Gaussian distributions. However, the computational burden of propagating states,
calculating weights, and reconstructing distributions for all particles in each iteration is
substantial. Moreover, particle swarm optimization is inherently gradual—initial phases
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require sufficient time for low-weight particles to be eliminated and high-weight particles
to cluster near the true state, inherently limiting convergence speed.

Figure 9. Results using the Dynamic Bearing–Angle algorithmic framework with different optimiza-
tion algorithms for scenario 2. The ’‘*” denotes the initial position, the solid line denotes the true
trajectory, the dashed line denotes the estimated trajectory, the solid circle denotes the observer and
the target, and the hollow circle denotes the estimated target position.

The experiments further evaluate the performance of the Adaptive Extended Kalman
Filter (AEKF) in dynamic scenarios. AEKF demonstrates advantages in noise adaptability:
by updating the measurement noise covariance matrix in real time, it effectively suppresses
medium-intensity noise interference in state estimation, achieving positioning errors under
stable observation conditions that are second only to the proposed Dynamic Extended
Kalman Filter (DEKF). However, the critical distinction between AEKF and DEKF lies in the
latter’s adaptive smoothing factor adjustment mechanism—this mechanism dynamically
regulates the update intensity of the process noise covariance matrix through real-time
analysis of residual sequence statistical characteristics. Specifically, when abrupt changes
in system dynamics or anomalies in noise statistics are detected, DEKF autonomously
enhances the smoothing factor to mitigate overfitting risks while reducing the factor under
stable conditions to accelerate parameter convergence. In contrast, AEKF’s fixed smoothing
factor design introduces two inherent limitations: (1) the static process noise covariance
combined with the fixed smoothing factor restricts rapid response capability during sudden
target motion pattern transitions, resulting in delayed correction phenomena; (2) in non-
Gaussian noise environments, abrupt shifts in noise statistics—due to the absence of
dynamic smoothing factor compensation—trigger error accumulation. This forces AEKF
to alleviate model mismatch solely by increasing the Kalman gain, yet this strategy lacks
dynamic decoupling capability for process noise, ultimately leading to significant error
amplification and violent fluctuations in error curves.
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Figure 10. Results using the Dynamic Bearing–Angle algorithmic framework with different optimiza-
tion algorithms for scenario 3. The ’‘*” denotes the initial position, the solid line denotes the true
trajectory, the dashed line denotes the estimated trajectory, the solid circle denotes the observer and
the target, and the hollow circle denotes the estimated target position.

5. Real-World Experimental Results
Experiments based on the MAV6D dataset, containing multi-condition UAV flight data,

are conducted. Quantitative analysis and qualitative visualization validate the algorithm’s
robustness in low/high-speed scenarios. Ablation experiments quantify the contribution
of each module, confirming the synergistic advantages of the dual mechanism.

5.1. Experimental Dataset

In the experimental validation with real sensor data, we leverage the image sequences
and annotation information of the MAV6D dataset [31] to verify the motion estimation
algorithm. This dataset consists of image data of unmanned aerial vehicles (UAVs) under
various flight conditions, including the ground-truth position information corresponding
to each image and the intrinsic/extrinsic parameters of the monocular camera. The MAV6D
dataset is obtained through an indoor automatic data collection method using a precise
acquisition platform comprising a VICON motion capture system, a monocular camera,
and a UAV. Specifically, the VICON system is mounted around the indoor space, taking
the world coordinate system as the benchmark, and captures markers synchronously via
multiple cameras to provide high-precision 6D pose ground-truth of the UAV at a sampling
frequency of 100 Hz. The monocular camera is fixed at an indoor perspective facing
the flight area, and its image data with a resolution of 640 × 480 pixels and a sampling
frequency of 20 Hz needs to be calibrated to determine the transformation relationship with
the world coordinate system. The target UAV flies within an indoor range of 1–6 m, with
nine keypoints (one centroid point + eight corner points) defined on its body and VICON
reflective markers attached, and the three components are synchronized by timestamps
to ensure data consistency. Containing 57,075 annotated images divided into 129 video
segments, the dataset covers various flight conditions, such as different UAV maneuvering
states, perspective changes (e.g., top-down/side views), and distance variations (1–6 m)
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between the MAV and the camera. The controlled indoor lighting (without direct strong
light or dynamic shadows, with data augmentation simulating lighting changes) and
static backgrounds (e.g., laboratory walls) reduce occlusion interference. This dataset is
designed to evaluate the estimation accuracy and robustness of the algorithm for UAV
position changes in real-world scenarios, laying a solid foundation for the algorithm’s
practical applications.

5.2. Test Results with Actual Sensor Data
5.2.1. Quantitative Analysis Results

We conducted a comprehensive test on the MAV6D dataset with four typical frame
intervals (0–20, 21–40, 41–100, and after 100 frames) and evaluated the target position
estimation accuracy using Mean Error (ME) and Root Mean Square Error (RMSE). The
results are shown in Table 1.

Table 1. Performance evaluation of contrasting methods on the MAV6D dataset.

Method
Frame 0 to 20 Frame 21 to 40 Frame 41 to 100 Frame After 100

Average FPS
ME RMSE ME RMSE ME RMSE ME RMSE

Bearing-Only 2.7629 3.6741 2.8384 3.2344 1.9722 2.0180 2.4395 2.8725 6667.08
Baseline–Angle 2.1502 2.2752 1.4824 1.4825 1.1017 1.1349 1.3070 1.5678 2940.63
Dynamic Bearing–Angle 1.2404 1.5808 0.4986 0.7352 0.4237 0.4814 0.3631 0.3660 2142.72

The experimental results show that the Dynamic Bearing–Angle algorithm signifi-
cantly outperforms the Bearing-Only and Baseline–Angle methods in estimating the target
position in all frame intervals in the comparative tests on the MAV6D dataset. In the
initial stage, the algorithm has a fast response speed and good adaptability to noise, and
it can stabilize the estimation error faster than the traditional methods; in the high-speed
maneuvering scenario, the dual-robust mechanism effectively deals with the dynamic noise
such as the detection frame jitter and continuously maintains the error convergence; in the
process of long-time tracking, the algorithm maintains a low level of error by dynamically
adjusting the noise covariance and the suppression of the outliers, while the other methods
show obvious fluctuation of the error with the passage of time. The experimental results
fully verify the strong robustness of the algorithm to noise in real complex scenes and the
stability of long-term estimation.

5.2.2. Results of Qualitative Analysis of Examples

In order to more clearly compare the specific differences between the methods, we
visualize two typical examples in detail. In the context of target detection and tracking,
the patterns of bounding box noise interference are closely related to the target’s motion
speed, which can be divided into two typical scenarios for target motion estimation: small-
amplitude bias noise interference under low-speed motion and large-amplitude deviation
noise interference under high-speed motion.

• Small amplitude deviation noise at low-speed motion:

When the target is in a low-speed motion state, the detection bounding box is primarily
affected by stationary observation noise. This type of noise originates from inherent sensor
errors or slow time-varying environmental disturbances, with statistical characteristics
approximating stationarity and an error distribution following a zero-mean Gaussian
distribution. The standard deviation is typically at the pixel-level or centimeter-level. Under
the influence of this noise, although the position of the detection bounding box globally
converges to the ground truth, random offsets independent of the target velocity exist.
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As shown in the visualization results of Figure 11, in the low-speed motion scenario of
the drone, Bearing-Only fails to converge due to insufficient state observability caused by
the lack of lateral acceleration modeling. While Bearing–Angle converges rapidly in the
early stage, the PLKF (Pseudo-Linear Kalman Filter) it employs introduces approximation
errors due to the truncation of high-order terms during pseudo-linearization. When the
bounding box jitter exceeds the critical threshold, accumulated errors can cause systematic
deviations in the estimated trajectory. Even small random offsets in the detection bounding
box can lead to a decline in the robustness and estimation accuracy of the Bearing–Angle
algorithm due to long-term noise accumulation. In contrast, the Dynamic Bearing–Angle
algorithm significantly enhances adaptability to random noise fluctuations by introducing
an adaptive dynamic Kalman filtering mechanism, which effectively tracks time-varying
noise characteristics.

Figure 11. Results of experiments in low-speed motion scenarios of UAV. Dynamic Bearing–Angle
possesses high accuracy and strong robustness, but Bearing-Only and Bearing–Angle work unstably.

• Large deviation noise at high-speed motion:

When the target performs high-speed maneuvers, the detection bounding box faces
coupled interference from non-stationary dynamic noise and observation lag errors. On
one hand, the traditional constant-velocity motion model fails to characterize sudden
changes in target acceleration, leading to non-linear growth of state prediction errors as
velocity increases. On the other hand, issues such as image blur and insufficient sensor
frame rate caused by high-speed motion introduce impulsive observation outliers. This
type of noise exhibits strong time-varying characteristics, with error distributions showing
heavy-tailed properties, potentially causing the detection bounding box to deviate from the
ground truth by more than 50% of the target size, or even leading to tracking loss.

As shown in the visualization results of Figure 12, in high-speed motion scenarios, the
detection bounding box is subjected to impulsive observation outliers, causing fluctuations
in the estimation accuracy of Bearing-Only and Bearing–Angle, which reflects the poor
robustness of these algorithms. In contrast, Dynamic Bearing–Angle performs well, with
the predicted trajectory closely matching the ground truth trajectory. The error curve
demonstrates that the algorithm maintains good robustness and precision throughout the
entire image sequence. This is attributed to the fact that the proposed algorithm not only
dynamically adapts to Gaussian noise that changes with the motion state of the detection
bounding box but also introduces M-estimation to handle extreme outliers, enabling the
algorithm to maintain high-precision estimation while possessing strong robustness.
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Figure 12. Results of experiments in UAV fast maneuvering scenarios. Dynamic Bearing–Angle
possesses high accuracy and strong robustness, but Bearing-Only and Bearing–Angle work unstably.

5.3. Ablation Experiment

• Results of ablation experiments on the MAV6D dataset:

To quantify the contribution of M-estimation and dynamic smoothing factor to the per-
formance of the algorithm, four sets of controlled experiments are designed on the MAV6D
dataset: the traditional Bearing–Angle algorithm (Baseline) based on AEKF filtering without
introducing any robust mechanism, Baseline+M- estimation, Baseline+Dynamic smoothing
factor with only adaptive α to dynamically update the noise covariance, and Dynamic
Bearing–Angle, a complete scheme that incorporates dual robustness mechanisms, are
tested on four typical frame intervals (0–20, 21–40, 41–100, and after 100 frames).

The results are shown in Table 2. The experimental results show that the Dynamic
Bearing–Angle algorithm significantly outperforms the control methods in overall perfor-
mance. Its Mean Error (ME) and Root Mean Square Error (RMSE) remain the lowest across
all frame intervals (0–20, 21–40, 41–100, and after 100 frames). The algorithm demonstrates
faster convergence in the initial stage, a further substantial error reduction during mid-term
high-speed maneuvers, and outstanding long-term stability with errors converging to
approximately 1/6 of the baseline method.

Table 2. Ablation study: performance of core modules.

Method
Frame 0 to 20 Frame 21 to 40 Frame 41 to 100 Frame After 100

ME RMSE ME RMSE ME RMSE ME RMSE

Baseline 2.1922 2.3080 1.4927 1.9105 1.4123 1.4124 1.2103 1.2199
Baseline + M-estimation 1.4921 1.5385 1.0055 1.0177 0.8645 0.9211 1.0421 1.1699
Baseline + Dynamic smoothing factor 1.4714 1.5202 0.8427 0.8642 0.8859 0.9359 1.0001 1.0858
Dynamic Bearing–Angle 1.2404 1.5808 0.4986 0.7352 0.4237 0.4814 0.3631 0.3660

In the ablation analysis of modules, M-estimation effectively suppresses sudden detec-
tion frame noise but fails to adapt to time-varying noise characteristics without dynamic
covariance adjustment, as evidenced by error rebound in the later stage. The dynamic
smoothing factor accelerates adaptive updates of noise covariance but shows insufficient
suppression of abrupt outliers. The combined dual mechanism reduces mid-term errors by
over 50% compared to single modules, forming a cascade effect of “outlier suppression fol-
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lowed by covariance adaptation” through cross-level complementarity, which significantly
enhances the algorithm’s robustness and accuracy in dynamic noise environments.

• Validation of validity using probability density functions of residuals:

To further elucidate the capability of each module in handling estimation errors, we
compared the residual probability density functions generated during the filtering process
of four methods in one case, with the results presented in Figure 13.

Figure 13. Comparison of distance error curve and residual probability density function for
an instance.
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An ideal residual distribution should exhibit a zero mean, narrow variance, and
symmetric Gaussian shape, which correspond to unbiasedness, high precision, and ro-
bustness, respectively. The following analysis is conducted from the perspective of
method comparison:

The multidimensional residuals of the baseline method exhibit obvious issues: they
not only have mean shifts (e.g., a right shift in Dim1 and a left shift in Dim3) but also
feature a wide distribution range (with tails extending beyond ±100) and unilateral long-tail
characteristics (which are directly associated with sudden disturbances or model mutations).
Although adding M-estimation or dynamic smoothing alone can alleviate biases and reduce
tail extent to a certain degree, they have significant limitations: the former fails to handle
the dynamic changes of noise, while the latter struggles to adapt to the periodicity and
variability of azimuth angles, resulting in limited improvement. In contrast, the complete
DBA method, through the synergy of dual robust mechanisms, achieves strict alignment of
residual peaks with the zero mean across all dimensions, forming a sharp and symmetric
unimodal distribution. Its full-process collaborative optimization from model adaptation
and noise tracking to outlier suppression makes the residual distribution closer to the ideal
Gaussian shape.

6. Conclusions
The core contribution of this paper is to propose a novel Dynamic Bearing–Angle

visual target motion estimation algorithm, which effectively solves the limitations of tradi-
tional methods in complex dynamic environments by fusing M-estimation and dynamic
filtering techniques. Starting from analyzing the shortcomings of existing visual target
motion estimation algorithms, the research work carefully designs the Dynamic Bearing–
Angle algorithm to address its high dependence on the detection frame accuracy and its
performance degradation in non-Gaussian noise environments. The dual robust mechanism
of this algorithm enables it to maintain high accuracy and stability in the face of rapid target
maneuvering and detection noise interference. Through a series of rigorous numerical
simulations and real data tests, the superior performance of the algorithm is verified in
a variety of complex scenarios. This result not only makes an important contribution
to the field of visual target motion estimation theoretically but also has a wide range of
applications in practical applications, such as UAV formation, anti-UAV detection, and
UAV tracking missions, which are expected to significantly improve the performance and
reliability of related systems.
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