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Abstract

All current transportation systems (vehicles, trucks, planes, etc.) rely on the Global Position-
ing System (GPS) as their main navigation technology. GPS receivers collect signals from
multiple satellites and are able to provide more or less accurate positioning. For civilian
applications, GPS signals are sent without any encryption system. For this reason, they are
vulnerable to various attacks, and the most prevalent one is known as GPS spoofing. The
main consequence is the loss of position monitoring, which may increase damage risks in
terms of crashes or hijacking. In this study, we focus on UAV (unmanned aerial vehicle)
positioning attacks. We first review numerous techniques for detecting and mitigating GPS
spoofing attacks, finding that various types of attacks may occur. In the literature, many
studies have focused on only one type of attack. We believe that targeting the study of
many attacks is crucial for developing efficient mitigation mechanisms. Thus, we have
explored a well-known datasetcontaining authentic UAV signals along with spoofed sig-
nals (with three types of attacked signals). As a main contribution, we propose a more
interpretable approach to exploit the dataset by extracting individual mission sequences,
handling non-stationary features, and converting the GPS raw data into a simplified struc-
tured format. Then, we design tree-based machine learning algorithms, namely decision
tree (DT), random forest (RF), and extreme gradient boosting (XGBoost), for the purpose
of classifying signal types and to recognize spoofing attacks. Our main findings are as fol-
lows: (a) random forest has significant capability in detecting and classifying GPS spoofing
attacks, outperforming the other models. (b) We have been able to detect most types of
attacks and distinguish them.

Keywords: GPS spoofing attack; unmanned aerial vehicles; machine learning

1. Introduction

In recent years, unmanned aerial vehicles (UAVs), commonly known as drones, have
witnessed a significant surge in use. Driven by their proven efficiency and precision in
accomplishing border surveillance and rescue missions, they have been adopted for civilian
applications in numerous fields, including agriculture, delivery services, wildlife tracking,
the film industry, and beyond [1]. Currently, the size of the unmanned aerial vehicle market
is estimated at USD 12.39 billion in 2025, and it is expected to reach USD 20.72 billion by
2030 [2]. These devices are characterized by a diverse set of properties depending on their
specific applications, including size, velocity, mobility models, computational capabilities,
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and battery capacity. Meanwhile, some models are equipped with complementary com-
ponents, such as an inertial measurement unit (IMU), visual odometry, and optical flow
sensors, to expand their functions.

The growing reliance on UAVs is accompanied by significant security and privacy
concerns. These systems are highly vulnerable to a wide range of cyberattacks that threaten
their integrity, confidentiality, and availability. A systematic classification of cyberattacks
against UAVs was presented at four different levels [3]. At the software level, the threats
include malicious software and operating system attacks. The hardware level is targeted
by hijacking attempts and physical collisions. The communication level faces risks such
as denial-of-service (DoS) attacks and node misbehavior. Finally, at the sensor level,
UAVs are susceptible to false sensor data injection and GPS jamming. These attacks can
severely compromise UAV operations, leading to mission failures, data breaches, and even
physical damage.

Our study focuses on sensor-based vulnerabilities, specifically those threatening UAVs’
navigational system, which may be leveraged into hardware-level threats. The complexity
of managing UAV flights in dynamic environments, such as in cyberattack situations,
requires control systems to continuously interact with multiple sensors over time for the
purpose of detecting and isolating raised disturbances. This introduces nonlinearity chal-
lenges in modeling motion behavior based on control inputs. Therefore, essential security
actions involve learning-based and state-estimation-based methods. In [4], the authors
designed a neural network model empowered with an extended Kalman filter for the
online detection and isolation of a cyberattack that affects UAVs’ navigation system, specif-
ically involving the injection of false data (FDI) into the inertial measurement unit (IMU)
sensor. Ref. [5] introduced a real-time health monitoring framework to detect potential
anomalies in the aircraft engine system. Their approach consists initially of applying kernel
principal component analysis (KPCA) to extract highly correlated flight variables. This
step is critical in reducing computational overhead and preventing overfitting. Then, they
trained a support vector regression (SVR) model that predicts flight behavior, which was
compared to healthy flights using statistical bounds to identify abnormalities. The work
of [6] addressed the challenges of ensuring resilient formation control in the context of
drones, where communication may be lost or compromised in adversarial environments.
They proposed an approach that integrates Graph Attention Networks (GANSs) with deep
reinforcement learning (DRL) and leverages neighboring nodes to deceive DoS attacks. The
researchers in [7] proposed a state-estimation-based method for the real-time detection and
isolation of three main types of cyberattacks, namely random attacks, false data injection
attacks, and DoS attacks. Their approach is scalable to any nonlinear aerial system.

In addition, UAVs typically rely on the GPS as their primary navigation system,
continuously tracking signals from at least four satellites to accurately determine their
precise spatial position at any given time. However, in some cases, these signals are affected
by the ionosphere and environmental conditions, producing signal noise or, in more serious
scenarios, complete signal loss. In addition, civilian GPS signals remain unsecured and
could easily be intercepted and retransmitted. Third-party actors with bad intentions can
build receiver—spoofer devices using only commonly available low-cost components to
deceive GPS receivers. As a result, this might cause instability in determining the real-time
position of GPS assets in general, and disrupt UAVs’ aerial navigation in particular.

Therefore, many cybersecurity researchers showed interest in implementing effective
countermeasures to deal with the danger posed by such attacks. The study presented
in [8] conducted a systematic review of the literature exploring the existing research dimen-
sions on GPS spoofing attacks in the context of UAVs and flying ad hoc networks. They
investigated the existing techniques for conducting different types of GPS spoofing and
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jamming mechanisms, their impact, and the potential to leverage these attacks as a defense
concept, such as preventing civilian UAVs from accessing forbidden areas. Additionally,
they explored the existing defense strategies proposed in the literature against these attacks.

Since our interest lies in security precautions and defense countermeasures against
GPS spoofing attacks, we proceed in this work to follow the template established in [8] to
detect, mitigate, and prevent this threat. The existing countermeasures can be divided into
several categories. Onboard device techniques consist of equipping UAVs with additional
sensors to assist navigation and help to detect attacks. GPS signal processing techniques
investigate anomalies in the characteristics of signals, such as signal strength and angle of
arrival. Cryptography methods aim at establishing secure communication links between
UAV nodes, satellites, and ground control stations to protect the integrity of signals. Game
theory methods also contribute to the detection of GPS spoof attacks by modeling the
interactions between targets and attackers as a strategic game, ultimately reaching an
equilibrium, such as in the Stackelberg game. On the other hand, the relevance recently
demonstrated by machine learning in various fields, such as healthcare [9], agriculture [10],
and intelligent transportation systems [11], has attracted considerable attention from cyber-
security researchers [12-14]. This is due to its contribution to simplifying tasks, improving
decision making, and enhancing overall quality of life, in addition to its ability to achieve
high precision and automatically adapt to novel conditions. Therefore, numerous studies
showed interest in designing machine learning and deep learning models to face GPS
spoofing attacks threatening UAVs. They also provided datasets with different formats,
demonstrating the impact of GPS spoofing on aerial navigation systems and helping cyber-
security researchers to combat this threat. The SatUAV dataset [15] includes a large amount
of high-resolution aerial photography captured from 13 cities around the world, where 605
realistic scene photos with heterogeneous ground features were taken using a real UAV,
while an additional 362 photos were added to the dataset from the senseFly website. Log
file GPS spoofing datasets [16,17] comprise high-dimensional sensor readings, primarily
from GPS and IMU modules, collected during UAV flights in both benign and spoofed
scenarios. They often require the implementation of advanced feature selection techniques
due to their complexity. The OpenSky Network dataset [18] contains samples of real-world
Air Traffic Surveillance (ATS) data, distributed all over the globe. Another dataset provided
by [19] involves the characteristics of GPS signals extracted from an eight-channel GPS
receiver mounted on a real UAV while performing real missions. It also contains three
types of GPS spoofing attacks simulated using MATLAB.

In this paper, we propose a supervised ML-based detection system to identify GPS
spoofing attacks and classify each attack type according to its sophistication level. Tree-
based machine learning algorithms are employed, namely a basic decision tree model,
a bagging ensemble model known as random forest, and a boosting ensemble model
named extreme gradient boosting. The dataset used contains 13 features collected from a
multi-channel GPS receiver mounted on an autonomous vehicle through multiple missions.
As a preprocessing step, our work involves handling non-stationary features and converting
the original dataset dimensions into a more suitable format for our models. We conduct a
comparison between the proposed classifiers and the existing work in terms of the accuracy,
precision, recall, and F1-score metrics.

The remainder of this work is structured as follows: In Section 2, we discuss previous
works that address the problem. In Section 3, we provide the methodology used to design
our machine learning classifiers. Section 4 presents the obtained results. Finally, Section 5
concludes the paper.
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2. Related Works

To design effective defenses against cyberattacks, understanding the attacker’s intent
is critical. In the context of GPS spoofing, an attacker may try to force a UAV to collide with
other UAVs or obstacles, disregarding the risk of detection. Alternatively, the attacker may
aim to capture the UAV while carefully avoiding actions that trigger detection systems.
To achieve this, the attacker can either collect GPS signals from one location and re-broadcast
them in another or generate GPS signals that mimic authentic satellites. As described in [20],
GPS spoofing attacks are distinguished by their strategy and impact on UAV navigation:

(a) Simplistic attacks: The basic form of a GPS spoofing attack involves launching GPS
signals that carry false position information at higher power than authentic satellite
signals. This forces the target GPS receiver to lose lock and perform the re-acquisition
process, raising the concern of an ongoing attack. If, by any chance, the attacker
successfully prevents the loss of lock, the attack still lacks time synchronization with
previous authentic signals. Moreover, it disregards the UAV’s motion, making the
spoofed signal appear clearly abnormal to the target receiver. Nevertheless, the basic
GPS spoofing attack can still function as a jamming technique, preventing the receiver
from acquiring authentic signals.

(b) Intermediate attacks: Intermediate-level attacks include using a portable receiver—
spoofer device. It is typically built with low-cost commonly available components
and runs an open-source GPS signal simulator. An attacker places this device in
proximity to the UAV target to estimate its position, velocity, and time. The purpose is
to synchronize the spoofed GPS signals with authentic satellite signals, then gradually
increase their amplitude, and subtly alter the reported position to divert the target
from its intended path. This attack overcomes the limitations of the basic spoofing
attack and is capable of deceiving most traditional detection techniques. However,
angle-of-arrival discrimination remains the most effective countermeasure against
this attack form as the signals seem to originate from the same direction.

(c) Sophisticated attacks: In more sophisticated attacks, adversaries broadcast synchro-
nized signals from multiple angles using a series of receiver-spoofer devices that
emulate satellite constellations. The complexity of this attack type makes it extremely
challenging to detect. Even advanced detection techniques based on angle of arrival
are deceived and may incorrectly classify multipath signals as spoofing attacks.

To address this, numerous studies have proposed various techniques to detect and
mitigate the risks posed by these attacks. As described in [8], the existing countermeasures
can be classified into five main categories:

2.1. Onboard Device-Based Techniques

In [21], the authors proposed a method to detect GPS spoofing attacks in both single-
and multiple-UAV formations. The proposed scheme involves reporting the self-position
of anode N and at least three of its neighboring nodes to a ground control station (GCS)
at random intervals. The GCS then verifies the relative positions between node N and
its neighbors by comparing their values with the positions obtained from the GPS. Any
disparity indicates the presence of a spoofing attack. In the case of a UAV operating in
isolation, the system fuses position information provided by the inertial measurement
unit (IMU) with GPS data to identify spoofed signals. However, the study assumed the
constant presence of the GCS and a stable communication link with UAV nodes, which is
challenging to maintain in real-world scenarios.

Ref. [22] proposed a visual odometry-based method to detect sophisticated GPS
spoofing attacks. Cameras were used as aiding sensors to capture images of the UAV’s
sub-trajectory, which were then compared with the absolute path of the UAV obtained from



Sensors 2025, 25, 4045

50f 34

the GPS. The difference between the two trajectories was calculated using three different
dissimilarity measures, namely the Euclidean distance, angular distance, and taxicab
distance. This method proved effective against such attacks. However, it had several
limitations, particularly in low-light conditions at night or in areas with challenging visual
features, such as regions covered by water or snow.

Ref. [23] presented a method to detect GPS spoofing attacks targeting single- or
multiple-UAV nodes. In this technique, each UAV in the formation reports its GPS location
data to a GCS. If two adjacent nodes report identical locations, this indicates a spoofing
attack as spoofed signals typically affect multiple nodes simultaneously. In cases where
only a single UAV is targeted, the approach compared the distance between the target UAV
and its neighbors obtained from the GPS coordinates with the distance measured using
impulse radio ultra-wideband (IR-UWB) or other ranging technologies. Although this
method eliminated the need for additional onboard equipment that may drain the UAV’s
battery, it still relies on the availability of the GPS and neighboring UAV nodes.

2.2. Signal Processing-Based Techniques

In [24], the authors proposed a detection technique based on uplink received signal
strength (RSS). UAVs are required to obtain authorization from the Unmanned Aircraft
System Traffic Management (UTM) before each flight, after which they must periodically
report their telemetry data, including GPS position in a 5G-enabled environment, as man-
dated by the Federal Aviation Administration (FAA). The UTM then compares the UAV’s
reported GPS position with the position calculated using trilateration of distances to at
least three base stations determined via RSSI-based distance estimation.

The study proposed in [18] leveraged an existing global network of 700 air traffic
control sensors to detect and mitigate GPS spoof attacks. UAVs and aircraft periodically
transmit advertisement messages containing their GPS positions to at least four of these
air traffic controllers. The system then verifies these positions by comparing them with
estimated locations, calculated by multilateration, using the distances between the aircraft
and the controllers. These distances are computed using the Time Difference of Arrival
(TDoA)-based technique.

A GPS spoofing detection system inspired by burglary scene analysis was proposed
in [25] to identify sophisticated GPS spoofing attacks launched from multiple sources.
The approach analyzes the absolute signal power and the carrier-to-noise ratio (C/Ny)
of the received GPS signals to detect anomalies. Since neighboring UAVs also receive
propagated spoofing signals, they can act as witnesses to confirm the presence of any attack.
In addition, a trust policy is implemented for witness nodes to prevent the dissemination
of false information.

2.3. Cryptography-Based Techniques

The authors of [26] proposed an architecture based on blockchain technology, where
multiple UAVs collaborate to detect GNSS spoofing attacks. Each UAV performs its des-
ignated functions, including sharing its location data on the blockchain. These data are
later compared with the UAV’s position obtained via cooperative positioning to identify
any suspected spoofing attempts. However, this approach requires UAVs to be equipped
with a set of radio direction finding (RDF) transmitters and receivers. In addition, the com-
putational overhead introduced by the blockchain infrastructure remains a significant
challenge. Ref. [27] proposed a semi-decentralized UAV architecture to prevent GPS spoof-
ing. A leader UAV is elected by the UAV network community through a consensus process
for a predefined time period. The leader obtains its GPS position, encrypts it, and broad-
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casts it to the entire UAV network. The remaining UAVs then decrypt the leader’s position
and compute their own positions relative to it.

2.4. Game Theory-Based Techniques

Ref. [28] introduced a mathematical framework to detect and mitigate the effects of GPS
spoofing attacks on UAVs; the approach models the attacker and a set of UAV strategies as a
dynamic Stackelberg game. However, this technique required communication among UAVs
to determine the real position of the target UAV through cooperative localization.

A game-theoretic security mechanism was proposed in [29] to detect and mitigate
GPS spoofing attacks based on a continuous kernel signaling game. In their model, a GPS
receiver and a spoofer were depicted as two players. The receiver player faces a critical
decision, either accepting a received GPS signal without verification, potentially exposing
itself to deception, or estimating its position based on the signal. On the other hand,
the spoofer player strategically injects counterfeit signals in an attempt to manipulate the
receiver’s navigation system and mislead its position.

2.5. Machine Learning-Based Techniques

In [30], a convolutional neural network (CNN) model was used to detect GPS spoofing
attacks. The methodology consisted of comparing the aerial image of the ground taken
by a camera mounted on the UAV with its corresponding satellite image retrieved from
Google Earth using the GPS coordinates. The CNN model evaluates the similarity between
the two images, and any reported mismatch is considered indicative of a spoofing attack.
To train and evaluate their model, the authors introduced the SatUAYV dataset [15], which
comprises paired images of real aerial imagery collected from 13 cities around the world,
and corresponding satellite imagery from Google Earth. In addition, the dataset is enriched
with real-world aerial images from the senseFly website.

A machine learning algorithm based on XGBoost was proposed in [16]. The model was
initially trained offboard using flight logs from IMU and GPS sensors, and its parameters
were tuned using the genetic algorithm. After that, it was deployed onboard a quadrotor
UAV to adapt it with additional types of sensors and improve the prediction accuracy.
Finally, they conducted real-world flight experiments under both hijacked and non-hijacked
scenarios to evaluate the effectiveness of their approach.

In [31], the authors compared the performance of five machine learning algorithms in
detecting GPS spoofing attacks. They provided a dataset [19] containing thirteen features
of real GPS signals collected from different blocks of a GPS receiver and then simulated
attack signatures of three types of GPS spoofing with varying levels of sophistication.
The evaluation metrics showed that Nu-SVM had the best performance.

Ref. [32] proposed four tree-based machine learning algorithms, namely random forest
(RF), gradient boost, XGBoost, and LightGBM, to detect GPS spoofing attacks. The dataset
used was the same as that in [31]. The authors used the Spearman correlation for feature se-
lection and differencing to handle non-stationary data since the dataset contained irregular
timeseries features. The evaluation metrics showed that XGBoost had the best performance
in terms of accuracy, probability of detection, probability of misdetection, and probability
of false alarm.

In [33], the authors evaluated various machine learning models using three ensemble
learning techniques, namely bagging, stacking, and boosting, to detect GPS spoofing
attacks. As a first step, they applied the Min—-Max scaler to normalize the data, then used
Pearson’s correlation to remove irrelevant features. They also examined features with no
static relationship and transformed them into stationary ones. In that study, grid search
was applied to find the best hyperparameters, and 10-fold cross-validation was used to
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assess the proposed models. The authors concluded that the stacking technique yielded
the best results.

The study in [34] is a dynamic-based selection system that chooses the best ML model
among ten heterogeneous machine learning algorithms to detect the presence or absence
of GPS spoofing attacks. In the preprocessing stage, Ref. [34] applied data imputation to
remove empty data and categorical data encoding to transform categories of attacks and
authentic signals into 1s and Os, respectively. In that work, a heterogeneous ensemble
feature selection technique combined Spearman correlation and information gain to select
the relevant features from the dataset. Meanwhile, the Yeo—Johnson transformation was
applied to transform the data to fit a Gaussian distribution, and Bayesian optimization was
used for hyperparameter tuning. To validate their method, they compared their results
with ensemble model techniques, namely bagging, boosting, and stacking, in terms of
various metrics including accuracy, probability of detection, probability of misdetection,
and probability of false alarm. The authors claimed that their work outperforms the
ensemble model techniques.

A comprehensive comparison of three categories of supervised deep learning models,
namely deep neural network (DNN), convolutional neural network (CNN), and recurrent
neural network (RNN), was presented in [35] to detect GPS spoofing attacks. Therein, mode
imputation was applied to replace missing values with the most frequent value, and the
Min-Max scaler was used for data normalization. The authors evaluated the models using
a 10-time resampling framework and concluded that the U-Net model based on a CNN
achieved the best performance.

A stacking ensemble approach comprising machine learning and deep learning algo-
rithms was proposed in [36] against GPS spoofing. In the preprocessing stage, due to the
high range of the numerical values of the dataset, the authors used z-score normalization
(standardization) to avoid any kind of feature favoritism. Then, they examined the com-
bination of different ML and DL models. Therefore, the SVM-CNN model showed the
best performance in terms of accuracy, precision, recall, and F1-score through K-fold cross-
validation.

The summary of the state-of-the-art papers is illustrated in Table 1. Driven by the
shortcomings outlined above and the advantages offered by machine learning over tra-
ditional approaches, we focus on designing an effective ML-based system that operates
independently of any additional sensors onboard or external communication with neigh-
boring nodes or ground control stations. Furthermore, we address GPS spoofing detection
by classifying each attack type using a large-scale dataset composed of signal samples
collected from real-world experiments.

Table 1. State of the art summary.

Axis Paper Methodology Limitation
[21] IMU
Onboard devices [22] Visual odometry Hardware modification
[23] Impulse radio ultra-wideband
. . [24] RSSI Requires stable link with GCS and neighbor
Signal processing [18] TDoA nodes, lack of trust policy among UAV nodes
[25] C/Np ’ '
Crvotoeraph [26] Blockchain Computational overhead, complex key
yptography [27] Semi-decentralized architecture distribution in dynamic topologies.
Game theory [28] S’.cacke.lberg game Lacks real-time experiments.
[29] Signaling game
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Table 1. Cont.

Axis Paper Methodology Limitation
[30] Convolutional neural network (CNN) Requires camera onboard.
[16] Extreme gradient boosting (XGBoost) and High-dimensionality dataset, model training
genetic algorithm overhead.
[31] nu-SVM
[32] Extreme gradient boosting (XGBoost)
Machine learning Stacking ensemble approach: KNN, NB, DT,
[33] RE, LR
MOD and WMOD ensemble approach: SVM,  Lacks classification of attack type.
[34] NB, DT, KNN, LDA, REF, ANN, LR, EN,
AdaBoost
[35] CNN: U-net
[36] Stacking ensemble approach: SVM-CNN

3. Methodology

As shown in Figure 1, our proposed system consists of three main phases. First,
we extract data sequences from three missions in the dataset, followed by the necessary
preprocessing steps, which include handling non-stationary features and converting the
dataset into an appropriate shape. In the second phase, we build machine learning-based
classifiers, namely decision tree, random forest, and XGBoost, to classify GPS signals into
four categories: authentic signals, simple attacks, intermediate attacks, and sophisticated
attacks. Finally, we train each classifier on each mission dataset through 50 experiments and
evaluate them using various metrics: accuracy, precision, recall, and F1-score. For further
assessment, we combine all the mission datasets into a single dataset to evaluate the
consistency of each model on large-scale data.

3.1. Dataset Selection

When exploring the datasets provided by GPS spoofing detection studies based on
machine learning, we observe that the SATUAV dataset introduced in [30] requires addi-
tional hardware modifications, most notably a camera mounted on the UAV. However,
our approach focuses on standalone ML solutions that operate independently, without re-
lying on any external onboard devices. On the other hand, the log file dataset from [16]
demands high computational resources when training the model during UAV missions
due to both the high dimensionality of the sensor logs and the overhead of real-time
processing. Therefore, the dataset from [31] remains our preferred choice [37] as it pro-
vides characteristics of GPS signals collected from real flights. This dataset captures signal
anomalies at early stages, even before the signals reach the PVT (position, velocity, time)
block of the GPS receiver, enabling earlier detection of spoofing attacks. Furthermore,
the dataset includes simulations of three common types of GPS spoofing attacks: simplistic,
intermediate, and sophisticated. Identifying these attack types provides critical insight for
designing and deploying effective post-detection countermeasures. However, this dataset
presents a challenge that consists of handling timeseries features. The primary function
of a GPS receiver is to collect satellite signals when available, which causes varying time
intervals between the collected signals. Consequently;, it is essential to apply appropriate
preprocessing techniques to handle timestamp irregularity so that ML models can perform
classification correctly.
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Figure 1. Workflow of our methodology.

In the following section, we outline the main stages carried out to construct the GPS
spoofing dataset for UAVs:

3.1.1. Materials

Firstly, the authors designed an eight-channel GPS receiver using a Universal Software
Radio Peripheral (USRP) unit, a front-end active GPS antenna, and an open-source Global
Navigation Satellite System Software-Defined Receiver (GNSS-SDR). This architecture
allowed real-time extraction of GPS signal features at critical points of the processing
blocks, including acquisition and tracking. Furthermore, the proposed architecture is
capable of tracking diverse satellites simultaneously, providing a more efficient analysis of
GPS signals and the various types of spoofing attacks.

3.1.2. Feature Extraction

Multiple experiments were performed to simulate both stationary and mobile au-
tonomous vehicles at different sites and altitudes. During each scenario, the researchers
extracted thirteen features of GPS signals collected from each channel of the designed GPS
receiver; see Table 2. The features were obtained at different levels of signal processing
blocks; this includes pre-correlation, during correlation, and post-correlation stages.
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Table 2. Features extracted from each channel of the GPS receiver.

Feature Name

Signification Correlation Level

Description

C/No Carrier-to-noise ratio Pre-correlation Ratio of the signal power to the noise in dB.

TCD Tracking Carrier Doppler Doppler shift estimated at the tracking loops
in Hz.

PQP Prompt Quadrature Quadrature component of the prompt

Component correlator (PC).
PIP Prompt In-Phase In-phase component of the prompt correlator
Correlator During correlation ~ (PC).

PC Prompt Correlator Correlation measurement between the
received satellite signal and the replica signal
locally generated.

EC Early Correlator 172 chip spacing before the prompt correlator.

LC Late Correlator 12 chip spacing after the prompt correlator.

Carrier_phase_cycles

TOW_at_current
_symbol_s

RX_time

Pseudorange_m
Carrier_Doppler_hz

PRN

Carrier Phase Cycles

Time of the Week in
seconds

Receiver Time Post-correlation

Pseudorange in meters
Carrier Doppler in Hz

Pseudorandom Noise

Beat frequency difference between the
received carrier and the replica signal
locally generated.

The number of seconds elapsed given by the
satellite atomic clock since the start of
each week.

The receiver time given in seconds.

The distance measured between the receiver
and the satellite in meters.

Frequency drift between the sent frequency
and received frequency due to Doppler effect.

A unique identifier of each satellite.

3.1.3. Attack Simulation

To advance the procedures of constructing the GPS spoofing dataset, it is crucial to

perform real spoofing attacks on the autonomous vehicle. However, conducting such

attacks outdoors is illegal and risky. On the other hand, performing indoor attacks may

lead to biased results. Therefore, the authors utilized MATLAB to mimic the signature

of the previously described spoofing forms on the features of the received GPS signals.

The impact of spoofing attacks on signal integrity is described as follows. In simplistic

attacks, a spoofer transmits high-power signals, leading to an increased carrier-to-noise

ratio (C/Np), as well as introducing unmatched Carrier Phase (Carrie_phase_cycles) and

Doppler shift (Carrier_Doppler_hz) values. As a result, the pseudorange measurement

(Pseudorang_m) deviates significantly from the previous authentic signals since the spoofer

disregards the target’s motion. In intermediate attacks, the spoofer estimates the target’s

position and velocity, then transmits spoofed signals with adjusted power levels to make

the (C/Np) values resemble those of authentic signals. The spoofer also aligns the code

phase and Doppler shift values to maintain a pseudorange measurement showing no

anomalies. Consequently, traditional detection techniques relying on signal processing

become ineffective. In sophisticated attacks, the spoofer broadcasts multiple jamming and

spoofing signals from different angles. The authors simulated distortions in the correlation

peaks of multiple channels simultaneously, and introduced a quadrature accumulation

shift in the correlator (PQP).
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3.1.4. Dataset Format

The dataset is composed of three Excel files. The first file contains thirteen features
extracted from raw GPS signals recorded during UAV missions. Each feature column is
divided into eight sub-columns representing the values of the specified feature for each
channel at the same time. The second file comprises 158,174 GPS signal samples, including
simulated attacks. It contains thirteen features along with a target variable (output) that
identifies the type of signal. Genuine signals are labeled as 0, while the spoofed are
classified as 1, 2, and 3, corresponding to simplistic, intermediate, and sophisticated attacks,
respectively. Each feature in this file also follows the eight-channel structure, resulting
in a three-dimensional data format. Finally, a simplified 2D version of the dataset is also
available, which is a flattened conversion of the original 3D structure. In this version, each
row corresponds to a GPS signal from a single channel rather than aggregating signals
across all eight channels in one row. However, rows having zero values indicating unlocked
channels that are not actively tracking any satellite are excluded from the dataset, resulting
in a total of 510,530 GPS signal samples.

3.2. Preprocessing
3.2.1. Extract Missions

In our study, we focus on the three-dimensional version of the dataset, which includes
thirteen features recorded across eight channels. We closely explore attack simulations as
well as the target variable to assess class balance and verify the integrity of the recorded
signals. Additionally, we examine the RX feature, which indicates the time in seconds since
the GPS receiver has acquired each signal. This analysis allowed us to extract three distinct
time ranges corresponding to separate acquisition of GPS signals.

e [491,568-492,039.42 s], which covers 471.42 s (7 min, 51 s, and 420 ms).
e [173,640-174,233.86 s], which covers 593.86 s (9 min, 53 s, and 860 ms).
e [262,704.02-264,109.68 s], which covers 1405.66 s (23 min, 25 s, and 660 ms).

Finally, for further improvement, we separate these three missions into different files;
the details are demonstrated in Table 3.

Table 3. Details of the extracted mission files.

Class Distribution

Mission Ranging Time Period Size
Label0 Labell Label2 Label3
1 [491,568-492,039.42] 47142s 95027 57,599 10,940 9790 16,698
2 [173,640-174,233.86] 593.86 s 66,393 43,572 8072 11,977 2772
3 [262,704.02-264,109.68] 1405.66s 282,256 239,553 9971 11,495 21,237

3.2.2. Differencing Non-Stationary Features

The Time of Week (TOW) feature represents the timestamp, in seconds, assigned by
the satellite at the moment the signal message is generated and transmitted. On the other
hand, the RX feature represents the time recorded by the GPS receiver when capturing
a GPS signal. Both features are correlated and exhibit a continuous upward trend [31],
raising a non-stationary phenomenon.

Since the values of mean, median, and variance may not remain constant, extracting
meaningful patterns from TOW and RX becomes challenging for most machine learning
algorithms that assume data following a stationary distribution. To mitigate this issue, we
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apply first-order differencing, as shown in Equation (1), to both features across the eight
channels of each mission file:
Axj = Xj — Xj1, (1)

where Ax; represents the first-order difference, x; is a data sample of the non-stationary
feature, and x;_ is its preceding value. Furthermore, rows containing unlocked channels
(i.e., rows that have only zero values) are removed to ensure data consistency.

Consequently, the features TOW and RX were replaced by their corresponding deriva-
tives DELTA_TOW and DELTA_RX, respectively. Here, DELTA_TOW represents the time
step between successive signals transmitted by the satellites, while DELTA_RX describes
the time step between successive signals collected by the GPS receiver.

Tables 4-7 show the different modality occurrences for the new features classified
by mission. We can notice that the DELTA_TOW feature has various modalities since the
signals are broadcast from different sources. However, DELTA_RX has only two values
for each mission. This can be explained by the fact that the signals are received by a
single destination.

Table 4. Distribution of DELTA_TOW for Mission 1.

Modality Occurrence Modality Occurrence Modality Occurrence
0.0200000000186264 64593 0.019899999955669 2 0.0210000000079162 1
0.0199999999604187 30401 0.0199000000138767 2 0.0211000000126659 1
0.0201000000233761 17 0.0207999999984167 1
0.0200999999651685 8 0.0222000000067055 1

Table 5. Distribution of DELTA_TOW for Mission 2.

Modality Occurrence Modality Occurrence Modality Occurrence
0.0199999999895226 42473 0.0201000000233761 1 0.0210999999835621 1
0.0200000000186264 23894 0.0231999999959953 1 0.0231000000203493 1
0.0200999999942723 9 0.0204000000085216 1
0.0199000000138767 4 0.0235000000102445 1
0.0198999999847728 4 0.0284999999857973 1

Table 6. Distribution of DELTA_TOW for Mission 3.

Modality Occurrence Modality Occurrence Modality Occurrence
0.0200000000186264 191856 0.019899999955669 1 0.0212000000174157 1
0.0199999999604187 90286 0.0291999999899417 1 0.0247999999555759 1
0.0201000000233761 42 0.026300000026822 1 0.022400000016205 1
0.0200999999651685 34 0.023700000019744 1 0.0234000000054948 1
0.0199000000138767 14 0.0223000000114552 1 0.0239999999757856 1
0.0207999999984167 2 0.0213000000221654 1 0.0213999999687075 1
0.0201999999699182 1 0.0211000000126659 1 0.0248999999603256 1
0.0274999999674037 1 0.0231999999959953 1 0.0205999999889172 1
0.0270000000018626 1 0.0234999999520368 1
0.0222000000067055 1 0.0263999999733641 1
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Table 7. Distribution of DELTA_RX for the three missions.

Mission Modality Occurrence
Mission 1 0.0200000000186264 64613
0.0199999999604187 30414
Mission 2 0.0199999999895226 42488
0.0200000000186264 23905
Mission 3 0.0200000000186264 191888
0.0199999999604187 90368

3.2.3. Dataset Shape Conversion

The original dataset, which includes simulated attacks, is structured in a three-
dimensional (3D) format, as illustrated in Figure 2a. In this format, the thirteen features
are distributed across the eight channels of the GPS receiver. In our study, we convert the
datasets from the three missions from 3D to a two-dimensional (2D) format. This trans-
formation involves converting the channel-based structure into individual samples. Each
channel is treated as an independent row. As a result, the number of samples increases,
while the number of features (thirteen) remains unchanged, as illustrated in Figure 2b.
This approach preserves the chronological order of the RX timestamps and maintains the
temporal integrity of the dataset.

13 original features

13 features

M samples

(a) Before conversion (b) After conversion

Figure 2. Dataset shapes before and after conversion.

4. Machine Learning Classifiers

We encountered in this study several challenges related to the dataset, including
class imbalance, non-stationary features, varying numerical scales, and the multiclass
nature of the problem. Unlike distance-based models such as k-Nearest Neighbor (k-NN),
Support Vector Machines (S§VMs), and neural networks, which are highly sensitive to
feature scales and require standardization or normalization, decision tree-based models
are able to natively handle features with varying ranges without rescaling. In addition,
normalizing GPS signal data can sometimes disrupt the intrinsic relationships between
features. For instance, C/Ny, which reflects signal strength, directly affects the accuracy of
pseudorange measurements.

To handle class imbalance, Ref. [35] applied mode imputation by replacing missing
values with the most frequent occurrence. However, this method risks over-representing
certain values and introducing bias. Therefore, tree-based machine learning algorithms offer
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built-in mechanisms to highlight informative features through feature importance measures
and incorporate class weighting to address class imbalance. This strategy preserves the
original feature scales and their relationships while maintaining the integrity of the data.

In our study, to counteract the threat of GPS spoofing attacks, we investigate tree-
based models, namely Decision Tree, Random Forest, and XGBoost, implemented using the
commands from sklearn.tree import DecisionTreeClassifier, from sklearn.ensemble import
RandomForestClassifier, and from xgboost import XGBClassifier, of the Python library
Scikit-learn [38].

4.1. Decision Tree

Decision trees were initially introduced by [39]. They are non-parametric supervised
machine learning algorithms used for both classification and regression tasks. They follow
a hierarchical tree-based structure composed of a root node, internal nodes, branches,
and leaf nodes. The mechanism of decision trees consists of generating a set of decision
rules derived from features to estimate the target variable. Therefore, internal nodes apply
criteria such as Gini impurity or entropy to determine the optimal feature split and obtain
the best possible classification. However, this approach still suffers from overfitting in
some instances.

In this study, we design a decision tree model employing Gini impurity to measure
the quality of splits. The maximum tree depth is not specified; in this case, the tree will
grow until all the leaves are pure. We set the minimum number of samples required to
split an internal node to 2. Additionally, all the available features are considered during the
training process to maximize the model’s learning capacity.

4.2. Random Forest

Random forest [40] is an ensemble learning algorithm that constructs multiple decision
trees, where each tree is trained on a random sample of the data considering random feature
selection at each split. The final predictions are made using majority voting and averaging
for the classification and regression tasks, respectively. This approach helps to avoid
overfitting issues faced in single decision trees. Moreover, random forest provides feature
importance scores; this capability is particularly valuable for understanding which GPS
signal features contribute most to detect spoofing attacks. Nevertheless, employing a
large number of individual decision trees within the ensemble can result in significant
computational overhead.

Our random forest model comprises 100 decision trees, with bootstrap sampling to
ensure diverse subsets for training each tree. As the previous explained decision tree, Gini
impurity is employed, and the maximum depth of trees is not set. However, the square
root of the total number of features is applied to reduce correlation between trees.

4.3. Extreme Gradient Boosting

Extreme gradient boosting [41] is an advanced ensemble learning algorithm that builds
gradient descent decision trees sequentially. For each iteration, it corrects shortcomings
from previous models until reaching a final strong learner. In addition, it leverages parallel
processing to accelerate computations, making it significantly faster. Furthermore, XGBoost
integrates both L1 and L2 regularization to enhance generalization and mitigate overfitting.
On the other hand, it may be memory-expensive when dealing with very large datasets or
a high number of boosting cycles.

We construct an XGBoost model employing the softmax objective function to address
the multiclass classification task. The number of classes is set to four. The model is
configured with a default learning rate of 0.3 and 100 trees within the boosting process.
In addition, the maximum depth is left unconstrained.
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Table 8 summarizes the hyperparameters of the three models used in our experiments.
It provides information on the configurations that led to the respective performances.

Table 8. Hyperparameter settings of the proposed models.

Model Hyperparameters

Decision Tree criterion: “gini’, min_samples_split: 2, random_state: None

criterion: ‘gini’, max_features: ‘sqrt’, min_samples_split: 2, n_estimators: 100,

Random Forest
© ores random_state: None

XGBoost objective: ‘multi:softmax’, num_class: 4

5. Evaluation and Results

In this section, we conduct an in-depth evaluation of our GPS spoofing attack detection
system using datasets from the three missions. Initially, we assess the models’ performance
on each mission independently using the Monte Carlo cross-validation technique, which
involves running 50 randomized train—test splits.

For each case, the dataset is randomly divided into 70% for training and 30% for
testing, taking into account variations in dataset size and class distribution. A feature
importance analysis is also conducted on each dataset; this step allows identifying the most
significant variables and discarding irrelevant features, consequently reducing the training
overhead. However, it is important to highlight that stratified sampling is employed during
the train—test split, ensuring a more balanced representation of each class in both subsets.
Subsequently, all mission records are merged to create a unified dataset, enabling further
evaluation of the model’s generalization capability. Finally, we compare the performance
of our proposed models before and after feature selection.

The evaluation metrics used to measure the performance of our models are described
as follows:

Accuracy = —= Lo TP , (2)
Y. 1(TP;+ FP; + FNj)

Precision = é i{ ﬁpll—ﬂpz 3)

Recall = % ,il %, (4)

P - L & ot oot :

i=1

where C is the total number of classes. Accuracy measures the proportion of correct
predictions made by the model throughout the dataset. Precision measures the correctness
of positive predictions. Recall indicates how well the model finds all positive predictions.
F1-score measures the harmonic mean of precision and recall. Since our contribution
involves classifying four categories of GPS signals, we use macro-averaging to compute the
evaluation metrics. This method treats all classes equally, including minorities, which is
suitable for class-imbalanced datasets. Therefore, each metric is calculated independently
for all classes, and then the results are averaged. Using these metrics is essential to confirm
that the models do not overfit and maintain consistent performance across different training
and testing sets in multiclass classification tasks.
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5.1. Mission 1

The dataset for Mission 1, as illustrated in Figure 3, consists of 60.6% authentic signals
and 39.4% attack signals. The attack samples are further classified into 11.5% simplistic
attacks, 10.3% intermediate attacks, and 17.6% sophisticated attacks. Figure 4 shows the
DELTA_TOW curve over time.

Attack vs. No Attack Class Distribution with Ratios

I No Attack (0)

100.000 | =3 Attack 1
N Attack 2
B Attack 3
80,000 1
[=9
5 60.6%
A 60,000 1
3
£ 39.4%
E’ 40,000 1

20,000 +

11.5%

No Attack Attacks

Figure 3. Mission 1 class distribution.
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Figure 4. Continuous DELTA_TOW values in Mission 1.

The feature importance parameter provided by our tree-based ML algorithms provides
insight into the relevant features that strongly contribute to detecting GPS spoofing attacks
regarding this dataset. As demonstrated in Table 9 and Figure 5, the features PD, CP, DO,
TCD, PRN, and C/NO are widely the most important for the three models, having the
highest scores. Meanwhile, the remaining features have a low contribution score. Decision
tree and random forest rely on PD as the feature with the highest score, followed by CP
and then DO, TCD, PRN, and finally C/NO. The rest of the features converge to zero and
can be neglected. The XGBoost model, on the other hand, depends first on the PRN feature,
followed by PD, DO, CP, TCD, and C/NO as the strongest features.

For this mission, the decision tree model achieved an average accuracy of 99.943%,
a precision of 99.930%, a recall of 99.927%, and an F1-score of 99.929%. On the other hand,
the random forest model demonstrated even stronger results, with an average accuracy of
99.979%, a precision of 99.977%, a recall of 99.973%, and an F1-score of 99.975%. Meanwhile,
XGBoost recorded the lowest performance among the three models, with an accuracy value
of 99.918%, a precision of 99.902%, a recall of 99.895%, and an F1-score of 99.898%. Despite
this, the model remained stable and reliable.
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Figure 5. Feature importance ranking from most to least significant—Mission 1.
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Table 9. Feature importance scores for Mission 1.

Feature Decision Tree Random Forest XGBoost
PRN 0.071903 0.084147 0.353905
DO 0.121739 0.153809 0.171473
PD 0.380501 0.290055 0.239213
DELTA_RX 0.000000 0.000000 0.000000
DELTA_TOW 0.000000 0.000012 0.000000
cp 0.256012 0.236168 0.123958
EC 0.000018 0.008147 0.000457
LC 0.000000 0.008953 0.000554
PC 0.000000 0.020156 0.027237
PIP 0.000017 0.001731 0.000481
PQP 0.000471 0.002654 0.000456
TCD 0.118014 0.128118 0.042452
C/N_O 0.051325 0.066049 0.039815

5.2. Mission 2

The dataset comprises 65.6% authentic signals and 34.4% attack signals, distributed as
follows: 12.2% simplistic attacks, 18% intermediate attacks, and 4.2% sophisticated attacks;
see Figure 6. The DELTA_TOW values are illustrated in Figure 7.

The feature importance analysis shows that, as in Mission 1, the strongest features in
identifying which class a GPS signal is classified into are still PD, CP, DO, TCD, PRN, and
C/NO; see Figure 8. The feature importance scores of each model are presented in Table 10.
Therefore, the decision tree’s highest-scoring features are ordered as follows: PD remains
the most important feature, followed by TCD, PRN, DO, CP, and C/NO0. For random forest,
the feature order is PD, TCD, DO, CP, C/NO, and PRN. Finally, XGBoost initially relies on
PRN, then followed by PD, TCD, DO, CP, and C/NO.

Attack vs. No Attack Class Distribution with Ratios

[ No Attack (0)
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60,000 B Attack 3
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Figure 6. Mission 2 class distribution.
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Figure 7. Continuous DELTA_TOW values in Mission 2.

Table 10. Feature importance scores for Mission 2.

30,000

Index

40,000

50,000

60,000

Feature Decision Tree Random Forest XGBoost
PRN 0.057747 0.083850 0.291810
DO 0.056479 0.132609 0.124330
PD 0.486443 0.367965 0.270811
DELTA_RX 0.000000 0.000000 0.000000
DELTA_TOW 0.000000 0.000029 0.000000
Cp 0.054414 0.127390 0.100905
EC 0.000116 0.009787 0.002693
LC 0.000000 0.007440 0.000228
PC 0.000110 0.016208 0.000288
PIP 0.000000 0.001881 0.000341
PQP 0.000000 0.001683 0.000337
TCD 0.305553 0.141088 0.153162
C/N_O 0.039137 0.110069 0.055094

The decision tree model achieved a mean accuracy of 99.965%, precision of 99.933%,

recall of 99.953%, and F1-score of 99.943%, with minimal fluctuations in standard deviation.

The random forest model outperformed decision tree, achieving an average accuracy of
99.984%, precision of 99.951%, recall of 99.979%, and F1-score of 99.965%. The XGBoost
model scored the lowest performance, with an accuracy of 99.960%, precision of 99.919%,

recall of 99.945%, and F1-score of 99.932%.

5.3. Mission 3

The dataset for Mission 3, illustrated in Figure 9, consists of 84.9 % authentic signals

and 15.1% attack signals. The attacks are categorized as 3.5% simplistic, 4.1% intermediate,
and 7.5% sophisticated attacks. Figure 10 demonstrates the DELTA_TOW values for

this mission.
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Figure 8. Feature importance ranking from most to least significant—Mission 2.
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Attack vs. No Attack Class Distribution with Ratios
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Figure 9. Mission 3 class distribution.
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Figure 10. Continuous DELTA_TOW values in Mission 3.

As shown in Figure 11, the features PD, TCD, PRN, DO, CP, and C/NO are the most
significant among the others for the decision tree model. In random forest, the feature
importance parameter displays PD, TCD, DO, CP, C/N0, and PRN with the highest im-
portance scores. Furthermore, XGBoost’s best features are described as follows: PRN, PD,
TCD, DO, CP, and C/NO. The scores obtained for each model can be found in Table 11.

The decision tree model achieved an accuracy of 99.990%, precision of 99.978%, recall
of 99.969%, and F1-score of 99.974%. The random forest model provided the highest
performance, with an accuracy of 99.995%, precision of 99.991%, recall of 99.984%, and F1-
score of 99.988%. Meanwhile, XGBoost demonstrated the lowest performance, with 99.894%
accuracy, 99.769% precision, 99.764% recall, and 99.766% F1-score.
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Figure 11. Feature importance ranking from most to least significant—Mission 3.
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Table 11. Feature importance scores for Mission 3.
Feature Decision Tree Random Forest XGBoost
PRN 0.009924 0.079273 0.250672
DO 0.130057 0.164093 0.076245
PD 0.533118 0.337536 0.381509
DELTA_RX 0.000000 0.000000 0.000000
DELTA_TOW 0.000091 0.000057 0.000702
CP 0.182235 0.155711 0.085856
EC 0.000000 0.006048 0.000690
LC 0.000000 0.007628 0.000829
PC 0.000000 0.008709 0.000758
PIP 0.000000 0.001583 0.000545
PQP 0.000389 0.001531 0.000568
TCD 0.130549 0.191832 0.174175
C/N_O 0.013637 0.045999 0.027451

5.4. All Missions Combined

To further assess the generalization of our models, the datasets of all the missions are
consolidated into a single one. The resulting distribution comprises 76.8% authentic signals
and 23.2% attack signals, with 6.5% simplistic, 7.5% intermediate, and 9.2% sophisticated
attacks; see Figure 12.

Attack vs. No Attack Class Distribution with Ratios
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Figure 12. Class distribution of the three missions combined.

The investigation of feature importance on the dataset comprising all the missions
allows us to observe from Figure 13 that the decision tree model relies on the PD feature as
the most relevant, followed by CP, DO, TCD, PRN, and C/NO, while the remaining features
converge to zero. The random forest model leverages PD as the main feature, accompanied
by TCD, CP, DO PRN, and C/NO; however, the rest of the features could be ignored. For the
XGBoost model, it depends mainly on PD, as in the two previous models, followed by PRN,
DO, TCD, CP, and C/NO. The discussed scores for each model are presented in Table 12.



Sensors 2025, 25, 4045 24 of 34

Feature Importance - Decision Tree

PO
CP A

DO A

PRN 1
CNO 4

POP

e J

LC 4
DELTA_TOW -
EC A
DELTA_RX

PIP -

0.0 0.1 0.2 0.3 0.4 05
Importance

Random Forest Feature Importance

PC

LC

EC

PQP

PIP
DELTA_TOW

DELTA_RX

0.00 0.05 0.10 015 0.20 0.25 0.30
Importance

XGBoost Feature Importance

PD

PRN

DO

TCD

cpP

CNO

PC

DELTA_TOW |
LC

EC

POP

PIP

DELTA_RX A

0.00 0.05 0.10 0.15 0.20 0.25
Importance

Figure 13. Feature importance ranking from most to least significant—all missions combined.
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Table 12. Feature importance scores for all-missions dataset.
Feature Decision Tree Random Forest XGBoost
PRN 0.089573 0.101541 0.218030
DO 0.099101 0.151993 0.163281
PD 0.527503 0.321745 0.258517
DELTA_RX 0.000000 0.000000 0.000000
DELTA_TOW 0.000035 0.000027 0.001258
cr 0.162943 0.157375 0.117846
EC 0.000010 0.007641 0.001126
LC 0.000054 0.007857 0.001150
PC 0.000127 0.014292 0.015329
PIP 0.000000 0.002072 0.000928
PQP 0.000176 0.002103 0.001045
TCD 0.091270 0.075285 0.159528
C/N_O 0.029206 0.158070 0.061963

Through 50 independent runs of our models on the dataset comprising all the mis-
sions, we examine the behavior of each model across varying training and testing sets.
Accordingly, we illustrate the results using curves that demonstrate the values of the evalu-
ation metrics in each test. Initially, the analysis of the decision tree model, as illustrated in
Figure 14a, shows that the accuracy remains stable, with a small standard deviation (STD)
of £0.006. The worst accuracy observed was 99.951%, the best was 99.988%, and the average
was 99.972%. The precision values, shown in Figure 14b, range from a minimum of 99.909%
to a maximum of 99.987%, with an average of 99.953% and an STD of +0.015. For recall,
the model achieved a minimum of 99.90% and a maximum of 99.969%, with an average of
99.941% and a low STD of +0.017, as shown in Figure 14c. Meanwhile, the F1-score, which
represents the balance between precision and recall, achieved an average of 99.947%, with a
worst value of 99.904%, a best of 99.978%, and a stable performance indicated by an STD of
+0.015, as shown in Figure 14d.

For the random forest model, Figure 15a shows an impressive accuracy, reaching a
maximum of 99.996% and a minimum of 99.982%, averaging 99.99% with a very low STD
of £0.002. Figure 15b shows the precision values, ranging from 99.971% to 99.996%, with an
average of 99.985% and a low STD of +£0.005. The recall, shown in Figure 15¢, reached a
maximum of 99.992% and a minimum of 99.965%, with a mean of 99.979% and a stable
STD of +0.006. Furthermore, the Fl-score achieved a best value of 99.993%, a worst value
of 99.97%, and an average of 99.982%, with an STD of +0.004, as shown in Figure 15d.

Lastly, the XGBoost model was found to be the least effective. As shown in Figure 16a,
it achieved a best accuracy of 99.939% and a worst of 99.842%, with a mean of 99.894%
and an STD of +0.02. Precision, shown in Figure 16b, ranged from 99.731% to 99.886%,
with an average of 99.814% and an STD of +0.04. Figure 16¢ shows the recall values, with a
maximum of 99.915%, a minimum of 99.742%, a mean of 99.828%, and an STD of +0.03.
Finally, the F1-score, illustrated in Figure 16d, had a mean of 99.821%, reaching a maximum
of 99.898% and a minimum of 99.736%, with an STD of +0.03.

As a consequence, all the models achieved high performance and demonstrated stable
behavior. However, the random forest model delivered the highest overall results compared
to the other models.
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Figure 14. Performance metrics of the decision tree model on all-missions dataset.
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Figure 15. Performance metrics of the random forest model on all-missions dataset.
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Figure 16. Performance metrics of the XGBoost model on all-missions dataset.

5.5. Feature Selection

In this section, we apply feature selection on the dataset comprising all the missions
in order to extract the relevant features that reduce model complexity while maintaining
the performance. Therefore, for each model, we set a threshold of 0.05 as the feature
relevancy score and created Table 13 to describe the status of each feature with respect to
this threshold. Consequently, the features PRN, DO, PD, CP, and TCD exceed the threshold
score and will therefore be preserved. Additionally, we observe that C/NO is considered
important for both the random forest and XGBoost models but not decision tree. Thus, we
retained it as a relevant feature.

We ran 50 independent tests of our ML models on the all-missions dataset after the
application of feature selection. The results obtained were subsequently summarized.
The decision tree model acquired an average accuracy of 99.976%, a precision of 99.962%,
arecall value of 99.947%, and F1-score of 99.954%. Random forest achieved 99.99% accuracy,
99.984% precision, 99.98% recall, and 99.982% F1-score. Finally, XGBoost obtained an
average accuracy of 99.894% and precision of 99.817%; for the recall value, it obtained
99.828%, and F1-score of 99.822%.

Figures 17-19 demonstrate the evaluation metric behavior of our proposed decision
tree, random forest, and XGBoost models, respectively. This information was captured at
each iteration of the 50 independent tests before and after applying feature selection on the
combined missions dataset. As a consequence, this experiment proves that the performance
of the three models remains consistent even after applying feature selection.
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Table 13. Feature relevancy.

Feature Decision Tree Random Forest XGBoost

PRN

DO

PD
DELTA_RX
DELTA_TOW
cr

EC

LC

PC

PIP

PQP

TCD
C/N_O

YES
YES
YES
NO
NO
YES
NO
NO
NO
NO
NO
YES
NO

YES
YES
YES
NO
NO
YES
NO
NO
NO
NO
NO
YES
YES

YES
YES
YES
NO
NO
YES
NO
NO
NO
NO
NO
YES
YES
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Figure 17. Evaluation metric comparison before and after applying feature selection of the decision

tree model.
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Figure 18. Evaluation metric comparison before and after applying feature selection of the random
forest model.
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Figure 19. Evaluation metric comparison before and after applying feature selection of the XG-
Boost model.
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training data before and after feature selection using a system with Python 3.9 running on
an Intel Core i5-8365U CPU with 16 GB RAM. Therefore, It is clear from Table 14 that the
training time is reduced after discarding irrelevant features. However, among the models,
random forest exhibits the longest training time, whereas decision tree demonstrates the

fastest convergence.

Table 14. Training time before and after applying feature selection in seconds.

For additional investigation, we compare the time required for each model to fit the

Feature Selection Decision Tree Random Forest XGBoost
Before 42450 s 106.3031 s 6.3194 s
After 2.0497 s 61.8106 s 5.4666 s

the presence of class imbalance and various dataset sizes. The random forest ensemble
model based on bagging emerged as the best-performing approach, consistently achieving
the best scores across all the dataset parameters, succeeded by the basic decision tree model,
while the XGBoost ensemble method achieved the worst results. The results breakdown is
presented in Table 15. However, the random forest model showed the longest convergence
time, in contrast to decision tree, which was faster. The feature importance parameter
provided by tree-based ML models allowed the extraction of the most significant features in
detecting GPS spoofing attacks, namely PRN, DO, PD, CP, TCD, and C/NO, consequently
reducing the processing time.

Table 15. Comparative performance of decision tree, random forest, and XGBoost models on different

mission datasets.

To summarize, these experimental results prove the efficiency of our models despite

Dataset Model Accuracy + STD Precision + STD Recall + STD F1-Score + STD
Decision Tree 99.943 + 0.018 99.93 + 0.028 99.927 + 0.024 99.929 + 0.021
Mission1  Random Forest  99.979 % 0.007 99.977 = 0.010 99.973 = 0.011 99.975 = 0.008
XGBoost 99.918 + 0.017 99.902 + 0.023 99.895 = 0.027 99.898 + 0.021
Decision Tree 99.965 + 0.013 99.933 = 0.035 99.953 = 0.027 99.943 + 0.026
Mission2  Random Forest  99.984 + 0.009 99.951 = 0.035 99.979 = 0.020 99.965 = 0.019
XGBoost 99.96 = 0.016 99.919 = 0.038 99.945 = 0.037 99.932 + 0.030
Decision Tree 99.990 + 0.003 99.978 + 0.011 99.969 = 0.012 99.974 + 0.009
Mission3  Random Forest  99.995 + 0.001 99.991 = 0.006 99.984 = 0.008 99.988 = 0.005
XGBoost 99.894 + 0.019 99.769 = 0.058 99.764 + 0.046 99.766 + 0.040
All missions  Decision Tree 99.972 + 0.006 99.953 + 0.015 99.941 + 0.017 99.947 + 0.015
befé)rle Feature Random Forest 99.99 = 0.002 99.985 = 0.005 99.979 = 0.006 99.982 = 0.004
election XGBoost 99.894 + 0.020 99.814 + 0.040 99.828 + 0.037 99.821 + 0.033
All missions  Decision Tree 99.976 + 0.005 99.962 + 0.012 99.947 + 0.015 99.954 + 0.012
aftser1 Feature  Random Forest 99.99 = 0.002 99.984 = 0.005 99.98 = 0.006 99.982 = 0.004

-

clection XGBoost 99.894 + 0.022 99.817 = 0.043 99.828 = 0.040 99.822 + 0.036




Sensors 2025, 25, 4045

31 0f34

Furthermore, our approach, which explores a GPS characteristic dataset to perform
multiclass classification of GPS signals using tree-based models, outperforms the state-of-
the-art methods based on binary classification [36] and those leveraging satellite imagery
datasets [30] for detecting GPS spoofing attacks on UAVs. As shown in Table 16, X refers
to studies that do not consider multi-attack classification, while v* performs multi-attack
classification.

Table 16. Comparative analysis between our proposed method and state-of-the-art approaches.

Dataset Reference Model Mult} {Mt%Ck Accuracy Precision Recall F1-Score
Classification
SatUAV CNN X 94.80% 93.00% 97.90% 95.40%
. SVM-CNN X 99.72% 99.65% 99.77% 99.72%
Real-time
GPSsignals  Our best model RF v 99.99% 99.98% 99.98% 99.98%

5.6. Open Challenges

The promising findings presented by our approach still have significant limitations
since the utilized dataset comprises simulated spoofing attacks. Such environments do
not reflect the full complexity and uncertainty of real-world spoofing, which may not
capture the impact of such a threat. Cyber-adversaries may employ adaptive, stealthy,
or coordinated strategies that are difficult to reproduce in structured simulations. Further-
more, there exist external factors that may affect the performance of our ML models, which
are not expressed in the dataset; these include urban obstructions, atmospheric distur-
bances, and electromagnetic interference. Therefore, generalizing our proposed approach
to production UAV systems may be impractical. Consequently, it is essential to explore
real-world datasets with more sophisticated and dynamic spoofing methods to validate
UAVs' resistance against GPS spoofing attacks.

Another critical issue relates to post-detection strategies. The current studies based on
machine learning lack techniques enabling UAVs to predict their position and maintain
navigation autonomy when reliable GPS signals are absent in order to prevent mission
failure. Furthermore, the existing models are often trained on static datasets and lack adapt-
ability to evolving spoofing tactics and dynamic environmental conditions. Developing
adaptive and self-learning models that can continuously be updated based on real-time
environmental feedback is crucial for improving the resilience of UAV navigation systems.

Consequently, it is imperative that researchers tackle these challenges in the future to
provide resilient and operational GPS spoofing defense systems capable of ensuring the
safety of UAVs in adversarial environments.

6. Conclusions

In this study, we tackled one of the most prevalent failures related to UAVs’ aerial
navigation system, known as a GPS spoofing attack. Indeed, malicious GPS signals may
disrupt UAV navigation systems, causing damage. In our study, we worked on a well-
known dataset in this area. We extracted data sequences from three missions with different
sizes. We handled thirteen features collected from eight channels of a GPS receiver. Then,
we evaluated the efficiency of tree-based classifiers, namely decision tree, random forest,
and XGBoost, over numerous independent tests in classifying authentic GPS signals against
simplistic, intermediate, and sophisticated spoofed signals. Additionally, we leveraged
the feature importance attribute of our tree-based models to extract the relevant features in
detecting such attacks. Very interesting results were demonstrated by the random forest
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model, achieving an average accuracy of 99.99%, outperforming the existing methods
in the literature. In addition to that, we were able to distinguish precisely between the
attack types compared. This finding is very different from those in the literature. Indeed,
none of the studied works were able to detect the attack type. However, despite the
contribution provided in this work, many challenges require further investigation. In our
future work, we intend to assess the generalization capability of our proposed models
tuned on simulated GPS spoofing data, with real-world GPS spoofing attacks. We also aim
to investigate mitigation spoofing mechanisms in order to help UAVs manage the security
of their navigation.
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