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Abstract

Artificial intelligence and bioacoustics represent a paradigm shift in non-invasive poultry
welfare monitoring through advanced vocalization analysis. This comprehensive system-
atic review critically examines the transformative evolution from traditional acoustic feature
extraction—including Mel-Frequency Cepstral Coefficients (MFCCs), spectral entropy, and
spectrograms—to cutting-edge deep learning architectures encompassing Convolutional
Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, attention mecha-
nisms, and groundbreaking self-supervised models such as wav2vec2 and Whisper. The
investigation reveals compelling evidence for edge computing deployment via TinyML
frameworks, addressing critical scalability challenges in commercial poultry environments
characterized by acoustic complexity and computational constraints. Advanced appli-
cations spanning emotion recognition, disease detection, and behavioral phenotyping
demonstrate unprecedented potential for real-time welfare assessment. Through rigorous
bibliometric co-occurrence mapping and thematic clustering analysis, this review exposes
persistent methodological bottlenecks: dataset standardization deficits, evaluation proto-
col inconsistencies, and algorithmic interpretability limitations. Critical knowledge gaps
emerge in cross-species domain generalization and contextual acoustic adaptation, demand-
ing urgent research prioritization. The findings underscore explainable Al integration as
essential for establishing stakeholder trust and regulatory compliance in automated welfare
monitoring systems. This synthesis positions acoustic Al as a cornerstone technology
enabling ethical, transparent, and scientifically robust precision livestock farming, bridging
computational innovation with biological relevance for sustainable poultry production
systems. Future research directions emphasize multi-modal sensor integration, standard-
ized evaluation frameworks, and domain-adaptive models capable of generalizing across
diverse poultry breeds, housing conditions, and environmental contexts while maintaining
interpretability for practical farm deployment.

Keywords: poultry vocalization; acoustic monitoring; edge Al; TinyML; animal welfare;
bioacoustics classification

1. Introduction

The integration of artificial intelligence into monitoring intends to change the land-
scape of animal welfare, behavioral studies, and environmental control. Of many sensing
modalities, acoustic sensing has become a very powerful non-invasive way of analyzing
the physiological and emotional states of poultry. When vocalizations are well captured,
preprocessed, and analyzed, they can provide biological and behavioral information as
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digital biomarkers for other indicators, including stress, disease, environmental discomfort,
and social-emotional cues [1].

This systematic review of literature explores the intersection of bioacoustics, machine
learning (ML), and animal welfare, with poultry calls as the contributing data modality.
Foundational methods, the particularly relevant ones being Mel-Frequency Cepstral Co-
efficients (MFCCs) and spectrogram analysis, have set the foundation and have begun to
be supplanted with or augmented by methods from deep learning (DL), transfer learning,
and self-supervised models such as wav2vec2 and Whisper. This march toward farm de-
ployment is further accelerated by innovations in TinyML, edge computing, and real-time
deployment frameworks. Chickens have more than 30 different types of calls [2] that span
from distress, mating, predator threats, etc. This makes their vocal repertoires one of the
most diverse among domesticated animals. These repertoires may give insights into their
emotional and physiological states, thus making vocalization analysis one of the most
powerful and non-invasive methods to identify their welfare and state. Vocalizations, from
the ethological and communication theory viewpoint, tend to be the selected evolutionary
tools for social coordination developed by environmental pressures and flock dynamics.
Analyzing poultry vocalizations in that sense aligns with embodied cognition, whereby
vocal behavior extends beyond just signaling but becomes a reflection of internal state and
context. Several publicly available datasets—such as chick stress vocalizations [3], laying
hen audio [4], and raw waveform recordings [5]—have enabled reproducible benchmarking
and model comparisons. These and many other datasets are extensively discussed and
compared in Sections 3-5, alongside the models, feature strategies, and evaluation pipelines
they support. This review identifies the trend in methodologies used and key benchmark
architectures through a comprehensive thematic synthesis of peer-reviewed studies and
identifies critical gaps in current approaches. Increasing importance is put on multi-modal
and explainable AL the dynamic acoustic features rather than static; and standardized
datasets and pipelines for reproducibility and generalization. Furthermore, this work adds
bibliometric co-occurrence mapping to illustrate evolving thematic structure in the field,
thereby aiding in identifying future research trajectories and interdisciplinary collabora-
tions. By bridging computational modeling with ethological relevance, this review aims
to inform researchers, practitioners, and technologists about the current state, limitations,
and untapped potential of Al-driven poultry vocalization analysis. The review entails a
systematic search approach [6] as seen in Figure 1 through IEEE Xplore, PubMed, Scopus,
Web of Science, SpringerLink, etc., focusing on research work performed between 2018 and
March 2025. The query consisted of various terms related to poultry vocalizations and Al

(e.g., “chicken,” “acoustic,” “machine learning,” “CNN,” “Transformer,” “wav2vec”).
Database Search Screening Full-Text Review Inclusion Synthesis
AI/ML
[IEEE, PubMed, Scopus | | Title/Abstract | - use | 124 Studies | | 6 Themes |
- Acoustic focus
v‘g:brionfzfllizie’ Relevance I g Behavior/Welfare g I >80% from recent studies | g | VOSviewer |
e On-Farm Suitability ,
|Fromiers, ACM, MDPIL, etc.l ~150 papers Fdge AT/ TinyML focus | Final selected I | Keyword Co-occurrence |

Figure 1. Systematic review pipeline outlining database search, screening, full-text evaluation for
on-farm Al acoustic studies, and thematic synthesis from 124 included papers.

In total, approximately 150 papers were examined, of which 124 were deemed rele-
vant for inclusion based on technical rigor and contribution to poultry acoustic sensing.
Studies employing ML or signal processing on vocalizations related to welfare, behavior,
or disease detection were prioritized and can be referred in the Figure 2. Seminal refer-
ences on acoustic features and deep learning methods (e.g., MFCCs, attention mechanisms)
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are retained to establish technical context. The reviewed literature is organized into six
main themes: acoustic features, ML /DL models, behavior and stress detection, disease
classification, toolkits and pipelines, and on-farm deployment. Notably, over 85% of the
references were published between 2020 and 2025, underscoring the rapid growth of this
interdisciplinary domain.
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Figure 2. Taxonomy of poultry vocalization analysis methods across five categories, including signal
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2. Acoustic Features and Preprocessing Techniques

The meaningful extraction of acoustic features and sound preprocessing techniques are
pivotal in animal vocalization analysis. All the reviewed literature indicates that MFCCs,
STFT, spectral entropy, and Mel-spectrograms have always been the core components of
both traditional and deep learning pipelines. These methods are summarized in Table 1,
showing how static features like MFCCs contrast with dynamic representations such as
cochleagrams and wav2vec? in vocalization analysis. The most popular acoustic feature
is the MFCC, which has been cited in over half of the papers for the classification of an-
imal sounds. They have been used to characterize vocational sounds from broiler birds,
laying hens, chicks, and ducks, and other species, as perceptually relevant frequency infor-
mation is extracted. For example, Umarani et al. [7], Pereira et al. [8], Jung et al. [9], and
Thomas et al. [10] rely heavily on the use of MFCCs for feeding classifiers like LSTM, CNNs,
or k-NN for animal sound classification. In a more technical analysis, standard and en-
hanced MFCC experiments were further elaborated on by Prabakaran and Sriuppili [11]
through certain steps of audio signal analysis that included pre-emphasis, windowing, FFT,
and DCT; compared multiple MFCC-Hybrid configurations. Davis and Mermelstein [12]
compared various speech parameterization methods and concluded that MFCCs out-
perform others in recognition accuracy for speech signals. This observation favors the
continued dominance of the MFCCs in animal sound classification and warrants their
use to proceed with poultry vocalization. Contextual cochleagram features proposed by
Sattar [13] beat the MFCCs by over 20% in acoustic recognition performance in the presence
of environmental noise on the farms, thus raising concerns about the wide acceptance
of MFCCs in smart agriculture settings. Puswal and Liang [14] explored the correlation
between vocal features and anatomical traits in chickens. However, while different morpho-
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logical traits between sexes have been noted, the study has discovered a weak correlation
between vocal acoustics and physiology, suggesting behavioral factors and context may
have a stronger influence on acoustic variability than morphology. This favors the use of
dynamic rather than static acoustic features for classification models in poultry.

The input signals for convolutional networks also often employ spectrograms, es-
pecially log-Mel spectrograms. The work of Zhong et al. [15], Henri and Mungloo-
Dilmohamud [16], Romero-Mujalli et al. [17], Thomas et al. [18], Mao et al. [19],
Mangalam et al. [20], Li et al. [21], and Neethirajan [22] analyzed spectrograms for use
in CNNs or spectrogram-based embedding studies. STFT parameters cleanly turned high-
quality latent space representations with the help of Mel-scaling and z-normalization,
particularly as indicated by Thomas et al. [18] and Sainburg et al. [23].

Spectral entropy is gaining ground as a possible indicator or feature for distress.
Herborn et al. [24] showed that reduced ratings on the spectral entropy scale of distress
calls-from all of which increased calls per day-and long-term welfare and future well-being
outcomes in chicks. In the same line, Ginovart-Panisello et al. [25] had fast-induced stress in
newly hatched broilers using Butterworth filtered signals and centroid spectral parameters.
There are pipelines in a range of past studies to improve preprocessing in real conditions
with lots of noise. Tao et al. [26], MFCC, resorted to ZCR and exponential smoothing to
filter signals before extracting features. Time masking, SpecSameClassMix, and Gaussian
noise augmentation were employed to enhance the theoretical robustness of spectrograms
in the works of Bermant et al. [27] and Soster et al. [3]. Comprehensive augmentations
like frequency masking and noise injection were incorporated as stated by Mao et al. [19].
Thomas et al. [10] included noise suppression layers into their wider strategy for audio
cleaning before deep-mould training.

Besides feature transformation, automated segmentation tools have proven efficient,
similar to the benchmark ones in Terasaka et al. [28] and Michaud et al. [4]. Such studies
involved comparative works using libraries such as Librosa, BirdNET, or Perch and revealed
how BirdNET resulted in a higher F1-score. Merino Recalde [29] developed pykanto, which
is a Python library that facilitates semi-automatic segmentation and labeling of large
acoustic datasets to use them in deep learning models.

Beyond MFCCs and spectrograms, researchers also seek other acoustic represen-
tations. Latent projection techniques were introduced by Sainburg et al. [23], which
sidestep traditional hand-crafted features. The importance of embeddings from perusal
models trained on raw audio can be illustrated in the work by Swaminathan et al. [30]
and Bermant et al. [27]. The representation learned is often superior to the hand-crafted
ones. Some studies also use time-domain parameters such as duration, pitch, zero-
crossing rate, and energy. For instance, Du et al. [31] extracted nine temporal and spec-
tral features based on source-filter theory to detect thermal discomfort in laying hens.
Ginovart-Panisello et al. [32-35] often included metrics such as spectral centroid, vocaliza-
tion rate (VocalNum), and variation in spectral bandwidth in examining the environmental
impacts and stress in broiler chickens.

Taken together, these publications show that acoustic feature design is still a very
lively arena and a pivotal aspect of poultry vocalization analysis. Feature selection can be
completely hand-crafted, learned, or hybrid—the chosen approach substantially affects the
robustness and generalizability of the model under the field circumstances of relatively
noisy, imbalanced, and unlabeled data.
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Table 1. Comparison of static and dynamic acoustic feature sets in animal vocalization studies.
Dynamic features such as cochleagram, SincNet, and wav2vec2 exhibit greater robustness in noisy
and real-world farm environments, whereas static features like MFCC and Mel-spectrogram perform

well in controlled or low-noise settings.

Bermant Feature Name Study/Authors  Model Used Environment }igg‘:;gg Notes
Dvnamic SincNet Bravo Sanchez Raw waveform  Minimal >65% Learnfs direcﬂg frto in
Y etal. [5] classifier preprocessing (NIPS4Bplus) \é\{ave orm, robust to
istortions
. Umarani et al. General o LSTM + MFECC for
Static MFCC [7] LST™M (RAVDESS) 97.22% emotion recognition
Lower for
. 91.02% (cattle), :
Static MECC Jung et al. [9] CNN General 75.78% E}iaens(;) hens—posmbly.due to
background noise
. Comparative setup
Static I%/lgfrg%éegglants * Is)iﬁlfakﬁir??ﬁt MFCC variants  Controlled 94.44% across MFCC
pp variations
. Context-aware . >20% higher Better adaptability to
Dynamic Cochleagram Sattar [13] classifier Noisy farm. than MFCC environmental noise
. . . Birdsong o Limited context
Static Mel-Spectrogram  Henrietal. [16] MobileNetV2 (natural) 84.21% modeling
. Herborn et al. Entropy Chick stress Qualitative Captures emotional
Dynamic  Spectral Entropy [24] analysis study improvement states during distress
. . . SSL embeddings
. Wav2vec2 Swaminathan Fine-tuned Real-world bird Qo
Dynamic Embeddings et al. [30] classifier data F1=28%% outperform
handcrafted features
Static MECC Bhandekar etal. gy Lab 95.66% Strong in low-noise
[36] environments

3. Deep Learning and Classical Models

A vast majority of studies that have analyzed poultry and animal vocalizations con-
centrate on supervised classification techniques, which range from traditional machine
learning models to the latest deep learning architectures. Depending on the aims of the
individual projects, data limitations, and computing setup, MFCCs, spectrograms, or
combinations of audio representations are trained in the models.

3.1. Classical Machine Learning Models

Some traditional classifiers, such as SVM, RF, k-NN, Naive Bayes, and Gaussian Naive
Bayes, have seen their application in the area of poultry sound classification, especially in
cases of low data and resource-constrained environments. These applications and their
reported performances are summarized in Table 2, highlighting how traditional classifiers
continue to play an important role in poultry sound analysis, particularly under low-data
or resource-limited conditions. For example, Bhandekar et al. [36] tested four different
models (SVM, k-NN, Naive Bayes, and Random Forest) using MFCC features extracted
from chicken vocalizations, where SVM scored the best with an accuracy of 95.66%. In
another example, Pereira et al. [8] reported 85.61% accuracy with a Random Forest model
trained on FFT-extracted features to assess the distress of chicks.

Table 2. Performance of classical machine learning models in animal vocalization classification.

Authors Model(s) Reported Accuracy
Pereira et al. [8] Random Forest 85.61%

Tao et al. [26] SVM, RF, k-NN 94.16%

Du et al. [31] SVM Sensitivity = 95.1%
Bhandekar et al. [36] SVM 95.66%

Ginovart-Panisello et al. [37] Gaussian Naive Bayes F1-score = 80%
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Tao et al. [26] considered SVM, RF, CNN, and k-NN for the recognition of broiler
vocalizations using multi-domain features, where k-NN eventually achieved the best
result with an accuracy of 94.16% after feature selection. Ginovart-Panisello et al. [37]
used Gaussian Naive Bayes in detecting vaccine response classified based on MFCCs and
spectral centroid, with an Fl-score of 80%. Du et al. [31] applied SVMs to temporal-spectral
features toward the detection of thermal discomfort at a sensitivity of 95.1%.

3.2. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) have shown tremendous data nowadays in
terms of the usage of deep learning architecture for animal vocalization classification. Sev-
eral studies often apply a standard or customized CNN mechanism to spectrogram inputs
for vocal classification. These CNN-based approaches and their reported performances are
summarized in Table 3, highlighting both standard and specialized architectures applied to
animal vocalization analysis. High performances are realized among birds or poultry via
CNN:ss in vocalization classification by this group of studies, including Zhong et al. [15],
Henri and Mungloo-Dilmohamud [16], Romero-Mujalli et al. [17], Mao et al. [19], Man-
galam et al. [20], and Ginovart-Panisello et al. [37]. Henri and Mungloo-Dilmohamud [16]
compared MobileNetV2, InceptionV3, and ResNet50, with MobileNetV2 achieving 84.21%
accuracy. According to Mangalam et al. [20], a lightweight custom CNN (i.e., with ~300k
parameters) outperformed fine-tuned VGG16. Mao et al. [19] discovered light-VGG11
with a 92.78% decrease in parameters against reference architectures, which retained 95%
accuracy. Further, Ginovart-Panisello et al. [37] used CNNs trained on spectrograms for the
detection of stress. In addition, Mangalam et al. [20], Thomas et al. [10], and Mao et al. [19]
demonstrate further contributions regarding the value of CNNs with frozen or fine-tuned
pretrained backbones.

Some additional specialized applications are as follows:

e Cuan et al. [38,39]: CNN-based detection of Newcastle disease and avian influenza.

e  Ginovart-Panisello et al. [25]: CNNs (ResNet) for detection of acute stress based on
vocalization and thermographic data.

e Lietal. [21]: ResNet-50 trained on MFCC + Logfbank features for chick sex detection.

3.3. Recurrent Models (LSTM, GRU, CRNN)

Research utilizing temporal modeling via RNNs, LSTMs, GRUs, and hybrid CNN-
RNN models appears often in the literature dealing with the sequential structure of vo-
calizations. The models were LSTM and GRU-based, used for species classification and
time-series vocal decoding in Umarani et al. [7] and Bermant et al. [27]. Li et al. [21] and
Xu and Chang [40] utilized GRUs and CRNNss to classify health conditions and chick sex.
Gupta et al. [41] assessed CNN-LSTM, CNN-GRU, and CNN-LMU over large sets of bird
vocalizations, with CNN-LMU achieving the best performance. Jung et al. [9] combined
CNN with LSTM for vocal classification but reported better performance for 2D ConvNets
than for the hybrid model. Huang et al. [42] developed a sequence model to detect poultry
feeding behavior based on vocal patterns.

3.4. Hybrid and Attention-Based Architectures

Emerging trends integrating CNNs with attention mechanisms or various architectural
innovations have arisen in recent works. A Conv1D-based classifier with Burn Layers
(noise-injection modules) was implemented by Hassan et al. [32] to enhance generalization,
leading to an impressive accuracy of 98.55%. Mousse and Laleye [43] established an
attention-based RNN for hens’ behavior recognition and reported an F1 score of 92.75%.
Huang et al. [33] proposed ASTNet, a spatio-temporal attention network for video saliency
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detection, which can be adapted for multi-modal poultry monitoring. Hu et al. [34]
proposed MFF-ScSEnet, which combines Mel-spectrogram and SincNet features with a
squeeze-and-excitation mechanism and more than 96% accuracy over datasets of bird song.

Table 3. Performance of deep learning architectures for animal vocalization classification, including
CNN, RNN, and attention-based models.

Authors Model Type Reported Accuracy

Jung et al. [9] 2D CNN 91.02% (cattle), 75.78% (hens)
Henri et al. [16] MobileNetV2 84.21%

Romero-Mujalli et al. [17] DeepSqueak CNN Detection: 91%, Class: 93%
Mao et al. [19] Light-VGG11 CNN 95%

Mangalam et al. [20] Lightweight CNN 92.23%

Hassan et al. [32] ConvlD + Burn Layer 98.55%

Hu et al. [34] MFF-ScSEnet (attention) >96%

Hu et al. [34] MFF-ScSEnet CNN >96%

Gupta et al. [41] CNN-LMU Best model

Mousse & Laleye [43] Attention-based RNN Fl-score = 92.75%

3.5. Performance Benchmarks

Several studies conducted model comparisons: Ginovart-Panisello et al. [37] and
Thomas et al. [10] have performed both ablation studies and multi-objective training (clas-
sification + age estimation). Bermant et al. [27] benchmarked CNNs and RNNs across
echolocation and coda recognition tasks and obtained over 99% accuracy. Gupta et al. [41]
and Ghani et al. [35] conducted studies to judge the model generalization across species
and setups, thereby demonstrating the necessity for a training set that is large and varied.
Bianco et al. [44] reviewed ML techniques in acoustics, stressing how, when sufficient la-
beled data is available, data-driven classifiers like SVMs, Neural Networks, and Gaussian
Mixtures outperform traditional signal processing-based techniques, and thus weigh the
trade-off between model interpretability and classification accuracy important considera-
tion in their application for acoustic feature selection and hybrid NLP pipelines along with
poultry vocal analysis.

4. Self-Supervised and Transfer Learning Approaches

As there are not many annotated datasets available in the realm of animal vocal-
ization research, transfer learning and self-supervised learning (SSL) have become the
methodologies for successfully improving model generalization, reducing training cost,
and improving performance when working under conditions of noise or limited resources.
These applications of transfer learning and SSL models in animal vocalization research are
summarized in Table 4, illustrating how pretrained architectures enhance performance un-
der data-scarce and noisy conditions. Several studies, mostly focused on poultry and wildlife
acoustics, make use of pretrained models, which are commonly developed and fine-tuned for
specific species tasks and have been applied to human audio or general bioacoustics.

4.1. Transfer Learning with Pretrained CNNs and Audio Embeddings

Studies have utilized transfer learning through pretraining from large-scale datasets
like ImageNet or AudioSet before applying the convolutional model to a novel acoustic
signal. Some examples include: Henri and Mungloo-Dilmohamud [16], who refined
MobileNetV2, ResNet50, and InceptionV3 for bird song classification, with best accuracy
(84.21%) corresponding to MobileNetV2. Thomas et al. [10] transferred PANN (Pretrained
Audio Neural Network) weights to a multi-objective CNN for broiler vocalization and
age estimation. Mangalam et al. [20] compared a custom CNN with fine-tuned VGG16,
concluding that the smaller model worked better under field conditions. Li et al. [21]
showed that chick sexing tasks conceived from different architectures (ResNet-50, GRU,
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CRNN), based on breed and feature type, perform variably. McGinn et al. [45] obtained
unsupervised feature embeddings derived from the BirdNET CNN to classify within-
species vocalizations, emphasizing its strength without retraining. Ginovart-Panisello
et al. [37] applied pretrained CNNs to the spectrograms of hens to induce stress response
for vaccinated hens.

4.2. Transformer Models and Speech Pretraining

Vaswani et al. [46] introduced a completely novel architecture in the form of their
Transformer—a new architecture that replaces recurrence with multi-head self-attention to
parallelize sequence modeling and capture long-range dependencies in the modeling pro-
cess. It was developed for language tasks, but later became fundamental for many acoustic
modeling frameworks, including wav2vec2 and BERT. Its scalability and efficiency even be-
come more crucial for studies on poultry vocalization that require temporal analyses across
different contexts. Admittedly, transformers from natural language processing are quickly
finding utility within audio classification tasks. In a more foundational review concerning
Al in livestock, Menezes et al. [47] emphasized the increasing role of transformer-based
models and large language models (LLMs) such as BERT and wav2vec2 in agricultural
applications. Even though the review mainly covered dairy cattle, it highlights the extent
to which such architectures could find application in the study of poultry vocalizations,
especially in emotion recognition and welfare prediction. Devlin et al. [48] introduced
the new language model, a bidirectional Transformer BERT, trained by means of masked
language modeling and next-sentence prediction. Just like many language processing tasks,
BERT showed astonishing results in several benchmarks, thereby creating the impetus, in
automated response systems, for models such as WHISPER and the fine-tuned version of
wav2vec2, which are presently being leveraged for poultry vocalization decoding.

Ghani et al. [35] examined transfer learning for large-scale birdsong detection using
models like BirdNET and PaSST. The model PaSST, distilled from BirdNET, achieved the
highest performance and development in-domain (F1 = 0.704). Swaminathan et al. [30]
applied fine-tuning of wav2vec models using bird recordings and a feed-forward classifier
against an F1 of 0.89 on C-xeno-canto data. Abzaliev et al. [49] used the trained wav2vec2
(on human speech) to classify dog barks in terms of breed, sex, and context categories,
outperforming all-frames models. Sarkar and Magimai.-Doss [50] found speech-pretrained
SSL models to perform at par with those trained specifically for bioacoustics, making
it feasible to reuse human-centric models. Neethirajan [51] studied OpenAl’s Whisper
model for decoding chicken vocalizations to interpret them semantically in terms of token
sequences, which were then analyzed by classifiers of sentiment to deduce the emotional
states. Morita et al. [52] used Transformer-based models for long-range dependency
studies in Bengalese finch songs: eight syllables appeared to be a good context length.
Gong et al. [53] introduced the Audio Spectrogram Transformer (AST)—a convolution-free
model that uses patch-based spectrogram inputs fed into a Transformer encoder. AST
achieved state-of-the-art accuracy across major audio classification benchmarks, thereby
emphasizing the potential of attention-based modeling architectures toward structured
poultry vocalization analysis.

4.3. Self-Supervised Representation Learning

SSL models have made significant inroads into bioacoustic modeling by reducing the
dependency on labeled datasets: Baevski et al. [54] presented wav2vec 2.0, which learns
by way of contrastive learning and quantization from raw audio latent representations. It
serves as the backbone of several follow-up studies, e.g., [30,49]. Wang et al. [55] applied
HuBERT segmenting dog vocalizations and performed grammar induction to discover
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recurring phone sequences that may reveal meaning in sounds of Canine. Mork et al. [56]
tested Data2Vec-denoising, an approach of robust self-supervised pretraining which can
yield up to 18% improvements in accuracy over keyword spotting of supervised baselines.
Bravo Sanchez et al. [5] employed SincNet, a neural architecture with parameterized sinc
filters for classifying bird vocalizations directly from raw audio waveforms. Attaining
more than 65% accuracy on the NIPS4Bplus dataset with minimal preprocessing, this
research shows the efficacy of raw-signal-based models for the lower complexity of attack-
recognizing classification of poultry vocalizations. In personalized adaptive fine-tuning,
Brydinskyi et al. [57] indicated that only 10 min of data from an individual could fine-tune
wav2vec2 to reduce word error rates: about 3% for natural voices and as much as 10% for
synthetic. In personalized adaptive fine-tuning, Brydinskyi et al. [57] indicated that only
10 min of data from an individual could fine-tune wav2vec2 to reduce word error rates:
about 3% for natural voices and as much as 10% for synthetic.

Table 4. Reported performance of transfer learning, self-supervised learning (SSL), and AutoML
strategies in animal and bioacoustic vocalization analysis.

Authors Model/Strategy Reported Performance

Bravo Sanchez et al. [5] SincNet >65% accuracy

Thomas et al. [10] PANN + CNN Balanced Accuracy = 87.9%

Swaminathan et al. [30] Fine-tuned wav2vec2 F1 =89%

Ghani et al. [35] PaSST (Transformer) F1=70.4%

Abzaliev et al. [49] Pretrained wav2vec2 Outperformed all-frames models

Mork et al. [56] Data2Vec SSL +18% accuracy vs. supervised baseline

Brydinskyi et al. [57] Personalized wav2vec2 WER decreased ~3% for natural, ~10% for synthetic)
Tosato et al. [58] AutoKeras NAS (Xception) Outperformed ResNet, VGG, etc.

Wav2vec2 performs better than many traditional models in poultry call detection
because of its combination of contextualized audio embeddings and contrastive self-
supervised training. In general, the MFCC pipeline depends on handcrafted features,
but wav2vec? learns deep representations from a raw waveform by predicting masked
latent representations. In this way, the model is able to catch subtle temporal patterns
and contextual variations in vocalizations and distortions that degrade standard features
in a noisy farm environment. Its fine-tuning possibilities with limited labeled data also
make this model apt to be used in low-resource domain problems such as poultry welfare
monitoring. Similarly, SincNet performs better over several CNN-based methods due to its
ability to learn sinc-based filters that are constrained to represent meaningful frequency
bands that are valid frequency bands. This inductive bias enables the model to extract
frequency-specific features that are physiologically relevant to bird calls while reducing
the parameter search space, thus enhancing generalization across small datasets. Lastly, it
operates on the raw waveform directly, avoiding any possible errors introduced in transfor-
mations to the spectral domain, such as STFT or Mel-scaling, giving the classifier increased
resilience to varying acoustic distortions encountered in the real world.

While models like wav2vec2 and Whisper, fine-tuned for poultry vocalizations, per-
form exceedingly well, one should observe that their original training was always con-
ducted on human-speech corpora. The structure, phoneme inventory, and temporal dy-
namics of animal sounds are far from those of human speech. Consequently, although
such systems can offer a generic resolution to acoustic feature extraction, the semantic
alignment and acoustic priors engineered for human speech do not offer the best clues for
the decoding of emotional or behavioral cues speciated to poultry. For instance, spectral
bandwidth and non-verbal call structures of birds lack phonetic segmentation assumptions
that human speech models rely heavily upon. Mismatches like these become sources of
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acoustic noise on downstream tasks, which limits zero-shot generalization to presence
across unseen animal domains.

4.4. AutoML and Neural Architecture Search (NAS)

In addition to the manual transfer learning, some studies employ an active nudging
from automated approaches in discovering models: Tosato et al. [58] established an optimal
Xception architecture for classifying bird vocalizations by using AutoKeras, which is better
than MobileNetV2, ResNet50, and VGG16. Gupta et al. [41] presented the results of
exploring a number of deep models on the Cornell Bird Challenge dataset, including CNN-
LSTM and CNN-LMU, with CNN-LMU achieving the peak accuracy on Red Crossbill calls.
The Top performing Classifiers are reported in Tables 5 and 6 respectively.

Table 5. Top 5 general poultry vocalization classifiers.

Reported Noise Species/Use . .
Model (Author) Pegormance Robustness Cl:\sel Inference Efficiency Reference
SincNet (Bravo Sanchez >65% accuracy High Songbirds Extremely efficient [5]
etal.) (low params)
Light-VGG11 (Mao etal)  95% accuracy High (on-farm)  Chicken S;Z‘j;gfgfz;m ion [19]
Conv1D + Burn Layer N . Chicken (distress ~ Lightweight; optimized
(Hassan et al.) 98.55% accuracy  High detection) for edge [32]
MFF-ScSEnet (Hu et al.) >96% accuracy Moderate-High  Birdsong Medium; attention module  [34]
CNN-LMU (Gupta et al.) E:itcg;nark Moderate Songbirds Compact recurrent unit [41]

These studies in the aggregate validate the power of pretrained and self-supervised
models in enabling accurate, efficient, and scalable animal vocal analysis. Such crossroads
include vision-based CNN backbones, language-inspired transformers, or SSL-driven
embeddings, where cross-model transfer leads to generalizable, low-data animal sound
classification, especially important when annotating precision-livestock contexts, since it is
often very time-consuming and costly.

5. Emotion, Behavior, and Stress Detection
5.1. Stress Detection via Acoustic Signatures

Well-established evidence exists for stress-related modifications of vocal parameters.
One of the very few earlier spectrographic studies on chicken vocalizations was undertaken
by Collias and Joos [59], who correlated call types (distress calls, clucking, roosting) with
relevant behavioral contexts. They found that calls given with descending frequency were
often interpreted as distress calls, whereas those with ascending contours often indicated
that they were more pleasurable. This important early study laid the groundwork for
behavioral correlates of acoustic markers used in avian welfare research. In laying hens,
acute stress was detected using a combination of thermographic imaging and CNN-based
spectrogram classification by van den Heuvel et al. [60]. This revealed a beak and comb
temperature reduction and decreased call rate following stressor exposure. In a similar
fashion, Ginovart-Panisello et al. [25] showed that prolonged fasting caused an alteration
of vocalizations in chicks, with call rate (VocalNum) and spectral centroid and bandwidth
being significantly altered in comparison to fed controls.

In testing the validity of spectral entropy, Herborn et al. [24] found strong links
between entropy and welfare outcomes in the long term (reduced weight gain and in-
creased mortality). Sound calls of domestic chicks during isolation were studied by Collins
et al. [61], who related these to various levels of emotional arousal as represented by
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loudness, frequency, and duration. Lev-Ron et al. [62] taught an artificial neural network
to classify responses in vocalizations from broilers subjected to environmental stressors,
including cold, heat, and wind. The model accuracy was further enhanced by incorporating
variables such as age and waveform length to achieve a mean average precision (mAP)
of 0.97. Thus, this approach can be scaled up for stress detection in poultry welfare. The
effects of auditory stimuli—including classical music and mechanical noise—were studied
by Zhao et al. [63] on fear responses and learning in laying hen chicks. Moderate-level
Mozart music exposure caused reduced fearfulness, whereas exposure to high-intensity
sound impaired learning and increased stress. The emotional response of hens to their
chicks in distress was studied by Edgar et al. [64], who found an increase in heart rate,
alertness, and maternal vocalizations of hens when distress was simulated in their chicks
by air puffs. This suggests that hens can sense offspring distress and react accordingly;
providing support for emotional contagion and further emphasizing the use of vocal cues
for welfare inferences in poultry.

Table 6. Top 5 disease and condition-specific detection models.

Model (Author) {’{:rlzgﬁ;gnce Target Condition Species Notes/Strength Reference
Thermal Discomfort SVM o . . Time-frequency features;
(Du et al.) 95.1% sensitivity =~ Heat stress Laying hens simple yet effective [31]
DPVN CNN (Cuanetal)  98.5% accuracy gfsvggsestle Chickens igcesﬁgcé}g,ram—based; high [38]
(CCl?Ill;Infgtr ﬁgian Influenza g7 59, accuracy Avian Influenza ~ Chickens Sﬁegqmuggg/ﬁf(i)lrtlering + data [39]

: Token-level : . : ,~
Wh1spgr Model emotional Emotional/ physmlogllgja/%ng hens NLP-based, interprets 51]
(Neethirajan) decoding states emotion from calls
ANN Stress Classifier mAP = 097 Heat, cold, wind Broilers Age + waveform inputs [62]

(Lev-Ron et al.)

stress improved precision

5.2. Behavior and Reward-Related Vocalizations

Behavioral responses are mirrored in voice patterns. Zimmerman [65] first worked
on the “gakel-call” in hens and established linkages with the emotion of frustration that
stems from blocked behaviors. More recently, Zimmerman and Koene [66] demonstrated
that calls in hens vary depending on the reward anticipated (mealworms, food, substrate),
where the frequency shifts in the calls associated with food are related to the expected
reward’s valence. A human study conducted by McGrath et al. [67] revealed that people
could identify the chicken calls reliably associated with rewards, indicating the presence
of semantic information encoded within the calls. Neethirajan [68] also studied this topic
with the WHISPER model, confirming that token-based patterns in chicken distranquil
vocalization correlated to emotion. Abzaliev et al. [69], in their turn, analyzed vocalizations
in the Japanese tit (Parus minor), specifically focusing on phoneme structure classification
Via machine learning that will indeed allow for the differentiation of different call types.
The training based on validation with human-labeled data will be the major assist in
commissioning and developing a real-time automatic classification system for structured
communication in birds. In this regard, such investigations could facilitate the transfer
of similar models for the detection of poultry call types, for which structured elements
may encode important behavioral or emotional states. Schober et al. [70] compiled an
extensive and rich acoustic repertoire of Pekin duck vocalizations according to varying
stimuli, the sex of the subject, and group configurations. This study applied statistical
methods, including ANOVA, cluster analysis, and canonical discriminant analysis, yielding
the identification of 16 distinct vocal types linked to behavioral and environmental contexts.
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Results demonstrate that vocal diversity and sex-specific patterns can serve as proxies for
indicating behavioral correlates, in parallel with call-type variation within poultry.

5.3. Emotion Recognition Models

Emotion decoding has been taking advantage of advanced Al models: Neethirajan [71]
reviewed the integration of NLP and sentiment analysis with acoustic sensing for animal
emotional detection, proposing hybrid Al systems based on thermographic and vocal
inputs. With collaborative annotations by psychologists and veterinarians, Cai et al. [72]
developed the DEAL model (Deep Emotional Analysis Learning) to interpret emotional
states such as hunger and fear in chickens. Ginovart-Panisello et al. [37] identified post-
vaccine anxiety in hens by extracting MFCC and spectral centroid features into a GNB
classifier. The classifier obtained an F1-score of 80%, and moreover, experimentally reduced
stress during anti-inflammatory treatment. Du et al. [31] reported a strong correlation be-
tween thermal distress and squawking/alarm calling in hens (e.g., squawk-THI: R = 0.594),
within an SVM setting applied to time-frequency outputs. Gavojdian et al. [73] introduced
BovineTalk, a deep-learning explainable ML framework for emotional valence and individ-
uality characterization in dairy cow vocalizations. They reported accuracies of 89.4% for
distinguishing high- from low-frequency calls for affective state classification and 72.5% for
cow identification using GRU-based models. The methodology has cross-species relevance
for poultry emotion recognition, either on interpretable acoustic features or spectrogram-
based modeling. Lavner and Pérez-Granados [74] underlined emerging techniques in
passive acoustic monitoring (PAM) for emotional state estimation, pointing to foundational
models and threshold-free density estimation tools.

5.4. Behavioral State and Health Linkages

Not only does behavioral analysis work through sound for emotion, but it also de-
marcates behavioral activities. With formant structure and pitch-based features, Huang
et al. [42] have established a 95% accuracy rate for identifying episodes of eating behavior
in chickens. Using attention-based RNNs, Laleye and Mousse [43] classified laying hen
behaviors with an Fl-score of 92.75%. Fontana et al. [75] found a negative correlation
between broiler vocal frequency and weight, thus establishing an association between
acoustic cues and physiological growth. Karatsiolis et al. [76] proposed a non-invasive
farm monitoring system that uses vocal, visual, and environmental sensor data to interpret
Flock-wide psychological states. Manteuffel et al. [77] reviewed how vocal correlates—like
call frequency and formant dispersion—indicate both positive and negative emotional
states in multiple species of livestock. Giintiirkiin [78] reviewed the avian nidopallium
caudolaterale (NCL), which, functionally similar to mammalian prefrontal cortex, is in-
volved in decision-making, executive control, and behavioral flexibility. Thus, forming
a neuroanatomical basis for understanding poultry vocal behavior complexity, particu-
larly when being stressed, in cognitive load, or interest state. Galef and Laland [79] have
considered mechanisms of social learning such as imitation and local enhancement across
animal species and their contribution to behavioral adaptation and cultural transmission.
This provides theoretical justification for researching social influences on vocal behavior in
poultry, such as peer-induced stress responses and learned vocal cues. Rugani et al. [80]
recorded that 3-day-old chicks possess proto-arithmetic skills, opting for larger object sets
during occlusion-based tests. This early cognitive ability suggests that vocal responses in
chicks may encode quantitative or perceptual awareness, further legitimizing studies of
poultry behavior that model numeracy-linked vocal characteristics.
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5.5. Vocal Indicators of Mental State and Social Emotion

Emotion detection of poultry Via vocalization can be meaningfully contextualized
using established frameworks such as the Five Domains model (nutrition, environment,
health, behavior, and mental state) [81]. In particular, vocal measures of distress, antic-
ipation, and contentment correspond to a kind of “Mental State” domain—difficult to
quantify objectively, yet accessible for study with machine learning—allowing one to assess
emotions without any invasion. These acoustic measures operate to bridge the gap between
visible behavior and internal affective states, yielding a more composite view of welfare.
From here, we assert that emotional contagion—the affective state of one individual in-
duces a similar affective response in others—has some emergent relevance for poultry
welfare studies, with one being that distress calls offered by one chick can raise vocal stress
markers in cage mates, indicating a viable emotional space that can be mapped using a
group acoustic approach [82]. If such social-affective dynamics could be detected reliably,
they may feed into welfare protocols oriented toward interventions at the flock level. Also,
convincing evidence emerging from ethology indicates that hens respond differentially
to the vocal cues of their chicks, implying maternal empathy. Thus, the possibility exists
of quantifying cross-individual emotional synchrony by utilizing acoustic Al to analyze
the call-and-response interaction between hens and their chicks. Thus, this opens entirely
new avenues for affective computing and animal cognition, stressing the need to now
specifically consider how machine learning systems developed for farm animals not only
classify individual vocalizations but also discern social and relational emotional cues that
seem to become embedded in such vocal interactions.

6. Disease Detection and Health Monitoring

Acoustic analysis is a non-invasive alternative to traditional diagnostics for detecting
disease, discomfort, and other mostly physiological anomalies in poultry. Many research
studies have employed machine learning models to find health-related vocal markers, to
assess disease progression, and to validate the effectiveness of intervention strategies.

6.1. Disease-Specific Detection via Vocal Cues

Specific pathogen vocalization signatures have been identified in various studies,
including Serbessa et al., who reviewed the clinical syndromes, modes of transmission,
and control methods for the most common poultry and pig diseases [83]. This would
create an excellent foundation for to interpretation of vocal biomarker correlates for specific
health statuses, with comparisons made from different species and disease types. Such a
baseline would be important in the Al modeling of automated disease detection through
vocalization analysis. Cuan et al. [38] proposed a Deep Poultry Vocalisation Network
(DPVN) where Newcastle disease was identified with 98.5% accuracy through calls of
infected to healthy chickens. In a subsequent study, Cuan et al. [39] trained a CNN (CSCNN)
on spectrograms resulting from avian influenza-infected chickens, achieving 97.5% accuracy,
with preprocessing including frequency filtering and time-domain augmentation. Xu
and Chang also [40] proposed a hybrid model for deep learning fusing vocal and fecal
image features for poultry health diagnosis, which gives the highest accuracy compared
to single-modal models. Neethirajan [51] used Whisper, which took chicken vocalizations
and created token sequences that were sentiment-scored to identify emotional states and
physiological states. Adebayo et al. [84] were able to provide a real-world dataset from over
100 chickens for 65 days. Acoustic changes appeared in untreated birds’ calls for 30 days
and were often associated with respiratory problems, making it significantly important to
establish a baseline for future modeling of disease-related acoustics.
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6.2. Physiological Monitoring and Comfort Assessment

Health monitoring also includes assessments of thermal comfort and general well-
being. Du et al. [31] used spectral features for the prediction of heat stress in hens, which
proved to be more than 95% sensitive and could relate the call type to the Temperature-
Humidity Index (THI). The study by Li et al. [21] was able to identify chick sex by feature
combinations of MFCC, logtbank, and spectrogram across breeds, reporting high accuracy
through ResNet-50 and GRU. Puswal and Liang [14] explored the relationship between
vocal features and anatomical traits in chickens. The presence of morphological differences
based on sex was observable, but it did not display a strong correlation between vocal
acoustics and physical traits, indicating behavior and context are likely causes of acoustic
variance more than morphology. Thus, it may strengthen dynamic compared to static
acoustic features in poultry classification models. He et al. [85] reviewed early detection of
diseases by means of sensors and proposed acoustic sensing as one answer that is emerging
but underused for monitoring clinical symptoms. Mao et al. [19] made a lightweight convo-
lutional neural network that can monitor in real time the distress of chickens with accuracy
above 95% in validation from recordings performed in noisy conditions. Soster et al. [3]
trained a CNN built from more than 2000 broiler vocalizations in the detection of four call
types, including distress calls, achieving a balanced accuracy of 91.1%. Thomas et al. [10]
created a dual-objective CNN to classify calls and estimate broiler age, thus showing that
the vocal patterns change with development and may indicate health status. ChickenSense,
a piezoelectric audio sensing device married to a VGG16 CNN, has been developed by
Amirivojdan et al. [86] to estimate the feed intake. The model predicted intake at 92%
accuracy and a margin of error of £7%, thus supporting a sound proxy for metabolic state.

6.3. Real-World Deployment Considerations

Deployability and robustness form important attributes for practical applications. For
instance, the implementation of the TinyML model for monitoring chicken health highly
effective approach under varied health and environmental conditions, been demonstrated
by Srinivasagan et al. [87] at edge devices. Huang et al. [42] linked vocal changes to
physiological states such as hunger and satiety using formant and pitch dynamics to detect
feeding behavior.

These studies illustrate the viability of using vocalizations as digital biomarkers for
disease, thermal stress, respiratory issues, and overall well-being. Combining bioacoustics
with embedded Al models and sensor fusion holds strong promise for continuous, non-
invasive health monitoring in poultry farms.

7. Automated Pipelines and Toolkits

The availability of large-scale open access bioacoustic data has triggered the need
for automated pipelines and toolkits to process, annotate, and analyze vocalizations with
little manual effort. In this section, systems and frameworks are discussed that fit into the
streamlining of data-preprocessing machine-learning pipelines intended for model training
and inference in the analysis of animal sounds.

7.1. End-to-End Tools for Bioacoustics

Bioacoustic software tools for automating large parts of the workflow have recently
emerged as we can see in Figure 3. Gibb et al. [88] described a robust overview of passive
acoustic monitoring (PAM) pipelines from sensor hardware to acoustic inference. The role
of convolutional neural networks (CNNs), unsupervised clustering, hidden Markov models
(HMMs), and cross-correlation techniques has been emphasized for scalable ecological
assessment. It also addressed challenges like detection uncertainty, model transferability,
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and the need for standardized datasets for deployment of automated poultry monitoring
systems. Schneider et al. [89] presented the clustering and analysis of sound events (CASE),
where 48 clustering methods and audio transformations for animal vocalizations were
compared. CASE incorporates windowed, multi-feature extraction and serves as the bench-
marking tool for unsupervised vocal classification. Thomas et al. [18] describe a practical
guide that implements Short-Time Fourier Transform (STFT) and Uniform Manifold Ap-
proximation and Projection (UMAP) embeddings to build low-dimensional representations
of animal calls and gain insights into mislabeling, clustering quality, and interactive visual-
ization. Merino Recalde [29] has developed pykanto, a Python library for large acoustic
dataset management. It contains segmentation, semi-supervised labeling, and deep model
integration, thus speeding up reproducibility in the pipeline. Nicholson [90] developed
Crowsetta, a Python package that converts several annotation formats (e.g., Praat, Au-
dacity, Raven) into a standardized structure, which is compatible with analysis tools like
vak and pandas. This interoperability simplifies vocal dataset processing and enhances
reproducibility of the analysis across bioacoustic pipelines; hence, it is very beneficial for
studies involving different poultry call types. Lapp et al. [91] developed OpenSoundscape,
a Python Toolbox for the detection, classification, and localization of biological sounds,
through a synergy of machine-learning principles and signal processing. BirdSet, presented
by Rauch et al. [92], is a large dataset consisting of more than 6800 h of avian recordings.
In that paper, six deep models were benchmarked, and the source code is available on
Hugging Face to promote reproducibility and model evaluation under covariate shift.

Segmentation Annotation Analysis Modeling and Visualization
Librosa pykanto OpenSoundscape UMAP
BirdNET > TweetyNet > VAK > CASE
Perch BirdNET (pre) LAMDA 31 Embedding Tools
Crowssetta Ranjard NN BEANS CNNs

LEGEND

DSignal Processing

Annotation-Compatible
Segmentation

| Visualizations

D Modelling

Figure 3. Workflow of Bioacoustic Analysis: Segmentation to Modeling using Specialized Tools.

l:' Feature Extraction

D Manual / Semi-Auto

|:| Pretrained Models . Deep Embeddings

7.2. Acoustic Segmentation and Dataset Cleaning

For reliable segmentation, high-quality training datasets are essential. In this con-
text, et al. [28] compared four segmentation tools in order, namely, Librosa, BirdNET,
Perch, Few-shot Bioacoustic Event Detection, and concluded that BirdNET was the most
accurate. Michaud et al. [4] proposed a DBSCAN and BirdNET-based unsupervised classifi-
cation method, which ultimately filtered label noise from song datasets, thereby enhancing
downstream model performance. Sasek et al. [93] introduced a deep supervised source
separation (DSSS) framework specialized for site-specific bird vocalization data. A consider-
able enhancement in separation quality and reduction in downstream labeling errors were
achieved by training the ConvTasNet and SuDORMREFNet models using a semi-automated
pipeline based on BirdNET, PANNSs, and manual filtering. This method shows that inte-
grated pipelines hold great promise when studying poultry calls among other confounding
noises in farming settings.

An unsupervised syllable classification approach was developed by Ranjard and
Ross [94] with evolving neural networks for the large-scale annotation of bird songs. Tweet-
yNet, a neural network that segments birdsong spectrograms into syllables, was developed
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by Cohen et al. [95] through end-to-end training, demonstrating good generalizability
across species. Lastly, Sethi et al. [96] demonstrated how automated pipelines can scale up
biodiversity monitoring by using a BirdNET model pretrained on 152,000+ hours of global
audio and manually calibrating detection thresholds for over 100 species.

7.3. Specialized Detection Systems

Lostanlen et al. [97] created BirdVoxDetect (BVD), a freely available system for de-
tecting nocturnal flight calls of birds. It harnesses a multitask CNN to extract features
for classification, while faults in the sensor are detected using a random forest model.
Michez et al. [98] reported a methodological pipeline using UAS for airborne bioacoustic
monitoring of birds and bats. It evaluates drone height and motor noise impacts on call
detection rates, with a particular focus on ultra-high frequencies. Their protocol offers
a standard for airborne data collection in vocalization-based biodiversity and behavior
studies, which may even have further applications in poultry farm surveillance. Guerrero
et al. [99] created an unsupervised clustering pipeline (LAMDA 3rm) designed for ecolog-
ical soundscapes. Their approach divides the spectrograms and groups species-specific
acoustic clusters (sonotypes), which makes biodiversity assessments possible without la-
beled data. ChickTrack is the system developed using YOLOvV5 plus Kalman filtering in
real-time chicken tracking, which is integrated with the monitoring of behaviors using over
3800 annotated frames from Neethirajan [100]. Bermant et al. [27] present a hybrid pipeline
with CNNs for echolocation click detection and RNNSs for time-series analysis of sperm
whale vocalizations, where transfer learning on proxy tasks allows achieving high-accuracy
downstream classification. Berthet et al. [101] reviewed the application of linguistic theory
(syntax, semantics, pragmatics) in animal communication systems and proposed analytical
pipelines that include linguistic models into neuroethological data. Hagiwara et al. [102]
presented BEANS (Benchmark of Animal Sounds). It is a benchmark that combines 12 dif-
ferent datasets available in public, covering birds, mammals, anurans, and insects, and sets
up classification and detection benchmarks in order to promote standardized evaluation in
the field.

These toolkits and pipelines will bring a paradigm shift in the field of animal acoustic
analysis, away from individualistic task-specific models toward scalable, generalizable frame-
works with standardized data, reproducible pipelines, and automated annotation capacities.

8. On-Farm Deployment and Edge Al

For real-world applications of acoustic monitoring in poultry and livestock, it is
essential that machine learning models operate reliably under field conditions. Such system
requirements are to be self-sufficient and robust in handling noise and power-efficient
operation with low-power edge devices or embedded hardware. All those facts made a
strong reflection of the dominant trend in research toward practical and affordable solutions
in smart agriculture.

8.1. TinyML and Embedded Inference

With edge Al, mainly through TinyML, real-time inference is performed directly on
equipment deployed at farms (Table 7). In this way, Srinivasagan et al. [87] trained their
tiny machine learning models for chicken vocalization using these low-power processors,
thus managing memory limitations while maintaining accuracy for multiple health status
conditions. The ChickenSense system is a fusion of piezoelectric sensors and the VGG16
model, monitoring the feed intake acoustics of chickens with 92% classification accuracy
in +/—7% estimation error (Amirivojdan et al. [86]). Using phase-coding and Gaussian
classifiers such as SVM and k-NN on hardware of Raspberry Pi, Bhandekar et al. [36]
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designed a real-time monitoring system for analysis with synchronized video and audio
tracking. Huang et al. [42] developed a module of vocal formants to detect the feeding
behavior in noisy field conditions.

Table 7. Comparison of common microphone and acoustic sensor types used in on-farm poultry
acoustic monitoring, highlighting trade-offs in signal quality, power, and deployment suitability.

Cost

Example

Sampling

Power Con-
Sensor Type Devices Rate SNR sumption Form Factor (Estimate) Remarks
i Good for
Piezoelectric (Ch1ctker3;1)5 fg 6s]e 11(?_1_;14'1 Moderate  Very Low goorgﬁft' Low (<$5) contact-based
custo feeding detection
ReSpeaker : Enables directional
Miﬁs hone  USBMic 48 kHz 63-72dB  Low Bf;amformmg %\é[%i_eélr(a)i)te detection and active
P Array array noise cancellation
Electret Analog mic . Analog Very Low Noisy, often used in
Condenser modules 8-16 kHz Low-Mid Moderate circuit (~$2) low-cost setups
Syntiant Optimized for
MEMS + DSP Y- . Ultra Low Edge-ML Moderate— .
(digital) NDP101 + 16-32kHz  High (<1 mW) ensbled Migh (640+) TinyMLand
mic front-end keyword spotting
TinyML frameworks like TensorFlow Lite Micro, Edge Impulse, and Syntiant now
allow optimized models, for example, quantized CNNs or shallow Transformers, to be
deployed on low-power microcontrollers such as ARM Cortex-M and ESP32 [103]. Models
like these achieve the real-time classification of poultry vocalizations, consuming as little
energy as 1-10 mW for continuous monitoring without draining battery-operated IoT
systems. In contrast, cloud-based pipelines require constant audio streaming and network
bandwidth, which not only increases operational costs but also introduces risks of data
leakage, latency bottlenecks, and reliance on external connectivity, particularly problematic
in rural farm settings [104].A detailed comparison is present in Table 8 From an Al systems
perspective, edge-Al deployments promise better autonomy and resilience, primarily when
combined with local feedback loops that might alert farmers about abnormal distress calls.
Yet, how viable edge solutions become is largely dependent on the trust and interpretabil-
ity underpinning them from the perspective of the farmers. Transparent models with
explainable outputs, such as call-type labeling and emotion tagging, complemented by
local visualization dashboards, will boost the acceptance level of farmers, particularly
if privacy-preserving inference methods and fail-safe precautions at the device level are
in place.
Table 8. IoT protocols for poultry acoustic + sensor monitoring.
Protocol Range Bandwidth E?fvi\é‘itncy Cost Best For Limitations
LoRaWAN  5-15 km (rural) Low Excellent Low to Mod Long-range farm Latency, not for
(0.3-50 kbps) monitoring high-frequency data
. Local mesh in
Zigbee ~10-100 m Medium Good Low dense poultry Needs mesh routers,
(250 kbps) h limited range
ouses
1-10 km Low-Med N Cellular farms Carrier dependency,
NB-IoT (urban) (26-127 kbps) Excellent Carrier tied w/good coverage  SIM/data needed
Real-time
Wi-Fi ~100 m High (Mbps) Poor Moderate dashboards and Pow er-hungry, not
video suitable for edge Al
BLE 5.0 ~100-400 m Low (~2Mbps)  Excellent Low Low-power sensor  Short range, not ideal

pairing

for big farms
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8.2. Robustness to Noise and Uncontrolled Environments

Studies that have addressed the effects of noise and changing environments: Mao
et al. [19] employed their lightweight CNN (light-VGG11) for time-continuous recordings
and real-farm conditions, confirming its robust performance with over 95% accuracy. Man-
galam et al. [20] used on-site smartphone recordings in Indian farms, yielding a 92.23%
accuracy rate on three vocalizations by using a lightweight CNN. Goyal et al. [105] dealt
with a systematic review in smart poultry farms, particularly highlighting computer vision,
IoT, and Al’s role in real-time decision support systems and low-cost deployment. Karat-
siolis et al. [76] also proposed something similar, where a multi-modal system, vocal and
visual environmental sensor models, is designed to perform the assessment of communal
flock welfare using a completely non-invasive procedure.

8.3. Sound as a Proxy for Behavior and Environment

Long-term field studies conducted by Ginovart-Panisello et al. [106-108] have illus-
trated how vocal features (e.g., peak frequency, MFCCs) correlate to temperature, humidity,
CO; levels, and ventilation conditions across different production cycles. Such studies,
therefore, prove the feasibility of passive acoustic monitoring for environmental assessment
and flock health systems. Ginovart-Panisello et al. [37] showed that acoustic responses
to vaccination can be automatically tracked under farm conditions, even in the absence
of labeled emotional categories. In response to fasting stressors in commercial hatcheries,
Ginovart-Panisello et al. [25] tracked call rates and spectral features in real-time.

Niu et al. [109] reviewed avian visual cognition and associated brain pathways—the
entopallium and visual Wulst. Their findings corroborate birds” advanced object recognition
and tracking capabilities, which provide a neural basis to integrate visual and acoustic
signals into behavior monitoring systems. Such integration finds utmost importance in
smart poultry surveillance platforms

8.4. Deployment-Friendly Design Practices

Many studies involve optimization to reduce model size, boost energy efficiency, or
simplify their architecture:

e  Mao et al. [19] reduced the total number of parameters by 92.78% against the standard
VGGI11.

e  Hassan et al. [32] introduced Burn Layers (noise-injection modules) to improve gener-
alization under deployment noise.

e  Ginovart-Panisello et al. [60] combined thermographic imaging with CNN-based vocal
classifiers to provide an in-field assessment of acute stress in a non-invasive manner.

These studies demonstrate that conjoining edge Al with robust and lightweight ar-
chitectures is not only possible but a necessity for real deployment in commercial poultry
production systems. Continuous monitoring under the decision-making process in a non-
invasive and interpretable manner, and meeting farm constraints, is fast becoming the
norm within smart livestock farming. Finally, a Keyword Cooccurance network Map is
shown below in Figure 4.
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Figure 4. Keyword co-occurrence network showing thematic clusters in livestock vocalization
research. Node size indicates keyword frequency, while colors represent distinct research themes
such as poultry monitoring, acoustic analysis, and deep learning approaches.

9. Discussions: Challenges, Gaps, and Future Directions

The current situation in the field of Bioacoustics and analysis leaves an important
requirement for further research to identify and fine-tune the limitations associated with
reproducibility, generalization, interpretability, and implementation.

9.1. Technical Challenges and Research Gaps
9.1.1. Dataset Limitations and Reproducibility

A heavy emphasis in many studies has been laid on the fact, complemented by the
presence of few high-quality and large-sized annotated datasets. Most bioacoustic studies
lack full pipeline transparency in their results, as it is usually stated by Mutanu et al. [110].
They recognized qualities of reproducibility in the general consideration of studies, gaps
in locomotion-related sounds, and inconsistent evaluation metrics being part of systemic
issues. As recurring obstacles, Lavner and Pérez-Granados [74] describe low signal-to-
noise ratios, class imbalance, and lack of global standardized datasets. Coutant et al. [111]
conducted a scoping review of 52 bioacoustic studies across livestock species and identified
common acoustic techniques and welfare indicators in this review. Inconsistencies in proto-
cols and an increasing tendency toward ML-driven vocal analysis for automated welfare
monitoring were also revealed in this report. This explains the need for standardization in
poultry-focused bioacoustics.
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9.1.2. Cross-Domain Model Generalization

The question of whether models trained on one species or domain generalize to an-
other is central to future applications. Van Merriénboer et al. [112] reviewed evaluation
methods and showed how data variability and covariate shift affect degradation in gen-
eralization. Ghani et al. [35] and Gupta et al. [41] showed that transfer learning improves
performance, but it still incurs a performance drop in unseen soundscapes or under poly-
phonic conditions. Swaminathan et al. [30] and Sarkar and Magimai-Doss [50] have shown
that self-supervised models pretrained on human speech often outshine those trained from
scratch but still require fine-tuning on animal-specific data.

There arises a gap, especially when transfer is considered from speech-pretrained
models, such as wav2vec2 and Whisper, to the domain of poultry vocalizations. These
models are trained on signals that resemble structured language, which include phonemic
regularities and sentence-level dependencies. Calls from poultry are short, affective, con-
tinuous, or rhythmic, and lacking in segmental structures. In the absence of fine-tuning
for the given task, these models may be unable to relate acoustic patterns to a meaningful
biological interpretation.

9.1.3. Domain Mismatch and Embedding Shift

One of the main challenges faced with transfer learning or indeed any self-supervised
model for bioacoustics is domain mismatch, which produces embedding shifts where from
one context of species/environment, feature representations learned would be misaligned
in another environment. For example, models trained on chick or hen vocalizations
usually fail to generalize to duck calls because calls are species-specific and can differ
in harmonic structure, call duration, and frequency modulation. However, even within
chickens, vocalizations vary across breed, age, and housing conditions, which confuses
a classifier.

Swaminathan et al. [30] and Ghani et al. [35] observed that the fine-tuned wav2vec2
and PaSST models performed well and produced high accuracy within each specific dataset,
yet embed drift occurred since they performed poorly or with reduced accuracy when
tested on datasets of different species or recording setups. Ginovart-Panisello et al. [25]
also reported failures in cross-breed generalization when training stress detection models
on broiler vocalizations and applying them to laying hens. Such failures seemingly tell us
that although modern deep learning models do possess very high capacity, latent features
are not always biologically universal or invariant.

The existence of misalignment calls for an attempt at using domain adaptation, nor-
malization of features across species, or unsupervised alignment of embedding spaces to
bridge the gap between pretraining and deployment environments.

9.1.4. Interpretability and Semantic Representation

Although many have succeeded in high classification rates, the number of works which
deal with the interpretability of vocal signals is less. Neethirajan [68] and Cai et al. [72]
both reached out to semantically decode chicken vocalizations with NLP-inspired models;
however, the field has no broadly accepted benchmarks for semantic labeling or emotional
annotations. Standard datasets, understandable architectures, and interdisciplinary inter-
actions among acoustics, animal behavior, and machine learning are needed for future
research efforts, according to Stowell [113].

While many advanced models, including CNNs, RNNs, and Transformers, manage to
achieve high levels of classification accuracy, they are less interpretable, particularly so in
realms requiring trust and transparency, such as animal welfare monitoring. The nature
of the deep learning paradigm constitutes the so-called “black-box” problem, wherein the
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decision boundaries and internal logic remain opaque to end users such as veterinarians or
farm operators. This increases the reluctance of such groups to deploy them in high-stakes
environments where model explainability is itself a prerequisite for action and trust.

For instance, wav2vec2 and Whisper models achieve highly accurate classifications yet
offer little insight into which vocal features or temporal patterns they rely on. Grad-CAM,
SHAP, LIME, among others, are seldom used in bioacoustics; even when they are, the focus
tends to be on spectrogram-level saliency as opposed to some biologically meaningful
acoustic markers. A meaningful trade-off, hence, seems to exist between performance
and interpretability, with the simpler models, probably SVMs or decision trees, giving
less accuracy for more interpretability, whereas the more powerful deep models cast
interpretability aside unless XAl features are explicitly incorporated within them.

9.2. Theoretical and Ethical Considerations
9.2.1. Theoretical Foundations and Linguistic Analogs

Bolhuis et al. [114] reject claims of syntactic structure in bird vocalizations, stating
that animal communication lacks true combinatorial semantics. Berthet et al. [101] support
the importation of linguistic theories into animal communication (i.e., syntax, pragmatics)
and argue that such models should respect certain ethological constraints. Jarvis [115]
brought together many lines of research in vocal learning to suggest that animals might
share features of language. However, the full accomplishment of vocal learning is rare and
biologically constrained.

9.2.2. Ethical Considerations

Currently, ethical studies are becoming very relevant in Al and animal research.
Takeshita and Rzepka [116] identified numerous NLP datasets and models as embedding
speciesism, thus warranting the need for the fair representation of nonhuman vocalizations
in research and applications. Future studies should be concerned with multimodal systems
and their use across a wider range of species. According to Zimmerman [65], Zimmerman
and Koene [66], Manteuffel et al. [77], and Marino [117], there is a pressing need for
further behavioral and emotional interpretations of poultry vocalizations. Morita et al. [52],
Sainburg et al. [23], and Wang et al. [55], extended deep learning for modeling long-range
dependencies, latent structures, and grammar-like patterns even in nonhuman species.
Cross-species studies like Abzaliev et al. [49], Sethi et al. [96], and Bermant et al. [27]
demonstrated that deep learning pipelines are highly adaptable but lack interpretability
and standardization. The field is moving toward hybrid, explainable, and multi-species-
aware models that better bridge computational power with ethological relevance.

From an ethical and practical standpoint, interpretability becomes even more crucial
when Al systems are used to make welfare-related decisions. Uninterpretable models
risk reinforcing biases, missing edge cases (e.g., rare distress calls), or overfitting to dataset
noise without domain experts being able to audit the decisions. Therefore, future research
must strike a balance between data-driven performance and transparent decision-making,
possibly by integrating explainability modules directly into neural architectures or co-
designing models with animal behaviorists.

9.3. Practical Gaps: Sensor Metrics, [oT Architecture, and Deployment Standards

Despite significant advances in algorithms, the real-world deployment of poultry
acoustic Al systems faces practical challenges in sensor evaluation, wireless communication
infrastructure, data fusion, and responsible technology design. One major limitation en-
countered in existing research is the absence of standardized metrics to define microphone
and sensor robustness in the presence of a noisy farm environment. Benchmarking in the
future should objectively report acoustic performance indicators such as sound-to-noise
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ratio (SNR), dB (A) ambient noise levels, and the attenuation profile in the frequency
bands of interest. Potential techniques for noise cancellation can be explored and applied,
for example, through spectral subtraction, Wiener filtering, and neural-based speech en-
hancement, all promising to improve the performance of the system under heavy noise
conditions [118]. The on-farm deployment is also largely dependent on the proper selection
of the wireless protocols: Technologies have different trade-offs between cost, latency, and
energy efficiency. Recently, LoORaWAN has gained attention for its extremely low power
consumption and maximum range of 5-15 km, NB-IoT is available as a carrier-integrated
medium-bandwidth solution, and Zigbee works in the short range with mesh networking
capabilities. For instance, Zigbee is suitable for local mesh needs in densely populated
poultry houses, whereas LoRaWAN would provide long-range coverage for widely spaced
farms. Those compromises directly affect the system’s acoustic scale and interoperability
and should, therefore, be explicitly considered when planning the infrastructure [119].

Acoustic surveillance systems should comply with both data privacy and sustain-
ability objectives. In the European Union, any system collecting or storing identifiable
vocalizations must comply with the General Data Protection Regulation (GDPR) [120]. In
parallel, considerations about the rampant deployment of embedded sensors being an
electronic waste problem have also emerged. Research now emphasizes sustainable smart
farming practices, such as modular sensor designs, recyclable components, and low-power
architecture as a means to reduce e-waste and ensure long-term viability [121].

Rare vocalization types—created, for example, to signal the onset of a disease or
acute distress—often have limited labeled data. Few-shot learning frameworks, with
Prototypical Networks (ProtoNets) being a classical example, provide a way to classify
these infrequent events reliably from only very few examples [122]. In order to achieve
deployment transparency, XAl solutions can be used. For instance, Grad-CAM or LIME
visualization techniques [123] can highlight the regions of spectrograms that influence CNN
model decision-making, thus helping to boost model trust and, in turn, farmer acceptance.
Adoption ultimately hinges on the alignment of the system with a farmer’s workflow and
usability expectations. Interface formats (e.g., SMS alerts vs. dashboard visualizations),
economic modeling (e.g., $50/sensor vs. 10% mortality reduction), and participatory design
strategies (e.g., focus groups, usability trials) must be employed for development. Training
may be given through applications such as DeepSqueak [124] that will allow farmers
and technicians to actively engage in annotation, validation, and deployment, cultivating
long-lasting adoption and trust toward the technology.

10. Conclusions

This systematic review unveils a rapidly transforming landscape where artificial
intelligence fundamentally redefines our understanding of animal communication and
welfare assessment through poultry vocalizations. Our comprehensive analysis of over
120 studies reveals a decisive paradigm shift from traditional hand-crafted acoustic features
toward sophisticated self-supervised learning architectures, with models like wav2vec2 and
SincNet demonstrating unprecedented capabilities in decoding the complex emotional and
physiological states embedded within avian vocalizations. The convergence of bioacoustics
and machine learning has reached a critical inflection point, where theoretical advances in
deep learning architectures now demand practical translation into robust, deployable farm-
level systems. However, our investigation exposes fundamental challenges that threaten
to impede widespread adoption: the persistent opacity of black-box models undermines
stakeholder trust, cross-species generalization remains elusive despite sophisticated transfer
learning approaches, and the absence of standardized evaluation frameworks creates a
fragmented research ecosystem that hinders reproducible science.
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The interpretability crisis emerges as perhaps the most pressing concern for real-
world deployment. While achieving impressive classification accuracies exceeding 95% in
controlled settings, current deep learning models operate as impenetrable decision-making
systems, providing little insight into which acoustic signatures drive welfare assessments.
This opacity becomes particularly problematic when veterinarians and farm operators
must act upon Al-generated alerts, demanding explainable artificial intelligence solutions
that balance performance with transparency. Domain adaptation challenges reveal the
brittleness of current approaches when deployed across diverse poultry breeds, housing
conditions, and environmental contexts. Models trained on broiler vocalizations frequently
fail when applied to laying hens, while embedding drift causes performance degradation
when acoustic environments shift from laboratory to commercial farm settings. This
limitation threatens the scalability of Al-driven welfare monitoring systems across the
heterogeneous landscape of global poultry production.

The integration of edge computing and TinyML frameworks presents both unprece-
dented opportunities and technical constraints for continuous welfare monitoring. While
enabling real-time inference directly on farm hardware, these resource-constrained deploy-
ments demand architectural innovations that maintain model performance while operating
within strict power and computational budgets. Future trajectories must prioritize the
development of interpretable, domain-adaptive models that seamlessly integrate multi-
modal sensor data while maintaining ethical standards for animal welfare assessment. The
establishment of standardized benchmarking protocols, cross-species evaluation frame-
works, and transparent dataset sharing initiatives will determine whether this promising
field evolves into a transformative technology for precision livestock farming or remains
confined to academic research.

The stakes extend beyond technological advancement—they encompass our funda-
mental responsibility to ensure that Al systems designed to safeguard animal welfare
operate with the transparency, reliability, and ethical grounding that both animals and their
human caretakers deserve.
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