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Abstract

The mobile robot, which comprises a mobile platform and a robotic arm, has been widely
adopted in industrial automation. Existing safe control methods with real-time trajec-
tory alternation face difficulties in efficiently identifying threats from fast relative motion
between humans and robots, causing hazards in environments of dense human–robot
coexistence. This work firstly builds a safe mobile robot control framework in the kinematic
sense. Secondly, the proximity between parts of a human and a mobile robot is efficiently
solved by convex programming with parametric description of skew line segments. It is
also no longer required to perform case-by-case analysis of skew line segments’ relative
pose in space. Thirdly, a novel threatening index is proposed to select the most threat-
ened human parts based on mutual projection of human–robot relative velocity and their
common normal vector. Eventually, this index is incorporated into the safety constraint,
showing the improved safe control performance in the simulated human–mobile robot
coexistence scenario.

Keywords: mobile robot; human–robot interaction; safety constraint; control barrier function;
relative velocity; obstacle avoidance

1. Introduction
A mobile robot incorporates a mobile platform and a robotic arm to form a hig y

flexible and efficient production unit [1]. This integration offers innovative solutions for
managing complex tasks [2]. While human–robot collaboration scenarios continue to
proliferate, significant challenges remain in establishing reliable safe control frameworks
for dynamic environments [3].

Many methods have been proposed to address the challenges of path planning for
mobile robots in complex environments, such as potential field [4,5] and danger field-based
methods [6]. These methods are widely used for real-time obstacle avoidance due to their
high computational efficiency. Control barrier functions (CBFs) are defined in control systems
by ensuring that a system’s state remains within a predefined safe state set through the design
of constrained control inputs [7]. It is particularly efficient in real-time obstacle avoidance if
the safe conditions are set up as inequality constraints in quadratic programming. However,
CBFs may face issues of high computational complexity and occasional collision with high-
dimensional space or low-sampling-rate perception and control, and their definition of obstacle
distances may not be comprehensive enough [8]. In recent years, deep reinforcement learning
(DRL) [9], neural belief tracking (NBT) [10], and other methods based on artificial intelligence
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have also been applied to trajectory planning in the human–machine interaction. By learning
and predicting the trajectories of dynamic obstacles, neural networks can significantly enhance
the intelligence and adaptability of path planning [11,12]. However, they lack formal safety
guarantees, and their performance relies on high-quality training data [13,14]. The CBF-based
safe reinforcement learning (CSRL) algorithm has been employed to address target pursuit
problems [15]. The combination of CBF and model predictive control (MPC) can address the
efficiency issues of online obstacle avoidance in unstructured environments filled with static
and dynamic obstacles [16]. The path planning and task allocation in multi-robot systems has
recently been optimized by integration of DRL, MPC, and graph neural networks (GNNs) [17].
However, alternating the trajectory in the real time remains a problem when these advanced
networks are incorporated.

By sensing and adjustment of the distance from the obstacles, robots can prevent
collisions [18]. The trajectory of mobile robots in the environment with static obstacles can
be planned through offline programming methods [19]. For a robotic arm with a fixed
base, a conservative approach is to define the safe boundary based on robotic arm’s own
workspace [18]. However, mobile robots sometimes need to deal with crowded, dynamic
human–robot environments, where the uncertainty of human motion greatly challenges
the real-time trajectory planning [20]. The difficulty of trajectory planning is further in-
creased with mobile robots as the kinematics of the robotic arms couples with that of the
mobile platform, especially when dealing with multiple moving humans or obstacles [21].
The determination of minimum human–robot distance is done by case-by-case analysis
depending on the relative locations of the skew line segments and their common nor-
mals [22]. The “look-backward-and-forward” algorithm is further developed to predict
the human trajectory [23], while the estimation of prediction error is further incorporated
into the discrete-time control barrier function (DCBF) constraints. However, for crowded
environment with dense and fast-moving humans and mobile robots, considering only the
minimum distance between the individual parts of a human and a mobile robot is insuffi-
cient to indicate the threat in the future. Notably, the human-robot relative velocity critically
indicates the level of danger [24] or injury severity [25] when facing potential impacts. They
further affect operators’ mental workload, anxiety, and risk perception [26]. The robot’s ve-
locity is included as a sigmoid-like smooth function term to shape the CBF [27]. A broader
range of such constraints are included, such as robot joint velocities and the end-effector’s
velocity, as well as wall boundaries and cylindrical capsules for human and robot parts [28].
However, how to incorporate the relative velocity into the safety index is not well studied
when designing the robot controller.

This paper aims to incorporate the human–robot relative velocity in the control barrier
function (CBF), to achieve safe control with real-time trajectory alternation for mobile robots
in human–robot coexisting environments. The main contributions are as follows:

1. The coupling kinematics of the mobile robot with a mobile platform and a robotic
arm is formed in the kinematic sense rather than solely with the fixed-base robot
arm in [22], so that the kinematic control problem in human–robot environments is
set up with a discrete-time control barrier function (DCBF) and discrete-time control
Lyapunov function (DCLF).

2. By setting up the parametric description of skew line segments, the minimum distance
between a pair of human skeletons and a link of a robotic arm (or an outline of a
mobile platform) is efficiently solved in real time by convex programming. Compared
with [22,28], it is no longer necessary to make a case-by-case analysis depending on
the relative locations of the skew line segments and their common normal.

3. By mutual projections of relative velocity of parts of a human and a mobile robot and
their common normal vector, two projection indexes are given. Thereafter, a novel
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threat index is formed to give a normalized “distance” to select the most threatened
human parts. In this way, the relative velocities between parts of humans and mobile
robots are successfully incorporated into the DCBF-based constraint rather than just
their absolute velocities [27,28].

Simulation of human and mobile-robot environments validates the effectiveness of
the proposed safe control method for real-time trajectory alternation.

2. Related Works
Control Barrier Functions (CBFs) have emerged as a formal methodology for guaran-

teeing system safety in automation and robotics. They construct dynamic safety boundaries
by transforming complex safety constraints into computable mathematical conditions,
embedding these conditions within controller optimization frameworks to ensure system
states remain within safe parameters [29]. Compared to traditional approaches, CBFs
uniquely provide rigorous mathematical safety guarantees while meeting the real-time
demands of modern control systems. Key research contributions include:

Standard CBFs based on Zeroing Barrier Functions: This class of CBFs define safe sets via
differential inequalities governing system trajectories to prevent boundary violations [7].
Applications include collision avoidance for autonomous vehicles, collaborative robots,
and UAV formations. Representative implementations encompass event-triggered CBFs
for efficient traffic control [30], dual-arm coordination with obstacle avoidance [31], and
minimum-intervention collision-free UAV control [32].

High-Order CBFs: This class of CBFs employ recursively defined function chains to
convert safety constraints with relative degrees greater than one into feasible conditions
explicitly incorporating control inputs [33]. They have been applied to predictive human–
robot safety interaction and fall prevention for legged robots. Notable examples include
control of articulated robots using dynamic obstacle trajectory prediction [22] and dynamic
equilibrium maintenance combined with obstacle-aware trajectory optimization for bipedal
robots [34].

Current challenges involve enhancing adaptability and robustness under strong dy-
namic coupling and unmodeled disturbances [35], alleviating computational bottlenecks
(e.g., quadratic programming for multi-agent systems) [36], and mitigating prediction error
accumulation in dynamic environments [37]. Potential solutions include cross-disciplinary
integration, such as incorporating reinforcement learning into stochastic control frame-
works [38]. In view of the above, CBFs are still promoted as a universal design paradigm
for safety-critical applications, enabling reliable unmanned systems in industrial automa-
tion [39] and medical surgery [40].

3. Problem Formulation
This section firstly models the mobile robot under a discrete-time kinematic control

framework. Later, the existing safe control framework is imported with both discrete-time
control barrier function (DCBF) and discrete-time control Lyapunov function (DCLF).

3.1. Control of a Mobile Robot

The mobile robot consists of a mobile platform and a robotic arm, as shown in Figure 1.
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Figure 1. Schematics of a mobile robot.

The mobile platform is equipped with four Mecanum wheels, and its kinematics are
given as:

pk+1 = pk + vkδt (1)

vk = Jcuk (2)

where the subscript k denotes the k-th instant for all variables, p ∈ R3 represents the pose
of mobile platform, v ∈ R3 is its planar velocity, u ∈ R4 is its control input and Jc ∈ R3×4 is
its Jacobian matrix.

Assume a robotic arm with n revolute joints is installed on the mobile platform, and
its joint displacements are denoted as q ∈ Q ⊆ Rn. Hence, its kinematics are given by

qk+1 = qk + wkδt (3)

ak = g(χk) = ˆ̄pk TC
R Ta(qk) ∈ SE(3) (4)

where χ =
[
qT pT

]T
, p̄ =

[
p(1) p(2) 0 0 0 p(3)

]T
, a is the pose in the task space,

Ta(q) is the forward kinematics of the robotic arm, TC
R is the homogeneous transformation

matrix (HTM) from the frame of the mobile platform to the base frame of the robotic arm,
and w is the control input of the robotic arm, “∧” is the operator for (•) ∈ R6 → ˆ(•) ∈
SE(3).

The task is to track a desired pose ad with the mobile robot’s end effector. We can
design a discrete-time feedback controller s with a control gain Ks:

sk = Ks[(ak)
−1ad,k]

∨ (5)

where s is the velocity of the end effector, “∨” is the operator for (•) ∈ SE(3) → (•)∨ ∈ R6,
and

sk = Je,kνk ≜
[

Jbase,k Ja,k

][uk

wk

]
(6)
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In (6), Ja ∈ R6×n is the Jacobian matrix of the robotic arm, Jbase = [AdT−1
a (q) ˆ̄p−1 ] J̄c, where

[Ad(•)] is adjoint transformation. In addition,

J̄c =



Jc(1, •)
Jc(2, •)

01×4

01×4

01×4

Jc(3, •)


∈ R6×4.

where Jc(1, •) is the first row of Jc, etc. So the velocity (i.e., the control signal) of the entire
mobile robot in the joint space νk is:

νk = J†
e,kKs[(ak)

−1ad,k]
∨ ≜ w(χk) (7)

where J†
e is the (pseudo-)inverse of Je.

3.2. Safety and Stability Constraints

To achieve safe human–robot interaction, a safe set C is defined through a continuous
differentiable function H : Q → R.

C = {χk ∈ Q : B(χk) ≥ 0} (8)

where B(·) is a discrete-time control barrier function (DCBF). ∆B(χk) = B(χk+1)− B(χk) ̸=
0, χ ∈ ∂C and

∆B(χk) ≥ −γB(χk) (9)

with a constant coefficient γ ∈ (0, 1]. This ensures the safe operation of the system.
Further, the stability of the system is constrained by the discrete-time Lyapunov

function (DCLF) V(χk), and
∆V(χk) ≤ −αV(χk) + δ (10)

where ∆V(χk) = V(χk+1)− V(χk), and α ∈ (0, 1] is a constant, δ ≥ 0 is a slack variable.
Based on the above constraints, the controller under human–robot coexisting environ-

ment is synthesized by:

ν∗k = arg min(∥νk − ν̄k∥2 + βδ2) (11)

s.t. ∆B(χk, ν(χk)) + γB(χk) ≥ 0 (12)

∆V(χk, ν(χk)) + αV(χk) ≤ δ (13)

ν̄k =
[
ūT

k w̄T
k

]T
are the desired velocity when there is no human interruption, β > 0 is the

slack variable.

4. Main Results
4.1. Distance Between a Mobile Robot and Human

This subsection aims to effectively seek the minimum distance between a pair of skew
line segments by forming a convex optimization problem with parametric description of
the points on the line segments.

Obtaining the closest distance between humans and the mobile robots in real time is
necessary to establish CBF constraints in (12) for safe human–robot interaction. To calculate
their closest distance, one can model the human body as a skeletal structure and simplify the
robotic arm as a linkage mechanism, while the moving platform is modeled as a rectangle
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with four enclosed line-segments. At this point, the problem is transformed to calculation
of the distance between spatial line segments. Taking Figure 2 as an example, let points
A and B be the endpoints of the i-th link of the robotic arm or outline of the moving
platform, and points C and D be the endpoints of the n-th segment of human skeleton.
The parametric equations of the pair of skew line segments (i, n) are:

P(s) = A+ s(B −A), s ∈ [0, 1] (14)

Q(t) = C + t(D − C), t ∈ [0, 1] (15)

where s and t are normalized distances from points A and C, respectively.

Figure 2. Distance between a pair of skew lines.

The problem is transformed into finding points P(s) and Q(t) such that the distance
between them is minimized. This is achieved by the following convex optimization problem:

min fi,n(s, t) s.t. s, t ∈ [0, 1] (16)

where

fi,n(s, t) = ∥P(s)− Q(t)∥2

= ∥(A+ s(
−→AB))− (C + t(

−→CD))∥2 (17)

To deal with the constraints, we construct the Lagrangian function:

L = fi,n(s, t)− λ1s + λ2(s − 1)− λ3t + λ4(t − 1) (18)

where Lagrange multipliers λ1, . . . , λ4 are all non-negative. The solution (s∗, t∗) to the
above optimization problem needs to satisfy the Karush–Kuhn–Tucker (KKT) conditions:

∂L
∂s

= 2(
−→AB)T(

−→CA+ s(
−→AB)− t(

−→CD))

+λ2 − λ1 = 0 (19)
∂L
∂t

= −2(
−→CD)T(

−→CA+ s(
−→AB)− t(

−→CD))

+λ4 − λ3 = 0 (20)

s, t ∈ [0, 1] (21)

λi ≥ 0 (22)

λ1s = λ2(s − 1) = λ3t = λ4(t − 1) = 0 (23)
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Thus, the closest distance between all pairs of skew line segments is calculated by

dmin = inf
i,n

√
f ∗i,n (24)

where f ∗i,n is optimal fi,n obtained by solving (16) with the i-th line segment of the mobile
robot and n-th segment of the human skeletons.

4.2. The Threatening Index Based on Relative Velocity

Based on the minimum distance between a human and a mobile robot, we can set up
the corresponding safety constraint. However, this is insufficient to ensure the safety in
real-time under complex interaction scenarios, especially when the humans and robots are
moving fast. Thus, this subsection aims to extend the definition of “minimum distance” by
considering the factor of the relative velocity between a human and a robot.

As shown in Figure 3, ri denotes the i-th link of the robot, hm and hn represent two
segments of the human skeleton, and Vr,(•) represents the velocity of P(•). Vh,(•) represents
the velocity of Q(•). According to the method proposed in Section 4.1, the closest points
between ri and hm are Pi,m and Qi,m, while the closest points between ri and hn are Pi,n

and Qi,n. It can be observed that di,m < di,n. However, point Qi,m is moving away from
point Pi,m, while point Qi,n is moving towards point Pi,n. Under the proximity-based DCBF
constraint (12), di,m is taken as the minimum distance, at which the robot will take evasive
action towards point Qi,m. However, this ignores the more threatening point Qi,n, which
may lead to a collision with hn in the near future. Therefore, when constructing the DCBF
constraint, it is also necessary to consider the units that give greater threats in relative
motion in addition to the minimum distance between humans and the robot.

Figure 3. Minimum distance and relative velocity between the skew lines.

Taking ri and hn in Figure 3 as an example, the threat level to the system is quantified
by the relative velocities between humans and robots. This is given by the threatening
index based on the principle illustrated in Figure 4.
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Figure 4. The influence of relative velocity to the safe threat.

As shown in Figure 4, vi,n is the relative velocity between Pi,n and Qi,n and

vi,n = Vr,i,n − Vh,i,n

θ is the angle between the relative velocity vector and the distance vector (sharing a common
starting point), and Dmin is the predefined threshold of safe distance between humans and
robots. Hence, the threatening index ki,n for skew line segment pair (i, n) is calculated as

kI,i,n =
vi,n δt

di,n cos θi,n
(25)

kA,i,n =
Dmin − di,n sin θi,n

Dmin (26)

ki,n =

0, if kA,i,n < 0

kI,i,n(kA,i,n + 1), if kA,i,n ≥ 0
(27)

where kI,i,n is related to the intensity of the robot’s impact on the human body at the current
relative velocity. kA,i,n is related to the angle of impact at the time of collision, and δt is the
control period.

• When kA,i,n < 0, it indicates that the robot moving at the current relative velocity will
not intrude into the safety range of the obstacle. Thus, the threatening index is set
to zero.

• When kA,i,n ≥ 0, the robot has the risk of intruding into the safety range of the
obstacle at the current relative velocity. In this case, ki,n is set to kI,i,n(kA,i,n + 1), where
(kA,i,n + 1) ensures that the threat coefficient is at least kI,i,n when kA,i,n = 0. Thus,
a non-zero threatening index is issued.

We compute the threatening index ki,n between each pair (i, n) and select the maximum
k̄. Later, we obtain the minimum d across distance fi,n for pair (i, n) with the identical
maximum threatening index k̄:

k̄ = max
i,n

ki,n, (28)

d = min{ fi,n | ki,n = k̄} (29)
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We can further refine the selection of the object pairs (i, n), all of which have fi,n = dmin.
This is done by selecting the pair with the highest threatening index:

S = {(i, n) | fi,n = dmin}, (30)

(i∗, n∗) = arg max
(i,n)∈S

ki,n, (31)

4.3. Revised Safety Constraints

After identifying the most threatened human parts with the threatening index based
on human–robot relative velocity, a more comprehensive safety constraint is constructed in
this section.

Based on the distance and threatening index between humans and robots, we can
design multi-objective constraints for the safe set C defined in (12) with the prescribed safe
distance Dmin as

∆B(χk) = λDBD + (1 − λD)BV (32)

where BD corresponds to the constraint of the closest distance, and BV corresponds to the
distance constraint of the object with the maximum threatening index based on the relative
velocity. The specific constraints are as follows:

BD = dmin − Dmin ≥ 0 (33)

BV = d − Dmin ≥ 0 (34)

λD is the weight distribution coefficients for the two constraints, allocated based on the
threatening index:

λD =
1

k̄ + 1
(35)

To ensure the forward invariance of the set C, the DCBF-based constraints (12) are
further given as:

dmin
k+1 − dmin

k ≥ −γ(dmin
k − Dmin) (36)

dk+1 − dk ≥ −γ(dk − Dmin) (37)

Unlike prior studies on fixed-base robotic arms that only consider the distance between
humans and the robotic arm [22], this composite constraint considers both human–robot
distance and relative velocity.

When the mobile robot aims to reach a desired posture after completing the trajectory,
we can construct a constraint about V(χk) as

dg,k = ∥℘k − ℘d,k∥2 (38)

V(χk) ≜ ϵ − dg,k > 0 (39)

where dg is the distance between the current end-effector position ℘ and the desired position
℘d. ℘ and ℘d are the position vectors extracted from the a in (4) and ad in (5), respectively.
ϵ is a very small constant. So the DCLF-based constraint in (13) is given as:

−dg,k+1 + dg,k ≤ −α(ϵ − dg,k) + δ (40)

By constructing the aforementioned constraints, the mobile robot can be equipped with
a framework based on the hybrid DCBF and DCLF, ensuring safe and efficient operation
in dense human-robot coexistence environments. The proposed safe control method for a
mobile robot is summarized in Figure 5.
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Figure 5. The overview of proposed safe control method.

5. Simulation
5.1. The Setting of Simulation

To verify the effectiveness of the proposed method, two mobile robots are imported
for simulation. Each consists of a mobile platform with four Mecanum wheels and a KUKA
iiwa robotic arm. The task is to let them approach their corresponding target poses in a
human–robot environment, interrupted by three humans. The paths of the humans are
manually preset but not known in advance by the mobile robots, and the posture data of
human bodies are obtained from a motion capture dataset. The simulation is performed
on a workstation equipped with a 12th Gen Intel® Core™ i9-12900H 2.50 GHz processor.
The optimization problem is solved by fmincon function in MATLAB(2022a), selecting the
interior-point method for its low memory footprint and real-time capability. The initial
solution is set to the current state values.

Figure 6 illustrates the initial state of the mobile robot. A red dot in the XY-plane marks
the origin of the mobile platform’s frame, and the blue lines outline its edges. A robotic
arm is mounted on each mobile platform. The joint positions are indicated by red dots,
and the links are depicted as black line segments. A pentagram denotes the target for the
robotic arm’s end-effector. The mobile robots aim to reach their targets while maintaining
safe distances from all humans. Robot 1’s mobile platform starts at [−3,−3, π/2]T ∈
SE(2), and its arm is initially rested vertically. The goal is to let the end effector move to
[0, 0.97, 0, 3.68, 3, 1]T ∈ SE(3). Robot 2’s platform starts at [3, 3,−π/2]T ∈ SE(2) with its
arm being initialized in the same way as Robot 1, targeting [0, 0.97, 0,−2.32,−3, 1]T ∈ SE(3).
The homogeneous transformation matrix from the mobile platform’s frame to the robotic
arm base is (TC

R )
∨ = [0, 0, 0, 0, 0, 0.3]T . Human 1 moves back and forth between the robots’

target points, Human 2 orbits the origin, and Human 3 traverses radially across the mobile
robots’ paths.

When screening obstacle-avoidance objects, the mobile platform is simplified as a
planar quadrilateral bounding box. For the robotic arm, the rotations of joints 1, 3, and 5 in
the KUKA iiwa configuration do not affect the positions of subsequent links. Therefore,
the robotic arm can be simplified into four segments: from the base to joint 2 (Link 0 in
Figure 1, joint 2 to joint 4 (Link 1), joint 4 to joint 6 (Link 2), and joint 6 to joint 7 (Link 3).
Link 0 is fixed to the mobile platform and will not extend beyond the planar quadrilateral
bounding box of the mobile platform. The mobile robot is thus simplified into four objects:
the planar quadrilateral bounding box of the mobile platform and Link 1, 2, and 3 of the
robotic arm.
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Figure 6. The initial state in the human–robot coexistence environment.

By incorporating the DCBF-based constraints (36), (37) into the optimization formu-
lation (12), we can obtain χ̇k to drive a mobile robot to maintain a safe distance from
humans or other obstacles during movement. The DCBF constraints based on proximity
and threatening index are set up for the mobile platform and Link 1, 2, and 3. Consequently,
there are eight DCBF-based constraints to ensure safety in such human–robot coexistence
environments. When the end-effector approaches the target point, the DCLF-based con-
straint (13) is applied to all control methods, ensuring that the end-effector moves as close
as possible to ad if no human is interfering while maintaining stability. Consequently,
the optimization problem (11) is formulated, and we impose the following joint limits for
the mobile platform:

• Limits of wheels’ velocity: [10, 10, 10, 10];
• Limits of joints’ velocity for the robotic arm: [85, 85, 100, 75, 130, 135, 135];
• Limits of joints’ position limits for the robotic arm: [170, 120, 170, 120, 170, 120, 175].

We would like to compare our safe control method with the conventional one con-
taining DCBF with proximity-based DCBF. Further, we also compare our method with
the Dynamic Window Approach (DWA) and Artificial Potential Field (APF) method to
accomplish navigation and obstacle avoidance for the mobile platform and robotic arm,
respectively [41]. For the method with proximity-based DCBF, the simulation setup is
identical to that used for both proximity-based and threatening-index-based DCBF. For the
DWA, the prediction horizon is set to six steps, and the scoring weights for the target,
velocity, obstacles, orientation, and path smoothness are [0.70, 0.15, 0.05, 0.05, 0.05]. For the
APF, the obstacle repulsion and the target attraction coefficients are set to be 0.5 and
1.5 accordingly. The codes for implementation of this simulation example are given in the
Supplementary Material.

5.2. Results and Discussions

Figures 7 and 8 show the distances between the two mobile robots and human units.
The blue lines correspond to the control with DCBF constraints that consider both the closest
point and most threatening point, designated as “DCBF (D&V)”. For comparison, the red
lines correspond to the safe control with proximity-based DCBF constraints, designated
“DCBF (D)”, and the green lines correspond to the control with DWA&APF method. It can
be observed that with our method, all parts of the mobile robots maintain safe distances
from humans. In contrast, targets to be dodged are incorrectly selected by proximity-
based DCBF and undesired closer human–robot distances at subsequent moments occur,
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as proximity-based DCBF neglects the relative velocity during human–robot interactions
and it treats humans as static obstacles at the current moment. Meanwhile, the mobile
robots’ moving trajectories by the DWA&APF method sometimes violate the safety distance
when encountering overly dense scenarios or aggressive maneuvers. Additionally, in dense
environments, our method achieves a slight temporal advantage over the proximity-based
DCBF constraints and less oscillation compared with that by DWA&APF method.

Figure 7. The distance (in meters) between humans and the components of mobile robot 1.

Figure 8. The distance (in meters) between humans and the components of mobile robot 2.

Figure 9 demonstrates the target convergence process of dual mobile robots’ end-
effectors, where red and blue trajectories represent Robot 1 and 2, respectively. Comparative
experiments reveal that under integrated constraints with proximity-based DCBF (36)
and highest-threatening-index-based DCBF (37), Robot 1 reaches its target at the 60th
time instant, converging 25% faster compared to the distance-constraint-only approach,
which requires 80 time instants. Both configurations of constraints enable Robot 2 to
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synchronously arrive at its target at the 78th instant, limited by narrow passage dynamic
constraints. Meanwhile, by means of the DWA&APF method, Robot 2 successfully initiates
its navigation task. However, Robot 1 fails to move towards its target point. This is due
to the fact that a human unit is near Robot 1 initially, causing the controller to prioritize
obstacle avoidance. Subsequently, as Robot 2 approaches, it acts with other obstacles to
obstruct Robot 1, leading Robot 1 to become stuck and unable to complete the navigation.
Since Robot 1 is stuck near Robot 2’s target point, Robot 2 also fails to reach its destination.
This performance enhancement stems from the proactive threat mitigation mechanism
embedded in our proposed integrated constraints, which accelerates disengagement from
hig y dense human–robot coexistence zones.

Figure 9. Distances to the goals (in meters) for the end effectors of the two mobile robots.

6. Conclusions
This paper establishes a safe control framework for environments with multiple co-

existing mobile robots and humans. The coupled kinematic model for a mobile platform
and a robot arm is firstly built with defined discrete-time control barrier function (DCBF)
and discrete-time Lyapunov function (DCLF). Subsequently, the closest distances between
parts of humans and the mobile robots are solved by convex programming with parametric
description of pairs of skew lines. Specifically, the threatening index is defined and incorpo-
rated into DCBF by mutual projections of the relative velocity and common normal vector
of skew line segments. Simulation of a scenario with two mobile robots and three humans
validated the effectiveness of the proposed method. The proposed method can be applied
to the safe control of mobile robots in crowded human–robot environments. The kinematic
modeling of the current work is applicable to the mobile robot with Mecanum wheels.
In future work, we will extend our proposed method to a mobile robot with power caster
wheels and dual robotic arms.
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