
Academic Editor: Alessandro

Pozzebon

Received: 16 June 2025

Revised: 1 July 2025

Accepted: 9 July 2025

Published: 11 July 2025

Citation: Zhou, H.; Gao, H.; Ma, Z.;

Lai, G. Blockchain-Based Trusted Data

Management with Privacy

Preservation for Secure IoT Systems.

Sensors 2025, 25, 4344. https://

doi.org/10.3390/s25144344

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Blockchain-Based Trusted Data Management with Privacy
Preservation for Secure IoT Systems
Haojie Zhou 1,2 , Hongmin Gao 2,3,4, Zhaofeng Ma 1,2 and Guanhui Lai 5,*

1 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
haojiezhou@bupt.edu.cn (H.Z.); mzf@bupt.edu.cn (Z.M.)

2 Beijing University of Posts and Telecommunications-China Mobile Communications Group Co., Ltd. Joint
Institute, Beijing 100876, China; gaohongmin@chinamobile.com

3 China Mobile Information Technology Co., Ltd., Beijing 102206, China
4 Beijing Key Laboratory of Trusted Regulation and Governance for Artificial Intelligence, Beijing 102206, China
5 Dongguan Rail Transit Co., Ltd., Dongguan 523073, China
* Correspondence: laiguanhui10086@outlook.com

Abstract

With the explosive growth of the Internet of Things (IoT), the traditional single data sharing
scheme has difficulty satisfying the data sharing needs of both same-domain and cross-
domain IoT devices. In order to realize efficient data sharing of IoT devices in the same
domain with data privacy protection and efficient collaboration between IoT devices in
different domains, this paper proposes a trusted data sharing scheme in IoT systems based
on multi-channel blockchain. The scheme adopts a multi-channel mechanism to isolate
the ledger data between IoT devices of different domains; IoT devices of the same domain
utilize hybrid encryption to achieve efficient data sharing through smart contracts, and
IoT devices of different domains utilize the CKKS algorithm to achieve cross-domain data
sharing with privacy protection through proxy nodes (PNs). In addition, this paper adopts
decentralized identity (DID) to achieve autonomous identity management to avoid privacy
leakage in IoT devices and adopts InterPlanetary File System (IPFS) to store data files to
solve the blockchain storage capacity limitation problem. The security analysis proves that
this scheme satisfies the IND-CPA security model, and the performance analysis proves
that this scheme has good utility in trusted data sharing of IoT devices.

Keywords: blockchain; CKKS; decentralized identity; IoT; multi channel

1. Introduction
The Internet of Things (IoT) is an important component of next-generation information

technology and is accelerating the deep integration of the physical world and the digital
space. By connecting a large number of heterogeneous sensing devices to the network,
the IoT enables real-time sensing and intelligent response to environmental conditions,
device behavior, and user needs, and is widely used in industrial manufacturing, smart
cities, energy management, and other scenarios. With the rapid growth in the number of
IoT devices and the continuous expansion of business needs, IoT systems are becoming
highly distributed, heterogeneous, and multi-domain. In this context, achieving secure,
efficient, and trustworthy data sharing within and across domains has become a core issue
for ensuring the reliable operation of IoT systems and the realization of data value.

In large-scale IoT systems, centralized servers not only face bottlenecks in compu-
tation and storage, but also may become targets of network attacks, thus affecting the

Sensors 2025, 25, 4344 https://doi.org/10.3390/s25144344

https://doi.org/10.3390/s25144344
https://doi.org/10.3390/s25144344
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0007-8658-0120
https://doi.org/10.3390/s25144344
https://www.mdpi.com/article/10.3390/s25144344?type=check_update&version=2

Sensors 2025, 25, 4344 2 of 28

stability of the whole system. In addition, the access control mechanism is difficult to cope
with the complex permission management and dynamic authorization requirements in
cross-domain scenarios, limiting security and flexibility during data sharing. Although
blockchain technology has been introduced to trusted data sharing in IoT as a result of its
decentralized and tamper-resistant features, it is difficult for current research to take into
account the differentiated needs of intra-domain and cross-domain scenarios. Specifically,
intra-domain scenarios such as the collaboration of multiple IoT devices in smart factories
need to support high throughput data sharing and access control, while cross-domain
scenarios such as the collaboration of manufacturing and logistics IoT devices require
secure computation between IoT devices from different domains without exposing the
original data. In addition, existing schemes tend to ignore key issues such as identity
privacy leakage, blockchain storage capacity limitation, and the computational overhead of
privacy protection mechanisms.

In this context, decentralized identity (DID), CKKS-based homomorphic encryption
algorithm, and on-chain off-chain collaborative storage technology provide new ideas
for solving the above challenges. DID technology effectively avoids the risk of privacy
leakage caused by centralized storage of identity information by empowering IoT devices
to independently manage their identities without relying on the centralized organization to
store the identity information [1]. The CKKS algorithm, as a fully homomorphic encryption
scheme that supports floating-point operations, allows computational tasks to be performed
directly in the ciphertext state, which provides a privacy guarantee of data availability
and invisibility for cross-domain IoT devices collaboration [2]. For example, IoT devices
in the transportation industry use CKKS encryption technology to provide information
on freight transportation prices, while industrial IoT uses CKKS encryption technology
to provide information on industrial product production and other data. This data is
provided to a third-party computing center for transportation cost calculations under
encryption, thereby enabling cross-domain IoT device data collaboration while protecting
data privacy. The InterPlanetary File System (IPFS) and blockchain’s on-chain off-chain
collaboration mechanism provides an efficient solution to break through the blockchain
storage bottleneck [3,4]. IoT devices often need to deal with high-precision and sensitive
large-scale data files during the sharing process, and direct on-chain storage will lead to
blockchain network congestion and high cost. IPFS encrypts the original data files and
stores them in the off-chain nodes through decentralized storage and content addressing
technology, and only important information is uploaded to the on-chain.

In our paper, a multi-channel blockchain-based trusted data sharing scheme is put
forward to address privacy protection, cross-domain collaboration efficiency, and the
storage scalability of data sharing in IoT; the main contributions are as follows:

(1) We propose utilizing the multi-channel ledger isolation mechanism of blockchain to
achieve trusted data sharing of IoT devices, which enables low-latency processing
of intra-domain data sharing and data privacy protection among cross-domain IoT
devices by assigning independent channels to IoT devices in different domains [5,6].

(2) We combine symmetric encryption and asymmetric encryption to design hybrid en-
cryption and automate the execution of smart contracts and data access control to
improve the efficiency of intra-domain trusted data sharing while ensuring data
privacy protection [7,8]. Furthermore, we introduce a CKKS fully homomorphic en-
cryption algorithm, which supports the computation center in performing aggregation,
optimization, and other computation tasks directly on the basis of ciphertext data so
as to realize data availability and invisibility.

(3) We adopt DID technology, allowing IoT devices to generate DID independently,
avoiding the danger of a single point of privacy leakage caused by centralized identity

Sensors 2025, 25, 4344 3 of 28

servers. To solve the blockchain storage capacity limitation problem, blockchain and
IPFS are combined to realize an on-chain off-chain synergy mechanism, and only
important information is uploaded to the chain so as to realize the trusted sharing of
big data files.

(4) We analyzed the privacy-preserving capabilities of this scheme and demonstrated that
it is IND-CPA secure. In addition, performance analysis confirms the applicability and
effectiveness of the scheme.

2. Related Works
The combination of DID technology and data sharing can realize autonomy and control

of users’ identities, and DID private key information does not rely on central institutions
for distribution and storage; thus, it better avoids the leakage of users’ identity information.
A DID-based identification and data sharing mechanism was proposed by Lin et al. [9]. The
scheme leverages blockchain to store DIDs and data hashes, ensuring identity permanence
and data integrity while integrating IPFS to enhance data availability. By adhering to W3C
standards, it improves scalability and interoperability, addressing the security risks and
point-of-failure of identity management in centralized servers. Although Lin combined
DID with data sharing, the combination of DID and data sharing in more complex IoT
scenarios was not explored. Blockchain-based development and normalization of DIDs was
explored by Fukami et al. [10]. By comparing centralized and decentralized identities, they
analyzed the influence of decentralized identity structures on data sharing, highlighting
its significance in digital government and data sharing. Fukami’s comparison of DID and
centralized identity highlights the importance of DID in data sharing, which provides
a good approach to identity privacy protection for cross-domain and intra-domain data
sharing in IoT.

CKKS homomorphic encryption is a homomorphic encryption technology that sup-
ports floating-point arithmetic, which allows computation directly on the encrypted data,
ensuring data privacy while realizing computational functions. By applying CKKS technol-
ogy to data sharing, participants of data sharing can share their encrypted data without
exposing the original data. The utilization of CKKS homomorphic encryption was proposed
by Reddi et al. to enable secured sharing of electronic medical records while preserving
privacy [11]. Although the CKKS algorithm can be used to achieve secure data sharing
with privacy protection, Reddi did not consider using DID to protect the privacy of identity
information. A privacy-enhanced federated learning scheme with CKKS homomorphic
encryption to secure model parameters was proposed by Qiu et al. [12]. It achieves the
same training performance as FedAvg while reducing communication and computation
costs compared to the Paillier-based approach. Additionally, its feasibility for deploy-
ment on IoT devices is discussed. Rahulamathavan et al. proposed a redesigned speaker
verification system backend using CKKS fully homomorphic encryption to process voice
features securely [13]. Horvath-Bojan et al. proposed a privacy-preserving, network-based
contact tracing system using 5G and geo-localization technologies. The system relies on
collaboration between mobile operators and government agencies, allowing encrypted data
exchange to detect contacts with infected individuals. Using CKKS fully homomorphic
encryption, the system computes infection likelihood while maintaining privacy [14,15]. A
secure and effective multiparty computation model with blockchain and privacy computing
techniques was proposed by Li et al. to overcome the difficulties of low trustworthiness,
privacy issues, and safety concerns in the sharing of financial data [16]. Qiu, Rahula-
mathavan, Horvath-Bojan, and Li have conducted extensive research on data privacy
protection but have not addressed the differing requirements for data sharing efficiency

Sensors 2025, 25, 4344 4 of 28

and privacy protection in the two distinct data sharing scenarios of cross-domain and
intra-domain sharing.

Blockchain is a distributed and untamperable ledger technology. At present, as
blockchain technology matures, more and more scholars are applying blockchain to data
sharing scenarios. With decentralization and non-tampering characteristics, the use of
blockchain for data sharing can realize the recording and tracing of the data sharing process,
and the blockchain’s smart contract technology can realize automated execution for data. A
secured and flexible scheme for in-vehicle digital twin network data sharing was proposed
by Wang et al. [17]. The scheme employs a signature of knowledge to protect identity
privacy, utilizes smart contracts for traceability, and introduces a verification control mech-
anism to enhance data sharing flexibility. Additionally, digital twins with consistent states
can remove sensitive information, ensuring data synchronization and privacy. Although
Wang considered dual privacy protection for data and identity, the scheme did not imple-
ment autonomous control of identity. A credible blockchain-based data sharing scheme
that utilizes blockchain to avoid data tampering and Paillier cryptosystem to ensure data
confidentiality was proposed by Zheng et al. [18]. The scheme supports data transactions
and protects transaction information with the (p, t)-threshold Paillier cryptosystem. How-
ever, Zheng’s scheme did not achieve autonomous control over identity and data sharing
across domains. PrivySharing, a framework based on blockchain for privacy-protected
and secured IoT data sharing in smart cities, was proposed by Makhdoom et al. [19]. The
framework partitions the blockchain network into several channels, with each channel
dedicated to a particular data type and governed by access rules enforced through smart
contracts. Although Makhdoom utilized blockchain channels to isolate ledger data, the
proposal did not explore cross-channel data collaboration with privacy protection. Zhang et
al. proposed an artificial intelligence-driven network framework that leverages blockchain
to enable mutual trust data sharing among mobile network operators [20]. The system
is implemented on the Hyperledger Fabric and utilizes smart contracts for oversight and
finely grained access control to ensure secure, trustless sharing of data. However, data
sharing under this scheme is limited by the storage bottleneck of blockchain. A framework
based on blockchain for securing and transparently sharing continuous personal health
data, complemented by cloud storage, was proposed by Zheng et al. [21]. The system
enables users to possess, control, and share their own data within a GDPR-compliant
manner while incorporating a machine learning-based data quality inspection module.
This approach facilitates high-quality data sharing for healthcare research and commercial
applications. Combining blockchain with an attribute-based encryption solution for data
sharing was proposed by Ma et al. [22]. A framework for a blockchain-based federation
for traced and anonymized sharing of vehicle-to-vehicle data that eliminates the reliance
on roadside devices was proposed by Cui et al. [23]. By combining 5G and enhanced
Proof-of-Commitment consensus algorithms, the system ensures secure, efficient, and
tamper-resistant data exchange for the Internet of Vehicles. A framework for decentralized
storage and sharing that integrates Ethernet network, IPFS, and attribute-based encryp-
tion to enhance data security and access control was proposed by Wang et al. [24]. The
framework enables data owners to define access policies and distribute secret keys while
leveraging smart contracts for secure keyword search, ensuring integrity and complete-
ness of search results in decentralized storage systems. Although Zheng, Ma, and others
have proposed using blockchain to achieve secure data sharing, these studies have not
simultaneously achieved dual privacy protection for data and identity. The limited storage
capacity of blockchain is also a key issue that constrains the efficiency of data sharing.

The aforementioned researchers have conducted extensive explorations in the field of
data sharing and privacy protection, focusing primarily on four key directions:

Sensors 2025, 25, 4344 5 of 28

(1) Adopting DID systems to achieve autonomous identity management and mitigate
centralized privacy risks.

(2) Leveraging homomorphic encryption technologies like CKKS to ensure privacy-
preserving computations.

(3) Integrating blockchain with distributed storage systems such as IPFS to address
scalability challenges.

(4) Designing blockchain-based access control mechanisms through multi-channel archi-
tectures and smart contracts.

However, existing solutions suffer from many limitations, including their failure to
simultaneously address the different requirements of intra-domain efficiency and cross-
domain privacy in IoT; the lack of an integrated approach to identity autonomy, storage
scalability, and fine access control; and the failure to adequately address the tension between
decentralized traceability and computationally intensive privacy preservation. To overcome
these difficulties, we propose a trustworthy data sharing scheme for IoT devices with
privacy preservation based on multi-channel blockchain:

(1) Domain isolation through a multi-channel architecture that enables efficient processing
of intra-domain and cross-domain sharing.

(2) A dual-mode security mechanism combining hybrid encryption for efficient intra-
domain sharing with CKKS-based privacy computing for cross-domain collaboration.

(3) A synergistic integration of DID-based identity management and IPFS-augmented
storage that eliminates centralized vulnerabilities while ensuring system scalability.

3. Preliminaries
3.1. Decisional Ring Learning with Errors (DRLWE) Assumption

Let the polynomial ring R = Z[X]/(Xn + 1), let q be a modulus, let χ be an error
distribution, and let s ∈ Rq be a fixed secret. The following are instances where the
distinction is needed:

RLWE instance As,χ: A sample pair (a, b) drawn from the RLWE distribution satisfies

a← Rq, e← χ, b = as + e mod q.

Random instance U : A random pair (a, b) drawn from the uniform distribution satisfies

a← Rq, b← Rq.

The advantage for any probabilistic polynomial time (PPT) distinguisher D, D is that∣∣∣Pr
[
DAs,χ(1λ) = 1

]
− Pr

[
DU (1λ) = 1

]∣∣∣
is negligible, which means that no polynomial-time algorithm can distinguish between
RLWE samples and random samples with non-negligible advantage.

3.2. Decentralized Identifier (DID)

DID is an identity identifier that enables verifiable and autonomous identity manage-
ment in decentralized systems [25]. Unlike traditional identifiers, such as email addresses
or usernames, DIDs are fully under the control of the DID subject, independent of any
centralized authority. The main goal of DIDs is the provision of a method for identifying
entities (people, organizations, devices, etc.) in a manner that ensures privacy, security,
and trust without relying on a central registry [26]. The core components of a DID system
include the following:

Sensors 2025, 25, 4344 6 of 28

(1) DID Document: A DID document contains metadata about the DID subject, such
as public keys for authentication, services offered by the subject, and other relevant
information. It serves as a verifiable claim about the identity of the DID subject.

(2) DID Method: The DID method specifies how DIDs are created, updated, and resolved
in a decentralized network. For instance, a blockchain-based DID method utilizes
smart contracts to manage DID documents securely and immutably.

3.3. CKKS Homomorphic Encryption Scheme

CKKS is a homomorphic encryption scheme designed specifically to handle floating-
point computations, and is suitable for privacy-preserving computing, machine learning,
cloud computing, and other scenarios. It supports approximation algorithms, i.e., it is
possible to perform operations of addition and multiplication under encryption while
keeping the privacy of the data, so that the computation results are still approximate to
those of the original data after decryption [2]. CKKS homomorphic encryption scheme
includes the following algorithms:

KeyGen(1λ): An algorithm for key generation takes as input the security parameter
λ and outputs a private key sk, a public key pk and an evaluation key evk. It is used to
initialize the encryption system and ensure the security of subsequent operations.

Encode(z; ∆): The encoding algorithm takes a complex vector z and a scaling factor
∆ as input and encodes them into a plaintext polynomial m. It converts floating-point
numbers into polynomials using an inverse FFT and multiplies by ∆ to preserve precision.

Decode(m; ∆): The decoding algorithm uses a plaintext polynomial m and a scaling
factor ∆ as input, then decodes them into a complex vector z. It converts the polynomial
back to floating-point numbers using FFT and divides by ∆ to restore the original values.

Encpk(m): The encryption algorithm uses a plaintext polynomial m and pk as input
and generates c. It encrypts the plaintext using the public key and random noise to protect
data privacy.

Decsk(c): The decryption algorithm accepts sk and c as inputs, and outputs the corre-
sponding plaintext polynomial m after decryption.

Add(c1, c2): The addition operation takes two ciphertexts c1 and c2 as input and
outputs their homomorphic addition result cadd. It performs addition directly on ciphertexts
in the encrypted domain.

Multevk(c1, c2): The multiplication operation takes two ciphertexts c1 and c2 as input
and uses the evaluation key evk to compute the homomorphic multiplication result cmult.
After multiplication, rescaling is required to control noise and scaling factor growth.

RSℓ→ℓ′(c): The rescaling operation takes a ciphertext c as input and reduces its scale
level ℓ to control noise growth, ensuring precision in subsequent computations.

4. Overview
4.1. System Model

The IoT device data sharing system based on multi-channel blockchain includes
authority center, IoT device, computing center, proxy node, and IPFS. This system model
will be divided into trusted sharing of data between IoT devices within the blockchain
channel and trusted privacy computing between IoT devices across the channel. There is a
system model as shown in Figure 1.

Authority Center (AC): the AC is responsible for managing the IoT devices. Any
devices that join the IoT system need to be authenticated through the AC. After the authen-
tication, the AC registers the DID for each IoT devices joining the IoT system and adds the
IoT devices to a specific blockchain channel.

Sensors 2025, 25, 4344 7 of 28

Internet of Things device (IoT device): the IoT device is the main body for data
sharing, using the blockchain multi-channel mechanism to achieve trusted data sharing
of IoT devices. Devices within the same channel achieve secure data sharing through a
proxy node, while devices across different channels perform privacy computation via the
computing center.

Computing Center (CC): The CC is the key infrastructure for enabling secure, privacy-
protected collaborative computing between IoT devices across channels within the system.
It is specifically designed to process joint computing requests initiated by IoT devices from
different blockchain channels. By utilizing the CKKS homomorphic encryption algorithm,
all parties’ original sensitive data remains encrypted throughout the entire computing
process, thereby achieving “data availability without visibility”.

The CC achieves privacy computing between the cross-channel IoT devices, and the
computing center uses homomorphic encryption algorithms to make the data securely
computed while maintaining confidentiality to ensure that vulnerable information is kept
free from unauthorized access during the computation process.

Proxy Node (PN): The PN is responsible for storing the access control strategy on the
blockchain through which data sharing between different IoT devices in the channel is
realized by the PN, thus enabling access control at a fine-grained level. In addition, cross-
channel data sharing also requires the PN to perform CKKS encryption and decryption
calculations to enable secure cross-channel data sharing.

InterPlanetary File System (IPFS): A decentralized distributed storage system, IPFS is
used to solve the blockchain storage capacity limitation problem. Each shared file in IPFS
has a unique hash value based on its content as an identifier. This hash value enables the
file to be precisely located and retrieved within the IPFS network. Files are stored in blocks
across multiple nodes within the IPFS network. Since data is distributed across multiple
nodes, other nodes can still provide the data in cases where nodes go offline or experience
failures. Additionally, incentive mechanisms are used to encourage more nodes to offer
distributed storage services, ensuring the long-term availability of data and preventing
data loss due to single points of failure.

Figure 1. Scheme model for data sharing based on multi-channel blockchain.

4.2. Threat Model

The threat model of this system assumes that the AC is honest, but there may be
unauthorized malicious entities that want to obtain shared data information from it or
maliciously enter wrong data to corrupt the system computation results. Potential malicious

Sensors 2025, 25, 4344 8 of 28

entities include outside, compromised PN, compromised CC, and colluding PN + CC. We
identified the adversary’s threat model as known ciphertext model, which is a threat model
in which unauthorized malicious entities want to obtain information from the ciphertext
to break the confidentiality of the encrypted information. The capabilities of potential
adversaries in the threat model are shown in Table 1.

Table 1. Threat model adversary capability.

Adversary Capabilities Security Goals Not Breached

Outsider
Conduct DDoS and other attacks to disrupt

network availability and eavesdrop on public
communication channels.

Data confidentiality remains protected,
and authentication mechanisms prevent

unauthorized system access.

Compromised PN Attempt to tamper with the CKKS encryption
process for shared data.

Computation integrity preserved through
blockchain consensus validation.

Compromised CC Attempt cryptanalytic attacks against CKKS
ciphertexts to recover plaintext data.

The data transmitted to CC is encrypted
using the CKKS key, and CC cannot solve the

RLWE hard problem.

Colluding PN + CC CC and PN jointly forge and tamper with
CKKS encryption operation data in CC.

The immutability of blockchain enables
traceability and auditing of data operations.

4.3. Security Requirement

In this paper, the IND-CPA security model is adopted to measure the security of
encryption schemes with known public key and optional plaintext queries. In the IND-CPA
security model, the adversary A is free to choose the plaintext and obtain the corresponding
ciphertext but cannot distinguish the result of encrypting with two equivalent-length
plaintexts. Specifically, the adversary A submits two plaintexts m0 and m1 as a challenge,
the system chooses b randomly among {0, 1} and returns the ciphertext of mb, and A tries
to guess b. The encryption scheme is considered secured if A has a negligible advantage.

Initialization: Construct challenger C and adversary A and initialize the system model.
Setup: The challenger C randomly samples s← HWT(h), e← DG(σ2) and a← RqL ,

generates the sk = (1, s) and the pk = (b = −as + e, a), and then sends this pk to the
adversary A.

Query Phase 1: A sends query requests to challenger C. A can freely choose plaintext
messages and obtain their corresponding ciphertexts.

Challenge: A sends two plaintexts of equivalent length, m0 and m1, to the challenger
C. The challenger C chooses b at random among {0, 1} and returns the challenge ciphertext
CTb to A.

Query Phase 2: In the same way as in Phase 1, the adversary A runs the query.
Guess: The adversary A guesses b′ ∈ {0, 1} based on the ciphertext information.
In the IND-CPA game, the advantage of the adversary A is given as follows:

AdvIND−CPA
A =

∣∣∣∣Pr[b′ = b]− 1
2

∣∣∣∣.
4.4. Multi-Channel Blockchain Architecture

Our scheme adopts a multi-channel blockchain architecture, which aims to address
the key limitations of single-channel blockchain architecture systems in cross-domain col-
laboration, especially in large-scale IoT device data sharing scenarios. As shown in Table 2,
single-channel architectures have inherent bottlenecks, including unpredictable delays
caused by single-channel global transaction ordering, limited scalability due to a single
consensus mechanism, and inefficient resource utilization due to full ledger replication.

Sensors 2025, 25, 4344 9 of 28

Table 2. Comparison between single-channel and multi-channel blockchain architectures.

Evaluation Dimension Single-Channel Architecture Multi-Channel Architecture

Transaction Delays
All transactions are sorted globally,
and high competition leads to high

delay fluctuations.

Different channels do not affect each
other, and channel transactions are

processed in parallel.

Scalability Limited scalability due to global state
replication and single consensus group.

New domains added as independent
channels without global impact.

Consensus Efficiency Single consensus group processes
all transactions.

Configure different consensus
mechanisms for each channel according

to business needs.

Resource Utilization Need to store global transaction
ledger data.

Only store data for channels they
participate in.

Security Isolation Rely on policy-based access control to
isolate data.

Each channel is an independent ledger
with natural isolation.

Fault Containment A catastrophic failure would affect all
data sharing operations.

Issues contained within affected
channel, other channels unaffected.

Cross-Domain Collaboration
A single channel is insufficient to

achieve secure and efficient
cross-domain collaboration.

Achieve cross-domain collaboration
through multi-channel management.

5. Detail of Our Proposed Scheme
In a multi-channel blockchain-based IoT system, the combination of blockchain tech-

nology and DID ensures secured and trusted data sharing between devices. The system
leverages the decentralized nature of blockchain to store and verify data, while DID serve
as a unique and tamper-proof identity for each IoT device. This setup guarantees that data
exchanges between devices are secure and protected from external interference.

In the context of IoT, blockchain multi-channel architecture allows different cate-
gories of IoT devices to be assigned to distinct blockchain channels, each dedicated to
a specific type of data or operation. This separation ensures that data privacy and in-
tegrity are maintained, while cross-channel data sharing are securely facilitated through
well-defined protocols.

By using DID, each device within the IoT has a verifiable identity, and its data trans-
actions are recorded immutably on the blockchain, enhancing both the trustworthiness
and accountability of the system. This model enables efficient and secure data sharing
across various devices, ensuring that all sharing remain tamper-resistant and verifiable.
The scheme model is shown in Figure 1.

The relevant symbol descriptions in this paper are shown in Table 3. The algorithmic
scheme for trusted data sharing between IoT devices based on multi-channel blockchain
includes the following stages:

Table 3. Related symbol definitions.

Symbol Description

N Polynomial ring dimension
Q Modulus chain
∆ Scaling factor
a Public polynomial

Sensors 2025, 25, 4344 10 of 28

Table 3. Cont.

Symbol Description

pk Public key for data encryption
rlk Relinearization key
m Plaintext polynomial data

(c0, c1) Ciphertext pair
σ Canonical embedding
π Mapping function
v Random polynomial generated during encryption
e Noise term
R Polynomial ring Z[X]/(XN + 1)
RQ Modular polynomial ring ZQ[X]/(XN + 1)

L Number of modulus chain levels

5.1. System Initialization

This section describes the system initialization process, including four key steps. First,
the system generates the necessary homomorphic encryption parameters, defines the
polynomial ring R and the modulo chain Q to support CKKS homomorphic encryption
computation, and stores them publicly on the blockchain to ensure transparency. Next,
the IoT device generates DID key pairs via the Elliptic Curve Digital Signature Algorithm
(ECDSA) [27] and ensures that the private key is kept only by itself to avoid identity
disclosure. Subsequently, the IoT device submits a registration request containing iden-
tity attributes and its signature to the authority center, which verifies the validity of the
signature, generates a unique DID for it and stores it in the blockchain to achieve veri-
fiable decentralized identity management. Finally, to guarantee the security of trusted
computing channels, the system generates CKKS homomorphic encryption keys for each
channel, including public-private key pairs and evaluation keys, to support subsequent
cryptographic computation.

This initialization process ensures the security of the IoT device’s identity, the fea-
sibility of data encryption computation, and the transparency and verifiability of the
overall scheme.

Step 1: Generate system parameters
Setup() → params: Define the polynomial ring as R = Z[X]/(Xn + 1), where n is a

power of two to ensure efficient transform operations. Choose a precision scaling factor ∆ to
control the trade-off between precision and noise growth in encrypted computations. Select
an integer base p > 0 and an initial modulus q0, which together define a modulus chain
Q = q0 · q1 · · · · · qL where each modulus level is given by qℓ = pℓ · q0, for 0 < ℓ ≤ L.

This modulus chain allows ciphertext modulus reduction, which is a key feature in
CKKS to maintain numerical stability and control noise growth during homomorphic
operations. The system parameters, including n, ∆, p, q0, and the modulus chain Q, are
made public and storing it on the blockchain to assure transparency and reproducibility in
encrypted computations.

Step 2: Generate key pairs for DID
DIDKeyGen()→ (pkDID, skDID): The DID registration process is shown in Algorithm 1.

IoT devices can autonomously generate DID key pairs. After generating the DID key pair,
each IoT device needs to register the DID on the blockchain.

The IoT device generates DID key pairs by selecting Elliptic Curve Digital Signature
Algorithm (ECDSA) for identity authentication and recognition [27]. ECDSA was cho-
sen because it balances security and efficiency and is suitable for resource-constrained
environments typical of IoT devices.

Sensors 2025, 25, 4344 11 of 28

Select elliptic curve parameters ECDSA.Params = (G, p, h, a, b, n), where p is a prime
number in a finite field, a, b is the coefficients of the elliptic curve equation, h is cofactor,
n is prime order of G and G is base point. The DID key generation process is shown in
Equation (1). The private key skDID is randomly selected from the set {1, 2, . . . , n− 1},
ensuring that it is a valid scalar for point multiplication on the elliptic curve. The corre-
sponding public key pkDID is then calculated as skDID · G, which is the result of scalar
multiplication of the base point G by the private key skDID. The calculation process is
as follows:

skDID
random←−−−− {1, 2, . . . , n− 1},

pkDID = (xpk, ypk) = skDID · G.
(1)

The private key is generated and stored by the IoT device itself, and is not stored by
the AC. The AC is responsible for verifying the legitimacy of the identity information of
the IoT device. The autonomous and controllable DID identity can avoid the leakage of
private identity information.

Algorithm 1 IoT device DID Identity Registration

Input: IoT devices with attribute set attributei
Output: Registered and verifiable DIDi

1: Step 1: Generate Key Pairs
2: (pkDIDi , skDIDi)← ECDSA.GenKeyPairi()
3: Step 2: Send Registration Request
4: IoT device prepares registration request:
5: Requesti = (attributei, pkDIDi , Signaturei)
6: IoT device sends Requesti to AC.
7: Step 3: Identity Verification
8: AC extracts information from Requesti.
9: AC verifies the signature:

10: Verify(pkDIDi , Signaturei)→ Valid or Invalid
11: if Verification is invalid then
12: Reject registration request and terminate.
13: end if
14: Step 4: Generate DID Document and Attribute List
15: Generate unique DID for the IoT device:
16: DIDi ← GenerateDID(pkDIDi)
17: Construct DID Document and Store (DIDi, attributei) into the attribute list.
18: Step 5: Register DID on Blockchain
19: Call blockchain registration function:
20: Blockchain_Register(DIDi, Documenti)
21: if Registration successful then
22: Return confirmation and DIDi to IoT device.
23: else
24: Return registration failure and terminate.
25: end if

Step 3: IoT device authentication
IdentityAuthentication(attribute, SignskDID (attribute)): The AC checks the attribute

information attribute of the IoT device and verifies the correctness of the attribute source
by verifying the signature SignskDID (attribute) with the DID public key pkDID. The DID
signature process is shown in Equation (2), and the DID signature verification process is
shown in Equation (3).

During the signing process, the attribute information is first hashed to obtain a fixed-
length digest. A random scalar k is then chosen, and the corresponding elliptic curve point is

Sensors 2025, 25, 4344 12 of 28

computed to derive the signature component r. The final signature component s1 is computed
using the private key skDID and the hashed attribute. The signing process is as follows:

h = HASH(attribute),

k random←−−−− {1, 2, . . . , n− 1},
r = (k · G)x mod n,

s1 = k−1(e + r · skDID) mod n.

(2)

For verification, the recipient checks the validity of the signature by ensuring that both
r and s fall within the acceptable range. The verifier then computes an intermediate value
w and uses it to derive two scalars u1 and u2, which are used to reconstruct a point on
the elliptic curve. If the computed x-coordinate matches r, the signature is deemed valid,
confirming the authenticity of the attribute information. The signature verification process
is as follows:

If r, s /∈ [1, n− 1] =⇒ Invalid,

w = s−1 mod n,

u1 = e · w mod n,

u2 = r · w mod n,

(x1, y1) = u1 · G + u2 · pkDID,

If r ≡ x1 mod n =⇒ Valid.

(3)

5.2. In-Channel Data Sharing

This process describes secure data sharing between different IoT devices within a
blockchain channel. Data sharing within the channel is achieved through hybrid encryp-
tion, with symmetric encryption using AES and asymmetric public key encryption using
RSA [28]. The entities involved include the data owner (DO) and the data requester (DR).
The process consists of four main steps: data encryption and upload, data request, access
control, and data acquisition. Figure 2 shows the data sharing process between IoT devices
within the channel.

Step 1: Data encryption and upload
The DO encrypts the data using AES encryption in Cipher Block Chaining (CBC) mode:

IV ← Random(128)

where IV is a randomly generated 128-bit initialization vector.
The AES encryption process follows:

CTAES[i] =

Enc(DK, data[0]⊕ IV), i = 0

Enc(DK, data[i]⊕ CTAES[i− 1]), i ≥ 1
(4)

where DK is symmetric encryption key, ⊕ denotes bitwise XOR operation, and CTAES[i]
represents the ciphertext block for the i-th plaintext block data[i].

The DO then uploads CTAES to IPFS and receives the corresponding storage address:

AddressIPFS ← IPFS.Upload(CTAES)

Step 2: Data request
DR submits data request Requestdata = (DIDDR, requestdata, signDRskDID

(requestdata))

to the blockchain PN with a digital signature for verification, where signDRskDID
(requestdata)

is a digital signature generated with DR’s skDID.

Sensors 2025, 25, 4344 13 of 28

The PN verifies the request with Veri f y(DRpkDID , signDRskDID
(requestdata), requestdata).

Only if verification succeeds, the request proceeds.
Step 3: Access control
The DO encrypts the symmetric key DK and the storage address using the PN’s public key:

CTPN = Encrypt(pkPN , (DK, AddressIPFS)) (5)

where pkPN is the public key of the PN.
DO formulates an access control policy Φ and submits it along with CTPN to the PN.
The PN retrieves DR’s attribute list from the authority center and evaluates the access

control policy:

Φ(DR) =

1, if DR satisfies policy Φ

0, otherwise
(6)

If the policy is satisfied (Φ(DR) = 1), the PN decrypts CTPN and re-encrypts it for the
DR using pkDR:

CTDR = Encrypt(pkDR, (DK, AddressIPFS)) (7)

The encrypted information is then sent to the DR.

Figure 2. In-channel data sharing.

Step 4: Data acquisition
The DR decrypts CTDR using its private key:

DK||AddressIPFS = Decrypt(skDR, CTDR) (8)

Sensors 2025, 25, 4344 14 of 28

The DR retrieves the encrypted data from IPFS:

CTAES ← IPFS.Retrieve(AddressIPFS)

The AES decryption in CBC mode follows:

data[i] =

Dec(DK, CTAES[0])⊕ IV, i = 0

Dec(DK, CTAES[i])⊕ CTAES[i− 1], i ≥ 1
(9)

Finally, the DR obtains the shared data data. Thus, DR can securely access sharing
data as well as keep the integrity and confidentiality of the process intact.

5.3. Data Privacy Computation Between Cross-Channel IoT Devices

Figure 3 shows the process of privacy calculation for different channels. In cross-
channel IoT device data sharing, we adopt the fully homomorphic encryption scheme
CKKS to achieve privacy protected cross-channel data sharing [29,30]. CKKS.PN1 is the
CKKS PN of channel 1, and CKKS.PN2 is the CKKS PN of channel 2. Assuming that
CKKS.PN1 needs CKKS.PN2’s data to complete some business, CKKS.PN1 and CKKS.PN2

can perform privacy calculations through CC.

Figure 3. Cross-channel privacy computing.

CKKS supports floating-point data, making it more suitable for IoT scenarios. Specific
application scenarios include hospitals and insurance companies using CKKS to predict
or calculate patient premiums while protecting sensitive raw data. Insurance companies
request patient medical data from hospitals via cross-domain data requests. Hospitals
encrypt medical data (e.g., medical expenses) using the insurance company’s CKKS public
key. Insurance companies can encrypt premium calculation model data (e.g., encrypted

Sensors 2025, 25, 4344 15 of 28

weighting data) and use CC to calculate patient premiums. Finally, insurance companies
decrypt the calculation results.

The specific cross-channel IoT devices trusted data privacy calculation process is
as follows:

Step 1: Generate and distribute CKKS keys
CKKS.KeyGen(1λ). For a given security parameter λ, the algorithm initializes multi-

ple parameters. Select modulus M as a power-of-two integer satisfying security require-
ments, define Hamming weight parameter h to control private key sparsity, set a large
integer P as the extended modulus for relinearization, and determine Gaussian noise
standard deviation σ to ensure scheme security.

Core sampling operations consist of sample the s from the Hamming weight distri-
bution HWT(h), uniformly sample random polynomial a from the ringRqL , and generate
noise polynomial e via discrete Gaussian distribution DG(σ2). Set channel 1’s skchannel1 as

skchannel1 = (1, s)

and channel 1’s pkchannel1 as

pkchannel1 = (b = −as + e, a).

In the process of generating the evaluation key for our scheme, we begin by sampling
a random polynomial a′ from the ring RP·qL , denoted as a′ ← RP·qL . Simultaneously,
an error term e′ is sampled from a discrete Gaussian distribution with variance σ2, i.e.,
e′ ← DG(σ2). The channel 1’s evaluation key is then formed as a pair (b′, a′), where the
component b′ is computed as follows:

b′ ← −a′s + e′ + Ps2 (mod P · qL)

In this equation, the term −a′s reflects the standard encryption structure, e′ adds
necessary noise for security, and the additional term Ps2 ensures correctness during homo-
morphic multiplication.

As a result, the channel 1’s evaluation key is given by the following:

evkchannel1 ← (b′, a′) ∈ R2
P·qL

This evaluation key evkchannel1 enables homomorphic multiplication operations and en-
sures that decryption remains correct while maintaining both key security and manageable
noise growth.

Step 2: Channel 1 sends homomorphic encryption request
Assuming that the IoT device in channel 1 needs some data from channel 2 to complete

certain business, IoT device needs to initiate a cross-channel data request to the CKKS.PN1,
and then the CKKS.PN1 will initiate a data request to CC and provide DID information of
all parties involved in the cross-channel data sharing process. This DID information is used
to verify the authenticity of the data provider’s identity.

Step 3: Encode the original data and encrypt it
Both parties involved in privacy computing need to use the CKKS public key of the

channel where the requester is located to encode and encrypt the data. We first define the
following mappings:

The definition of canonical embedding mapping σ is shown in Equation (12).

∀m ∈ C[X]/(XN + 1),

σ(m) =(m(ξ), m(ξ3), . . . , m(ξ2N−1)) ∈ CN (10)

Sensors 2025, 25, 4344 16 of 28

where ξ2i−1 represents the N primitive roots of the polynomial XN + 1.
The definition of H as the subring of CN is shown in Equation (11).

H =
{
(zj)j∈Z∗M : zj = z−j

}
(11)

The definition of natural projection mapping π is shown in Equation (12).

∀t ∈ H, π(t) = (t0, t1 . . . tN/2) ∈ CN/2 (12)

The encoding function is as follows:

Cϕ(M)/2 π−1
−−→ H

⌊·⌉σ(R)−−−−→ σ(R) σ−1
−−→ R

z = (zi)i∈T 7−→ π−1(z)

7−→
⌊

π−1(z)
⌉

σ(R)

7−→ σ−1
(⌊

π−1(z)
⌉

σ(R)

)
This mathematical transformation describes a sequence of mappings from a complex

vector space Cϕ(M)/2 through intermediate algebraic structures to a ringR.
1. The first mapping π−1 transforms from Cϕ(M)/2 into the space H.
2. The next step involves rounding, denoted by ⌊·⌉σ(R), which projects elements from

H into σ(R).
3. The final transformation σ−1 maps the result back into the ringR.
The notation z = (zi)i∈T represents an input vector, which undergoes this series of

transformations, ensuring that the final result is within the target ringR.
The encoding process is as follows:
CKKS.Encode(z; ∆). The encoding phase transforms a (N/2)-dimensional complex

vector z = (zj)j∈T ⊆ Z[i]N/2 into a ring element compatible with homomorphic operations.
Initially, the map π−1 projects z into the space H. A precision-preserving scaling operation
is then applied by multiplying the projected result with a scaling factor ∆, which amplifies
the fractional components of z to minimize information loss during discretization. Subse-
quently, a coordinate-wise rounding function ⌊·⌉σ(R) rounds the scaled value, where σ(R)
denotes the ring’s canonical coefficient embedding space.

The encoding process can be expressed as

m(X) = ⌊σ−1(∆ · π−1(z))⌉ ∈ R

The encryption process is as follows:
CKKS.Encpk(m). Let v ← ZO(0.5) and e0, e1 ← DG(σ2). Then, we generate the

following ciphertext:

c = v · pkchannel1 + (m + e0, e1) (mod qL). (13)

Step 4: Perform homomorphic encryption computation
CC needs to verify and match the identity information of the data provider before

performing CKKS operations to assure the legitimacy of data provider’s identity. Subse-
quently, legitimate participants will undergo privacy calculations and the results will be
returned to the requester of the privacy calculations.

The basic operations of homomorphic encryption include addition and multiplication,
and the calculation process is as follows:

Sensors 2025, 25, 4344 17 of 28

CKKS.Add(c1, c2). For c1, c2 ∈ R2
qe , Homomorphic addition of two ciphertext mes-

sages to obtain ciphertext cadd:

cadd ← c1 + c2 (mod qℓ).

CKKS.Multevk(c1, c2). The evaluation key evkchannel1 is required to perform the CKKS
multiplication operation, we assume two ciphertext data c1 and c2. For c1 = (b1, a1),
c2 = (b2, a2) ∈ R2

qe , we can get (d0, d1, d2) = (b1b2, a1b2 + a2b1, a1a2) (mod qℓ). We obtain
the ciphertext cmult after homomorphic multiplication:

cmult ← (d0, d1) +
⌊

P−1 · d2 · evkchannel1

⌉
(mod qℓ).

The specific content of multiplication ciphertext cmult is as follows:

cmult =(ct0, ct1)

=(d0 +
⌊
−P−1 · d2 · a′ · s + P−1 · d2 · e′ + d2 · s2

⌉
,

d1 +
⌊

P−1 · d2 · a′
⌉
)

(14)

Step 5: Decrypt encrypted data and decode it
The CKKS PN of the privacy computation requester from channel 1 decrypts and

decodes the homomorphic encryption operation result.
The data decryption process is as follows:
CKKS.Decsk(c). For c = (b, a), the CKKS PN of channel 1 decrypts ciphertext c with

skchannel1 to obtain polynomial plaintext information. The calculation process is shown in
Equation (15).

m = b + a · s (mod qℓ). (15)

The decoding process is as follows:
CKKS.Decode(m; ∆). For a given plaintext polynomial m(X) ∈ R, it is necessary

to first use σ for canonical embedding to obtain σ(m), then remove the scaling factor
with ∆−1 · σ(m) and finally use π for projection mapping to obtain the message vector z
as follows:

z← π(∆−1 · σ(m)) ∈ CN/2

5.4. Access Permission Management

This section will introduce the specific process of managing access permissions for
IoT devices. Managing access permissions for IoT devices includes IoT devices permission
update and revocation. Our solution is based on DID to implement access control for
IoT devices. The DID documents registered on the blockchain do not involve permission
information. Our scheme achieves access permission management for IoT devices through
the DID status list and attribute list managed by the AC.

5.4.1. Permission Update

When the role or access scope of an IoT device needs to be changed, permission
updates will be implemented through the following steps.

Step 1: Trigger permission update request
The IoT device submits a permission update request to the AC with Requestupdate(DID,

attribute′, sign(attribute′, timestamp)). The request information includes DID information,
new permission attribute information attribute′, and signature information with a times-
tamp sign(attribute′, timestamp).

Step 2: Verification and execution

Sensors 2025, 25, 4344 18 of 28

The AC verifies the validity of the request signature and the correctness of the new per-
mission attributes Veri f yupdate(sign(attribute′, timestamp), attribute′). After verification,
the AC updates the attribute list information bound to the DID and generates an update
event log.

Step 3: Issue new credentials
After the permissions are updated, the AC synchronizes the key operation hash of the

permission update to the blockchain to achieve tamper-proof auditing. At the same time,
the AC needs to issue verifiable credentials containing the new permissions to IoT devices
to ensure that the devices can prove their latest permissions to resource providers.

5.4.2. Permission Revocation

When the private key of an IoT device is leaked, the device is scrapped, or it needs
to be permanently disabled, we need to revoke the permissions of the IoT device. This is
achieved through the DID status list in the AC to revoke DID permissions. The permission
revocation is implemented through the following steps.

Step 1: Initiate permission revocation
Permission revocation can be initiated autonomously by IoT devices or directly by

AC Requestrevocation(DID, typerevocation). To facilitate subsequent traceability of permission
revocation operations, permission revocation must provide the revocation type typerevocation

(e.g., private key leakage or device scrapping).
Step 2: Update DID status list
When updating the DID status list, the system first checks the current status of the

target DID, then marks the target DID status as revoked in the DID status list and deletes
the attribute list information bound to the target DID. At the same time, it records the
revocation timestamp, administrator information who performed the revocation operation,
revocation reason type, and other information. Additionally, the verifiable credentials
associated with the DID must be added to the verifiable credential revocation list.

Step 3: Broadcast the results of permission revocation
To prevent IoT devices whose permissions have been revoked from continuing to

exchange data with other devices, the AC will broadcast the permission revocation re-
sults, and IoT devices will terminate data exchange with related devices based on the
revocation results.

Our scheme model involves the trusted registration of IoT devices, secure and efficient
data sharing among IoT devices within the same domain, and privacy-protected data
collaboration processes among IoT devices across domains. It meets the data sharing needs
within and across IoT domains, providing a secure, efficient, and trusted data sharing
solution for IoT devices.

6. Security Analysis
6.1. Privacy Protection

The system model of this scheme adopts the blockchain multi-channel mechanism to
achieve the security of privacy computation between IoT devices in different channels by
isolating different categories of IoT devices using blockchain channels so that they cannot
directly interact with each other and uses the CKKS homomorphic encryption algorithm
to make them carry out secure and private computation without exposing their own data
so that our scheme is capable of achieving data privacy security in IoT devices during the
data sharing process.

Furthermore, to enhance identity privacy protection, this scheme integrates DID into
the IoT devices identity management process. Each IoT device autonomously generates its
own DID and registers it with the blockchain through an authoritative center. This approach

Sensors 2025, 25, 4344 19 of 28

ensures that the IoT device takes total control of its own identity rather than having to rely
on a centralized identity provider. Since DIDs are stored on the blockchain, they provide an
anti-tamper and authenticatable identity mechanism, effectively preventing unauthorized
identity manipulation and improving the security and privacy of IoT devices sharing.

6.2. IND-CPA Security

Theorem 1. Assuming that the RLWE problem holds, the system model proposed in this scheme is
IND-CPA secure [31].

Proof. To demonstrate the IND-CPA security of our scheme, we begin by assuming the
existence of an adversary A that is capable of compromising the IND-CPA security within
polynomial time and with non-negligible advantage. Based on this assumption, we con-
struct a simulator B that leverages A’s capabilities to solve the underlying RLWE problem.

Initialization: Select the polynomial ring R = Z[x]/(xn + 1) and a scaling factor ∆. Let
p > 0 be a fixed base and q0 be a modulus. Define a modulus chain Q = q0 · q1 · · · · · qL,
where qℓ = pℓ · q0 for 0 < ℓ ≤ L.

Setup: The simulator B receives an RLWE instance (a, b), where b = a · s + e or b is
uniformly random. s is a secret vector, and e is a small noise term. Set µ = 1 if b = a · s + e,
and µ = 0 if b is a uniformly random value.

Query Phase 1: The adversary A can arbitrarily select a plaintext message m to submit
to the oracle. The oracle will use the encryption key pk, which is known to the challenger
but unknown to the adversary, to run the encryption algorithm and return the generated
ciphertext ct to adversary A.

Challenge: The adversary A selects plaintexts m0, m1 and submits them to B. B
randomly selects r ∈ {0, 1} and encrypts mr to obtain the following ciphertext:

C∗ = (c1, c2) = (b · v + mr + e0, a · v + e1) (16)

Query Phase 2: The adversary A can continue to send encrypted requests to the oracle.
Guess: The adversary A outputs r′ as its guess for r. If the adversary A can success-

fully guess r, then B considers b = a · s + e, otherwise B considers b to be a uniformly
random value.

Let µ = 1 (i.e., b = a · s + e), then A’s success probability is

Pr[r′ = r|µ = 1] =
1
2
+ ϵ (17)

When µ = 0 (i.e., b is uniformly random), the probability of A correctly guessing is

Pr[r′ = r|µ = 0] =
1
2

(18)

Thus, the advantage of simulator B is given by the following:

AdvRLWE
B =

∣∣∣∣1
2

Pr[B = 1|µ = 1] +
1
2

Pr[B = 0|µ = 0]
∣∣∣∣

=

∣∣∣∣1
2

Pr[r′ = r|µ = 1] +
1
2

Pr[r′ = r|µ = 0]− 1
2

∣∣∣∣
=

∣∣∣∣1
2

(
1
2
+ ϵ

)
+

1
2

(
1
2

)
− 1

2

∣∣∣∣
=

ϵ

2

(19)

Sensors 2025, 25, 4344 20 of 28

If A has a non-negligible advantage ϵ in breaking IND-CPA security, then B has a
non-negligible advantage ϵ

2 in solving the RLWE problem. This contradicts the RLWE
assumption, proving that our scheme satisfies the IND-CPA security model.

6.3. Cybersecurity Attack Analysis

The IoT trusted data sharing scheme based on multi-channel blockchain proposed in
this paper effectively defends against cybersecurity attacks such as replay attacks, Sybil
attacks, and distributed denial-of-service (DDoS) attacks through systematic design.

In terms of replay attack defense, the scheme relies on DID challenge–response authen-
tication and timestamps to counter replay attacks. The challenge–response authentication
method requires signing and verifying a random number during each authentication
process to prevent replay attacks on identity verification. Additionally, the scheme uses
timestamps to block duplicate or expired requests.

In terms of Sybil attack defense, the solution uses DID and blockchain channel mecha-
nisms to verify and manage IoT devices. Each IoT device must register a unique on-chain
anchored DID identity, and the DID registration process requires strict certification by the
AC to ensure the legitimacy of the IoT device. Additionally, the blockchain multi-channel
mechanism further strengthens defense. Devices from different domains are isolated into
independent blockchain channels, and each channel implements strict node access control
to defend against Sybil attacks.

In terms of DDoS attack defense, the solution employs a distributed architecture and
blockchain channel isolation mechanism to safeguard against DDoS attacks that threaten
system availability. The multi-channel mechanism naturally divides network, preventing
system-wide paralysis caused by DDoS attacks. Data sharing within and across domains
requires the participation of PNs. The blockchain contains a large number of distributed
PNs, ensuring the system’s normal operation even if some PNs are attacked. The data
storage layer uses the IPFS distributed file system, where original files are distributed
across multiple nodes. Attackers cannot destroy stored data by attacking a single storage
node, thereby defending against DDoS attacks.

6.4. Correctness Analysis

A CKKS encryption/decryption scheme’s correctness relies on controlling the error
terms during encryption and ensuring the accuracy of the encoding/decoding processes.
The detailed analysis is as follows:

Encryption Process: The ciphertext c = (c0, c1) = v · pk + (m + e0, e1), where
pk = (b, a) = (−as + e, a). Expanding this yields the following:

c0 = v · b + m + e0 = v(−as + e) + m + e0,

c1 = v · a + e1.

Decryption Process: For the ciphertext data c = (c0, c1), we decrypt it using the private
key sk = (1, s), and the decryption process is as follows:

c0 + c1 · s = [v(−as + e) + m + e0] + (va + e1)s

= −vas + ve + m + e0 + vas + e1s

= m + ve + e0 + e1s (mod qℓ)

≈ m

Error-bound Discussion: An encryption c of m will satisfy ⟨c, sk⟩ = m + e (mod qL).
Encryption noise e is bounded by Bbegin = 8

√
2σN + 6σ

√
N + 16σ

√
hN, where the constant

Sensors 2025, 25, 4344 21 of 28

Bbegin denotes an encryption bound. If c← CKKS.Encpk(m) and m← CKKS.Encode(z; ∆)
for some z ∈ Z[i]N/2 and ∆ > N + 2Bbegin, then CKKS.Decode(CKKS.Decsk(c)) = z. Let
(ci, ℓ, νi, Bi) be encryptions of mi ∈ S for i = 1, 2. For addition of c1 and c2, the error in
the output ciphertext is limited to the sum of the two errors in the input ciphertext. For
the multiplication of c1 and c2 with an error bounded by ∥m1e2 + m2e1 + e1e2 + e′′∥can

∞ +

Bscale ≤ ν1B2 + ν2B1 + B1B2 + P−1 · qℓ · Bks + Bscale, where Bks = 8σN/
√

3 and
Bscale =

√
N/3 · (3 + 8

√
h).

7. Performance and Evaluation
7.1. Functionality Comparison

A comparison of this scheme with existing schemes is shown in Table 4. Our proposed
scheme in this paper achieves multidimensional innovation in the core requirements
of trusted data sharing in IoT. Below is a detailed comparison from the perspective of
functional architecture:

Table 4. Functionality comparison with existing data sharing schemes.

Scheme Decentralized Identity Platform Cross Domain Sharing Privacy Protection

Scheme [18] – Hyperledger fabric – Paillier
Scheme [22] – Blockchain – CP-ABE
Scheme [32] – Federated Blockchain – ABE

Proposed Scheme ✓
IPFS, Hyperledger

fabric ✓ CKKS

7.1.1. Autonomous Identity Control

Compared to scheme [18], scheme [22], and scheme [32], this paper adopts DID
technology to replace the traditional identity management approach, thus strengthening
the system’s security and privacy protection. Traditional identity management relies on a
centralized authentication authority, which carries the danger of a single-site failure and
may lead to the disclosure of private user identity information during data sharing. DID
technology, on the other hand, stores identity information through the blockchain, allowing
users to independently take control of their identity information rather than depending
on a third-party organization to store it, which enhances the decentralization of identity
management and reduces the risk of identity forgery and tampering.

7.1.2. Blockchain Storage Capacity Limit

Scheme [18], scheme [22], and scheme [32] all utilize the cloud to store data and upload
the index information to the blockchain, although this scheme solves the blockchain storage
capacity limitation problem, but storing data through the cloud has the dangers of single
point of failure.

This paper innovatively constructs a hybrid architecture of on-chain deposit and off-
chain storage. Original IoT devices data encrypted and saved in IPFS network, unique data
fingerprints are generated through content addressing, and only key data information is
stored on the chain, which significantly improves the storage capacity of the system. When
accessing the data, the data requester needs to verify the requester’s authority through a
smart contract and can only access the shared data on IPFS after passing the verification.
This hybrid architecture ensures trustworthiness while dramatically reducing storage costs
compared to pure on-chain data storage solutions, providing a viable path for massive data
storage in large-scale IoT devices.

Sensors 2025, 25, 4344 22 of 28

7.1.3. Cross-Domain Data Sharing Scenario

Existing schemes such as scheme [18], scheme [22], and scheme [32] do not fulfill
the need for sharing data in cross-domain scenarios. In this paper, we propose a cross-
domain sharing framework based on channel segregation and CKKS encryption. For
cross-domain data sharing, cross-domain data sharing is realized through PN. Using CKKS
to homomorphic encrypt cross-domain shared data reduces the computational pressure
on both sides of the data by implementing homomorphic encryption operations in a third-
party computing center, while CKKS enables data to be homomorphically computed in the
form of ciphertexts in a third-party computing center to avoid data privacy leakage.

7.2. Computation Cost Comparison

In this subsection, the computational overhead of different schemes will be compared,
and the meaning of symbols related to computational overhead is shown in Table 5. Table 6
shows the computation overhead of our scheme compared to other schemes, including the
computation overhead comparison of key generation, data encryption and data decryption.

From the computation overhead comparison results, we can find that our scheme
performs well in computation overhead compared to other schemes while realizing the
trusted data sharing of IoT devices. The main computation overhead of this scheme is to
utilize CKKS to realize the data sharing between cross-domain IoT devices, so this scheme
has good feasibility in terms of computation overhead.

Table 5. Computation overhead symbol meaning.

Symbol Description

n The number of attributes
TH Hash operation time

Texp Exponentiation operation time
TP Pairing operation time
Tm Scalar multiplication operation time
Td Scalar division operation time
Ts Scalar subtraction operation time
Ta Scalar addition operation time
TM Multiplication operation time
TD Division operation time
TA Addition operation time

Tmap Mapping operation time

Table 6. Comparison of computational cost.

Scheme Keygen Encryption Decryption

Scheme [18] 2Tm + 2Ts 2Texp + TM + Ta Texp + TM + TD + TS
Scheme [22] (2n + 3)Texp + TP + nTH + nTM nTH + (2n + 2)Texp 2TP
Scheme [32] 4Texp + 3Td + Ts + Ta Texp + TP + Tm TP + TM + TD

Proposed Scheme 3Tmul + 3TA + Texp 2TM + 2TA + 2Tmap 2TM + TA + 2Tmap

7.3. Experimental Analysis

This experiment uses the tenseal library to implement performance testing of CKKS.
The environment of the experiment includes an Intel (R) Core (TM) i7-12800HX 2.00 GHz
CPU, 16 GB RAM, Pycharm software environment, Ubuntu 20.04, hyperledge fabric 2.2
and Python interpreter version 3.12. The configuration information of the virtual machine
includes 2 GB of memory, a single-core processor, and 20 GB of disk space. In addition,
IPFS is utilized for distributed data storage.

Sensors 2025, 25, 4344 23 of 28

This testing experiment includes testing the CKKS key generation time under different
cases, testing the CKKS encryption and decryption time under different cases, and testing
the relationship between ciphertext size and plaintext size under different cases. The
parameter configurations for different cases are shown in the Table 7. Performance tests
are also conducted on AES encryption and decryption efficiency and IPFS file upload and
download efficiency.

Table 7. Parameter configurations for CKKS homomorphic encryption.

Name Poly Modulus Degree Coefficient Modulus Scale

Case1 8192 [60, 40, 40, 60] 240

Case2 16,384 [60, 40, 40, 60] 240

Case3 16,384 [50, 40, 40, 50] 240

Case4 32,768 [50, 40, 40, 50] 240

The CKKS key generation time is presented in Figure 4. It can be observed that the
increase in the polynomial modulus directly affects the key generation time. The larger the
polynomial modulus, the longer the key generation time. From the comparison between
case 2 and case 3, we can see that the difference in coefficient modulus also affects the key
generation time.

Figure 4. Comparison of key generation time under different cases.

From Figure 5, it can be seen that the ciphertext size and plaintext size of all cases
are linearly correlated, and ciphertext size grows as the plaintext size grows. Therefore,
this linear relationship makes the size of ciphertext data after encryption of plaintext
data acceptable.

Figure 6 and Figure 7 compare the encryption time and decryption time, respectively,
as the data size changes under different cases. From Figure 6, it can be seen that the
encryption time in all cases increases with the amount of data. It can be observed that
case 4 requires significantly more encryption time than other cases, which reflects that the
encryption time is also related to the value of polynomial modulus. The higher the value of
polynomial modulus, the longer the encryption time will become. From Figure 7, it can
also be observed that the decryption time required for case 4 is generally higher than the
other three cases.

Sensors 2025, 25, 4344 24 of 28

Figure 5. The relationship between ciphertext size and plaintext size in different cases.

Figure 6. Comparison of encryption time under different cases.

Figure 7. Comparison of decryption time under different cases.

AES symmetric encryption of the original data file is required before uploading the
data to IPFS. As shown in Figure 8 is the trend graph of AES symmetric encryption and
decryption time with the change of file size, from the experimental results can be found that

Sensors 2025, 25, 4344 25 of 28

the encryption and decryption time and file size are linearly correlated, and the encryption
and decryption time is basically consistent.

Figure 8. Trend graph of AES encryption and decryption times with file size.

To conduct performance tests for file uploads and downloads on IPFS, we set up a
private network with three IPFS peers on a local virtual machine. These three IPFS peers
are connected via a swarm key. We then conducted performance testing by uploading
and downloading eight data files of different sizes to and from IPFS (file sizes were 5 MB,
10 MB, 25 MB, 50 MB, 75 MB, 100 MB, 150 MB, and 200 MB). The performance test results
for IPFS file upload and download efficiency are shown in Figure 9. From the figure, we
can see that the time required for uploading IPFS files is linearly related to the file size, and
the download time of the file basically stays around 35 ms, the experimental results can
reflect that this program is feasible to utilize IPFS for data storage.

Figure 9. Trend graph of IPFS file upload and download times with file size.

The environment configuration required for Hyperledger Fabric 2.2 in this experi-
ment includes Docker 28.0.1 and Docker Compose 1.29.1 configuration information. The
Raft consensus mechanism is used. The fabric network is configured with three channels
and two organizations, each organization containing four peers. Organization 1 is joined
to Channel 1 (for internal business), Organization 2 is joined to Channel 2 (for internal
business), and both Organization 1 and Organization 2 are joined to Channel 3 (for gen-

Sensors 2025, 25, 4344 26 of 28

eral business). Channels are managed based on the business requirements of different
organizations. Additionally, we tested the fabric network, with the test results showing a
throughput of 630.6 tps. This test results demonstrate the feasibility of hyperledger fabric
for IoT data sharing.

Overall, the above experiments reflect that different parameter configurations directly
affect the generation of keys and the encryption and decryption time of data. While the
CKKS encryption algorithm becomes more secure as the polynomial modulus grows, the
efficiency of the overall algorithm also decreases significantly as the polynomial modulus
value grows. Therefore, suitable parameter configurations can be selected to balance
security and efficiency requirements in different scenarios. Using IPFS to realize secure
sharing of big data files can effectively solve the blockchain capacity limitation problem. In
addition, the test results of the hyperledger fabric blockchain platform used in our scheme
further validate the feasibility of this scheme for data sharing in IoT.

8. Conclusions
Aiming at the different data sharing needs within and across domains in the current

IoT, this paper proposes a trusted data sharing scheme for IoT based on multi-channel
blockchain to solve the dual challenges of efficient intra-domain collaboration and cross-
domain privacy protection in IoT. The scheme achieves data isolation for IoT devices
in different domains by introducing a multi-channel ledger isolation mechanism. Intra-
domain IoT devices support efficient data sharing and secure access control through hybrid
encryption and automatic execution of smart contracts. The cross-domain IoT devices
realize privacy computation in ciphertext state and secure data sharing through CC with
the help of CKKS fully homomorphic encryption algorithm.

In addition, this solution combines DID technology to empower IoT devices with
autonomous identity management capabilities, avoiding the danger of centralized identity
servers creating a single point of privacy disclosure. Meanwhile, through the co-storage
mechanism of IPFS and blockchain on-chain and off-chain, it addresses the limited storage
capability of blockchain and enables the efficient and trustworthy sharing of big data files.
Security analysis shows that our scheme satisfies the IND-CPA security model. Future
work will focus on optimizing the computational efficiency of the CKKS algorithm to
support more complex cross-domain collaboration scenarios and exploring a lightweight
verification mechanism based on zero-knowledge proof.

Author Contributions: Conceptualization, H.G., Z.M. and G.L.; methodology, H.Z. and H.G.; soft-
ware, H.Z., H.G., Z.M. and G.L.; validation, H.Z., H.G. and Z.M.; formal analysis, G.L.; investigation,
G.L.; resources, Z.M.; data curation, H.Z.; writing—original draft preparation, H.Z.; writing—review
and editing, H.Z., H.G., Z.M. and G.L.; visualization, H.G. and G.L.; supervision, H.G., Z.M. and
G.L.; project administration, H.Z.; funding acquisition, Z.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research work is supported by the National Natural Science Foundation of China
(Grant No. U24B20146) and the Beijing University of Posts and Telecommunications—China Mobile
Communications Group Co., Ltd. Joint Institute, and was funded by the National Key Research and
Development Plan in China (Grant No. 2020YFB1005503) and Beijing Natural Science Foundation
Project (Grant No. M21034).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, and further inquiries can be directed to the corresponding author.

Sensors 2025, 25, 4344 27 of 28

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Avellaneda, O.; Bachmann, A.; Barbir, A.; Brenan, J.; Dingle, P.; Duffy, K.H.; Maler, E.; Reed, D.; Sporny, M. Decentralized identity:

Where did it come from and where is it going? IEEE Commun. Stand. Mag. 2019, 3, 10–13. [CrossRef]
2. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic encryption for arithmetic of approximate numbers. In Proceedings of the

Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, 3–7 December 2017; Proceedings, Part I 23; Springer: Berlin/Heidelberg, Germany,
2017; pp. 409–437.

3. Kumar, R.; Tripathi, R. Implementation of distributed file storage and access framework using IPFS and blockchain. In
Proceedings of the 2019 Fifth International Conference on Image Information Processing (ICIIP), Shimla, India, 15–17 November
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 246–251.

4. Manoj Athreya, A.; Kumar, A.A.; Nagarajath, S.; Gururaj, H.; Ravi Kumar, V.; Sachin, D.; Rakesh, K. Peer-to-peer distributed
storage using interplanetary file system. In Proceedings of the International Conference on Artificial Intelligence and Data
Engineering, Udupi, India, 23–24 May 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 711–721.

5. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich,
Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15.

6. Gao, L.; Wu, C.; Yoshinaga, T.; Chen, X.; Ji, Y. Multi-channel blockchain scheme for internet of vehicles. IEEE Open J. Comput. Soc.
2021, 2, 192–203. [CrossRef]

7. Harba, E.S.I. Secure data encryption through a combination of AES, RSA and HMAC. Eng. Technol. Appl. Sci. Res. 2017,
7, 1781–1785. [CrossRef]

8. Mahalle, V.S.; Shahade, A.K. Enhancing the data security in Cloud by implementing hybrid (Rsa & Aes) encryption algorithm. In
Proceedings of the 2014 International Conference on Power, Automation and Communication (INPAC), Maharashtra, India, 6–8
October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 146–149.

9. Lin, I.C.; Yeh, I.; Chang, C.C.; Liu, J.C.; Chang, C.C. Designing a Secure and Scalable Data Sharing Mechanism Using Decentralized
Identifiers (DID). CMES-Comput. Model. Eng. Sci. 2024, 141, 809–822. [CrossRef]

10. Fukami, Y.; Shimizu, T.; Matsushima, H. The impact of decentralized identity architecture on data exchange. In Proceedings of
the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; IEEE: Piscataway, NJ,
USA, 2021; pp. 3461–3465.

11. Reddi, S.; Rao, P.M.; Saraswathi, P.; Jangirala, S.; Das, A.K.; Jamal, S.S.; Park, Y. Privacy-preserving electronic medical record
sharing for IoT-enabled healthcare system using fully homomorphic encryption, IOTA, and masked authenticated messaging.
IEEE Trans. Ind. Inform. 2024, 20, 10802–10813. [CrossRef]

12. Qiu, F.; Yang, H.; Zhou, L.; Ma, C.; Fang, L. Privacy preserving federated learning using ckks homomorphic encryption. In
Proceedings of the International Conference on Wireless Algorithms, Systems, and Applications, Dalian, China, 24–26 November
2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 427–440.

13. Rahulamathavan, Y. Privacy-preserving similarity calculation of speaker features using fully homomorphic encryption. arXiv
2022, arXiv:2202.07994.

14. Horvath-Bojan, P. A Fully-Homomorphic Encryption System for Privacy-Preserving Network-Based Contact Tracing. Master’s
Thesis, Politecnico di Milano, Milan, Italy, 2021.

15. Rosca, M.; Stehlé, D.; Wallet, A. On the ring-LWE and polynomial-LWE problems. In Proceedings of the Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Aviv, Israel, 29 April–3 May 2018; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 146–173.

16. Li, W.; Yang, B.; Song, Y. Secure multi-party computing for financial sector based on blockchain. In Proceedings of the 2023 IEEE
14th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 17–18 October 2023; IEEE:
Piscataway, NJ, USA, 2023; pp. 145–151.

17. Wang, C.; Ming, Y.; Liu, H.; Feng, J.; Zhang, N. Secure and flexible data sharing with dual privacy protection in vehicular digital
twin networks. IEEE Trans. Intell. Transp. Syst. 2024, 25, 12407–12420. [CrossRef]

18. Zheng, B.K.; Zhu, L.H.; Shen, M.; Gao, F.; Zhang, C.; Li, Y.D.; Yang, J. Scalable and privacy-preserving data sharing based on
blockchain. J. Comput. Sci. Technol. 2018, 33, 557–567. [CrossRef]

19. Makhdoom, I.; Zhou, I.; Abolhasan, M.; Lipman, J.; Ni, W. PrivySharing: A blockchain-based framework for privacy-preserving
and secure data sharing in smart cities. Comput. Secur. 2020, 88, 101653. [CrossRef]

20. Zhang, G.; Li, T.; Li, Y.; Hui, P.; Jin, D. Blockchain-based data sharing system for ai-powered network operations. J. Commun. Inf.
Netw. 2018, 3, 1–8. [CrossRef]

http://doi.org/10.1109/MCOMSTD.2019.9031542
http://dx.doi.org/10.1109/OJCS.2021.3070714
http://dx.doi.org/10.48084/etasr.1272
http://dx.doi.org/10.32604/cmes.2024.051612
http://dx.doi.org/10.1109/TII.2024.3397343
http://dx.doi.org/10.1109/TITS.2024.3368342
http://dx.doi.org/10.1007/s11390-018-1840-5
http://dx.doi.org/10.1016/j.cose.2019.101653
http://dx.doi.org/10.1007/s41650-018-0024-3

Sensors 2025, 25, 4344 28 of 28

21. Zheng, X.; Mukkamala, R.R.; Vatrapu, R.; Ordieres-Mere, J. Blockchain-based personal health data sharing system using cloud
storage. In Proceedings of the 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services
(Healthcom), Ostrava, Czech Republic, 17–20 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6.

22. Ma, X.; Wang, C.; Wang, L. The data sharing scheme based on blockchain. In Proceedings of the 2nd ACM International
Symposium on Blockchain and Secure Critical Infrastructure, Taipei, Taiwan, 1–5 June 2020; pp. 96–105.

23. Cui, J.; Ouyang, F.; Ying, Z.; Wei, L.; Zhong, H. Secure and efficient data sharing among vehicles based on consortium blockchain.
IEEE Trans. Intell. Transp. Syst. 2021, 23, 8857–8867. [CrossRef]

24. Wang, S.; Zhang, Y.; Zhang, Y. A blockchain-based framework for data sharing with fine-grained access control in decentralized
storage systems. IEEE Access 2018, 6, 38437–38450. [CrossRef]

25. Mazzocca, C.; Acar, A.; Uluagac, S.; Montanari, R.; Bellavista, P.; Conti, M. A survey on decentralized identifiers and verifiable
credentials. IEEE Commun. Surv. Tutor. 2025. [CrossRef]

26. Alangot, B.; Szalachowski, P.; Dinh, T.T.A.; Meftah, S.; Gana, J.I.; Aung, K.M.M.; Li, Z. Decentralized identity authentication with
auditability and privacy. Algorithms 2022, 16, 4. [CrossRef]

27. Johnson, D.; Menezes, A.; Vanstone, S. The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 2001, 1, 36–63.
[CrossRef]

28. Galla, L.K.; Koganti, V.S.; Nuthalapati, N. Implementation of RSA. In Proceedings of the 2016 International Conference on
Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, India, 16–17 December
2016; IEEE: Piscataway, NJ, USA, 2016; pp. 81–87.

29. Acar, A.; Aksu, H.; Uluagac, A.S.; Conti, M. A survey on homomorphic encryption schemes: Theory and implementation. ACM
Comput. Surv. (Csur) 2018, 51, 1–35. [CrossRef]

30. Bossuat, J.P.; Cammarota, R.; Chillotti, I.; Curtis, B.R.; Dai, W.; Gong, H.; Hales, E.; Kim, D.; Kumara, B.; Lee, C.; et al. Security
guidelines for implementing homomorphic encryption. IACR Commun. Cryptol. 2025, 1. [CrossRef]

31. Li, B.; Micciancio, D. On the security of homomorphic encryption on approximate numbers. In Proceedings of the Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 17–21 October 2021;
Springer: Berlin/Heidelberg, Germany, 2021; pp. 648–677.

32. Liu, J.; Fan, Y.; Sun, R.; Liu, L.; Wu, C.; Mumtaz, S. Blockchain-aided privacy-preserving medical data sharing scheme for
e-healthcare system. IEEE Internet Things J. 2023, 10, 21377–21388. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TITS.2021.3086976
http://dx.doi.org/10.1109/ACCESS.2018.2851611
http://dx.doi.org/10.1109/COMST.2025.3543197
http://dx.doi.org/10.3390/a16010004
http://dx.doi.org/10.1007/s102070100002
http://dx.doi.org/10.1145/3214303
http://dx.doi.org/10.62056/anxra69p1
http://dx.doi.org/10.1109/JIOT.2023.3287636

	Introduction
	Related Works
	Preliminaries
	Decisional Ring Learning with Errors (DRLWE) Assumption
	Decentralized Identifier (DID)
	CKKS Homomorphic Encryption Scheme

	Overview
	System Model
	Threat Model
	Security Requirement
	Multi-Channel Blockchain Architecture

	Detail of Our Proposed Scheme
	System Initialization
	In-Channel Data Sharing
	Data Privacy Computation Between Cross-Channel IoT Devices
	Access Permission Management
	Permission Update
	Permission Revocation

	Security Analysis
	Privacy Protection
	IND-CPA Security
	Cybersecurity Attack Analysis
	Correctness Analysis

	Performance and Evaluation
	Functionality Comparison
	Autonomous Identity Control
	Blockchain Storage Capacity Limit
	Cross-Domain Data Sharing Scenario

	Computation Cost Comparison
	Experimental Analysis

	Conclusions
	References

