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Abstract

This paper introduces SmartBarrel, an innovative IoT-based sensory system that monitors
and forecasts wine fermentation processes. At the core of SmartBarrel are two compact,
attachable devices—the probing nose (E-nose) and the probing tongue (E-tongue), which
mount directly onto stainless steel wine tanks. These devices periodically measure key
fermentation parameters: the nose monitors gas emissions, while the tongue captures acid-
ity, residual sugar, and color changes. Both utilize low-cost, low-power sensors validated
through small-scale fermentation experiments. Beyond the sensory hardware, SmartBarrel
includes a robust cloud infrastructure built on open-source Industry 4.0 tools. The sys-
tem leverages the ThingsBoard platform, supported by a NoSQL Cassandra database, to
provide real-time data storage, visualization, and mobile application access. The system
also supports adaptive breakpoint alerts and real-time adjustment to the nonlinear dy-
namics of wine fermentation. The authors developed a novel deep learning model called
V-LSTM (Variable-length Long Short-Term Memory) to introduce intelligence to enable
predictive analytics. This auto-calibrating architecture supports variable layer depths
and cell configurations, enabling accurate forecasting of fermentation metrics. Moreover,
the system includes two fuzzy logic modules: a device-level fuzzy controller to estimate
alcohol content based on sensor data and a fuzzy encoder that synthetically generates
fermentation profiles using a limited set of experimental curves. SmartBarrel experimental
results validate the SmartBarrel’s ability to monitor fermentation parameters. Additionally,
the implemented models show that the V-LSTM model outperforms existing neural net-
work classifiers and regression models, reducing RMSE loss by at least 45%. Furthermore,
the fuzzy alcohol predictor achieved a coefficient of determination (R2) of 0.87, enabling
reliable alcohol content estimation without direct alcohol sensing.

Keywords: precision winemaking; decision support systems; IoT; embedded systems;
agriculture 4.0; wine fermentation process; fermentation forecasting; deep learning
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1. Introduction
The continuous growth of the wine market necessitates the development of higher-

quality wine products through standardized industrial processes and the use of IoT. Con-
tinuous supervision, control, and implementation of standardized intervention procedures
during the alcoholic fermentation of must for wine production are central to the Wine-
making Industry [1]. With the advancement of the Internet of Things (IoT) and aligned
with Industry 4.0 objectives of real-time measuring, cloud storage, cloud computing, and
the use of AI to optimize winemaking processes, innovative solutions for IoT Systems,
data acquisition and control are being designed and implemented [2,3]. In this direc-
tion, this paper proposes using an AI-capable, low-cost wine fermentation monitoring
system to develop a prototype wine fermentation tank that continuously records critical
parameters. It will integrate low-cost, energy-efficient embedded sensors for real-time
data collection, including key oenological measures (e.g., fermentation curve measure-
ments, brix levels), turbidity/clarity via color measurements, and monitoring released
gases during fermentation.

In wineries, the industrial process of monitoring alcoholic fermentation typically in-
volves manual sampling and laboratory analysis for quality control and decision-making.
Generally, this can be performed no more than twice per day. For large-scale wineries, such
an approach is practically infeasible for all fermentation tanks, risking stalled fermentations
or quality degradation [4]. Continuous real-time data logging via low-cost in-tank fermen-
tation sensors could significantly improve processes by taking actions on event occurrence,
enabling continuous fermentation rate control, enhancing automation levels, and optimiz-
ing workforce allocation to higher-priority production tasks [5]. Continuous monitoring
via in-tank sensors could streamline fermentation rate control, boost winery automation,
and reduce labor overhead, freeing personnel for other production processes. Although
embedded sensors (even rudimentary ones) are not novel, their systematic deployment
remains restricted, particularly in Greece.

To this extent, the wine industry poses requirements for using dense wine parameter
monitoring and device solutions for small-scale wine-fermentation tasks that involve
unsupervised control [6]. There is an urgent need for integrated sensor systems capable
of routine measurements and micro-scale fermentations in wineries. The use of basic
embedded tank sensors has seen limited adoption, primarily due to cost constraints and
the complexity of local monitoring technological integration [7]. There is growing interest
from wineries, sensor manufacturers, and startups in incorporating innovative, scale-up,
automated enological solutions. Existing industrial fermentation control systems provided
by Programmable Logic Controllers (PLCs) of time-interval periodical probing and on-
demand supervisory control, as well as via local data acquisition (SCADA) interfaces, have
achieved initial production automation [8]. However, Industry 4.0 introduced scalability,
portability, and autonomous cloud operation principles of telemetry devices, Ubiquitous
IoT connectivity, distributed storage, and intelligence [9], which are still ahead. In order
to show progress in this direction, dense, real-time multi-attribute monitoring is needed
when using cloud-based services and data collection on preferably schemaless NoSQL
databases. This way, the end-user integration provided by notification channels and
intelligent, automated suggestions using artificial intelligence will offer Industry 4.0 sensory
automated processes [9].

Wine fermentation processes supported by systems of low-cost deployment using
IoT, extensibility, and cross-platform visualization (via tablets/smartphones) are pivotal.
Periodic statistical analysis and AI-driven decision support—including oenological inter-
vention recommendations and final product quality predictions—will further advance
Wine Industry 4.0 resilience and sustainability. Implementations of periodic and cloud-
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based Industrial IoT (IIoT) monitoring systems for measurement supervision, detection
prediction, and decision-making (Decision Support Systems—DSS) is crucial for the pri-
mary sector, particularly in biological system supervision [10–13]. Nevertheless, despite
the importance of such technological tools as applied in other European wine-producing
countries (e.g., Spain, Italy, France), Greece lacks comprehensive systems for monitoring
wine fermentation, relying instead on static and sporadic measurements using existing
instruments developed and tested by European nations.

Towards Industry 4.0 automation, Li et al. propose a new chemical analysis system
during wine fermentation consisting of temperature, pressure, pH, and a refractome-
ter [14]. Also, the authors of [15] evaluate the use of the MQTT protocol for use in the
wine industry for periodic data transmissions. Other propositions include monitoring wine
fermentation using biosensors mainly on basic parameters like temperature [16,17], sugar
concentration [16,18], acidity [19], bioreactors content, gas CO2 emisions [20], phenolic com-
pounds [21], and odor characterization [22,23], minimizing microbiological risks [24,25].
State-of-the-art IoT trends include Electronic noses (E-nose) that focus on tank gas mon-
itoring [20,26–31], Electronic eyes (E-eye) that utilize RGB and IR monitoring [6,31–35]
enhanced with chip-size IoT microscopy solutions [36], and Electronic tongues (E-tongue)
for in-tank basic parameter monitoring [16,20,30,31].

Mathematical and statistical methods are the necessary tools to mine and extract
valuable information from wine fermentation datasets. These methods, in turn, enable
predictive modeling and continuous improvement, thus enhancing automated monitoring
and production flexibility. Machine and deep learning applications in natural sciences
facilitate the development of intelligent decision-support systems. Daily time-series data
from sensors and regular measurements serve as input for models. In time series data,
mathematical algorithms include Artificial Neural Networks (ANNs), Support Vector Ma-
chines (SVMs), Random Forest, Logistic Regression, eXtreme Gradient Boosting (XGBoost),
Convolutional Neural Networks (CNNs), classification models, such as U-Nets, ResNets
and VGGNets, Multilayer Neural Networks, and predictive Recurrent Neural Networks
(RNNs) [37,38], as well as Fuzzy Logic models [13] operating as autoencoders in cases of
limited data availability and controllers [39,40]. Such models have been investigated for
prediction and classification tasks for wine fermentation tasks, offering predictions and
criticality alerts [10].

Apart from statistical and linear-KNN models, implementation of machine and deep
learning models in classifying wine fermentation processes are limited and typically in-
clude machine learning models such as SVM [41], Linear Discriminant Analysis and KNN
models [42], Principal Component Analysis [43] and Artificial Neural Networks (NNs)
for classification tasks [42,44], and for time-series wine forecasting parameters, Support
Vector Regression (SVR) models [45] and shallow NN models [46,47]. Therefore, wine
fermentation monitoring lacks robust deep learning implementations mainly due to the
lack of Industry 4.0 practices (cloud storage, near real-time monitoring) and dense multi-
parametric datasets.

This paper presents a new fermentation monitoring, low-cost architecture incorporat-
ing probing devices for electronic sensing: electronic nose, tongue, and eye. This holistic
system approach is termed SmartBarrel. The IoT devices, known as probing nose, tongue,
and eye (E-nose, E-tongue, E-eye), provide electronic capabilities corresponding to their
respective senses. The SmartBarrel prototype utilizes low-power Wi-Fi communication,
utilizing application protocols for data transmission, operating through HTTP JSON POST
requests or MQTT publish messages. It enables streamlined, near real-time cloud-based
transmission of measurements using portable and easy-to-install probing devices. Addi-
tionally, the system incorporates deep learning for predicting measurements, forecasting
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fermentation parameters, and facilitating intervention alerts when measured values are far
from expected.

In short, the SmartBarrel prototype system incorporates (1) measurements acquisition
via the ThingsBoard AS [48], (2) deployment of intelligent fermentation process and models,
(3) automated prediction of subsequent fermentation phase, (4) alerts and notifications
for undesirable fermentation cases, and (5) ubiquitous monitoring via its cloud-based AS
ability to visualize measurements, alerts and predictions with the use of a mobile phone
application, enabling ubiquitous monitoring of oenological processes.

2. Electronic Sensing Implementations
Several implementations have been presented in the literature over the last few years

regarding small-scale fermentations in tanks assisted by monitoring systems and IoT
devices. Most of them target capturing the sense of smell, touch, and vision more precisely
than the human senses. Analyzing gases released during alcoholic fermentation uses
Fourier Transform Infrared (FTIR) systems or scattering spectrophotometers. These high-
cost instruments (exceeding $20,000 per unit) require manual operation and complex
maintenance, limiting their use to periodic sampling rather than continuous or close-to-
real-time monitoring. At the research level, electronic nose (E-nose) systems have been
investigated for gas/volatile compound detection [49].

Typically, most electronic nose implementations rely on conventional sensor configu-
rations, including conductive polymer sensors (CPS), metal oxide semiconductor (MOS)
sensors, as well as acoustic and optical sensors [26]. Four principal sensor types prevail:
(1) The MOS sensors that detect resistance variations from electron transfer during gas
adsorption [29], (2) the catalytic gas sensors (CAT) measure capacitance changes [50], (3) the
electrochemical sensors (ECH) that utilize charge transfer measurements in electrolytic
cells [31] and (4) other types such as infrared sensors [51].

Electronic nose systems have shown particular promise for volatile aroma com-
pound analysis, demonstrating the capability to differentiate wines based on aromatic
profiles [28,42,52], or detecting Volatile Organic Compounds (VOCs) [53]. Furthermore,
research-grade E-nose systems have been deployed directly in fermentation tanks, enabling
online parameter monitoring [54]. Most implementations include low-cost MOS sensor
arrays for alcohol, CO2, H2S, and SO2 detection [27–29,55]. These MOS-type sensors have
been successfully employed for monitoring alcohol and CO2 gas concentrations during
fermentation of Debina, Zitsa, Greece, a white grape variety [31].

Nevertheless, electronic nose sensors face several challenges, including reduced chem-
ical selectivity, limited sensitivity, and susceptibility to temperature and relative humidity
(RH) variations. However, their low cost and reasonable effectiveness in array config-
urations [29] make them attractive for integration in the SmartBarrel system’s E-nose
module, particularly when combined with machine and deep learning models for aroma
characterization [28,42,52].

Electronic tongue systems constitute artificial analytical instruments designed to
replicate human gustatory perception. These devices typically incorporate sensor arrays for
acidity, sugar content, alcohol levels, and organic compounds such as polyphenols, which,
when combined with chemometric processing, enable comprehensive characterization
of complex liquid samples [30,53,54]. The classification and determination, including
quantitative analysis, of grape varieties from must and wine blends represent significant
interest for winemakers, as it facilitates precise quality control and product differentiation
throughout the production process.

The alcoholic fermentation process and its characteristic curve, including essential
measurement parameters such as sugar content (Brix-specific gravity), temperature, pH
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levels, and alcohol concentration, are considered critical parameters of verifiable products
of higher quality, necessitating continuous monitoring throughout the winemaking pro-
cess [30]. Additionally, spontaneous CO2 gas releases during fermentation are an important
monitoring factor that addresses this requirement [56]. Furthermore, the implementation
of a gas CO2 bubble capture sensor that utilizes images and deep learning CNN detection
is presented in [57].

Electronic eye systems are capable of integrating voltammetric electrodes [58,59],
enabling rapid organoleptic assessment of wine samples outside the fermentation tank.
Visible-near infrared (Vis-NIR) spectroscopy has been employed for polyphenol analy-
sis in winemaking [35,60]. However, current implementations rely on offline sampling
methodologies rather than the continuous in-tank monitoring proposed by this system. In-
tegrating these complementary analytical approaches within a unified monitoring platform
significantly advances conventional discontinuous quality control practices in the wine
industry [33].

The evaluation and regulation of automated winemaking parameters using E-eye
technologies, even in early stages, hinders significant results of tannin concentration quan-
tification (detected at 1600 nm wavelength), influencing the phenolic profile of red wines,
or targeted polyphenol concentrations in yeasts that withhold the aromatic profile (frequen-
cies in the 1100–1300 nm range) [32]. Monitoring polyphenol evolution during different
wine production stages proves critical for premium quality wine output. To this extent,
E-eye sensory subsystems operating in selected visible (VIS 460–680 nm) and near-infrared
spectral bands (NIR band-a 1100–1300 nm, NIR band-b 1580–1620 nm) can enable periodic
Total Polyphenol Index (TPI) estimation [26,34]. These optical monitoring capabilities
provide unprecedented potential for a continuous phenolic maturity assessment during
vinification, allowing winemakers to make data-driven interventions at optimal tannin
extraction and aromatic preservation time points.

The RGB spectral analysis of visible color characteristics [61], a currently unexploited
technology in wine fermentation processes that can be used to detect spoilt cases or high
concentrations of biomass, as well as near-infrared molecular signatures from automated
NIR sensory processes, represents a technological advancement over current discontinuous
laboratory sampling methods, particularly for phenolic compound management, where
extraction kinetics significantly influence final product quality.

3. Materials and Methods
In this study, an easy-to-apply, low-cost fermentation monitoring system called Smart-

Barrel was implemented. The system’s high-level architecture is outlined, and its IoT
sensory modules and capabilities are described in detail. Intelligent functionalities were
integrated into SmartBarrel by employing a fuzzy control monitoring process for predict-
ing fermentation alcohol levels, a fuzzy autoencoder for generating fermentation data,
and a deep learning V-LSTM model for forecasting future fermentation parameters. The
SmartBarrel system has been evaluated for its data delivery and visualization capabilities.

3.1. SmartBarrel System Architecture

The SmartBarrel system was designed to provide the necessary flexibility for sensor
integration, enabling holistic, intelligent control of vinification processes with low-cost
electronic sensor monitoring. Beyond basic parameter measurement during alcoholic
fermentation, the SmartBarrel system includes intelligent processes and near real-time
measuring and monitoring capabilities accessible from any location within the winery
facility. It implements analytics and interactive monitoring functionality via appropriate
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device-level user interfaces. The high-level system architecture of SmartBarrel is illustrated
in Figure 1.

Figure 1. SmartBarrel high-level system architecture and system components and capabilities.

Figure 1(1) illustrates the fermentation case implementation where the SmartBarrel
IoT end node probes reside (E-nose, E-tongue) collecting fermentation measurements.
Those measurements are collected by an appropriate MPU controller (see Figure 1(2)). The
MPU controller connects over Wi-Fi to the cloud ThingsBoard Application Server (AS,
Figure 1(3)) [48], sending telemetry data periodically (often near real-time) using either
HTTP/HTTPs or MQTT/MQTTs posts. Then, the ThingsBoard AS and the ThingsBoard
mobile phone application are responsible for visualizing fermentation measurements per
device tank-id using appropriately constructed per-device dashboards (Figure 1(4)). The
collected data can be accessed using server-side RPC MQTT requests to collect specific time
intervals, device, and attribute measurements. This selectivity of measurements is used as
input to provide inferences by the deep learning V-LSTM model predictions, posted back
to the ThingsBoard as JSON predictive data measurements, and illustrated via appropriate
device-assigned dashboards. Figure 1(5) illustrates the ThingsBoard mobile device where
they can access and visualize the measurement data remotely. This high-level architecture
of the SmartBarrel system is a simplified cloud approach of the thingsAI system presented
in [13,62].

SmartBarrel end node equipment includes an E-nose and E-tongue IoT device on the
floating lid of small stainless steel fermentation tanks. The current SmartBarrel system
implementation is only the E-tongue sensor subsystem for near real-time measurement of
fundamental oenological parameters of pH, sugar concentration, and temperature, and an
E-nose sensor ring that is comprised of monitoring gas emissions of alcohol, CO, and CO2.
An RGB color sensor with an incorporated LED has been added to the E-tongue device
to introduce the E-eye capability to this preliminary system. This color sensor is used to
monitor wine clarity and color transitions. Finally, a glass brix meter device is used for
sugar concentration measurements floating inside the wine tank, with an analog capacitive
touch sensor attached. Since new NIR sensors and transducers must be added to have a
proper E-eye device, its final implementation, validation, and experimentation are set as
future work.

In summary, the SmartBarrel system includes the following sensors with their corre-
sponding sensory parameters as outlined in Table 1.

The proposed SmartBarrel system’s integration of such multisensory data with fer-
mentation parameters provides unprecedented capabilities for near real-time oenological
decision-making. During fermentation, measurements are collected in a cloud-based open-
source ThingsBoard Data Acquisition System [48], enabling visualization and statistical
processing/analysis. Specifically, the system incorporates four key interfacing capabili-
ties: (1) visualization and statistical processing of collected measurements, (2) correlation
functions implementation using selectable parameters and visualization of the results over
time intervals, (3) execution of external inference processes provided by deep learning
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models on selected collected measurements and display of classification/prediction results,
(4) based on the predicted results, threshold-based algorithms that connect to predefined
text alerts and notifications of recommended oenological interventions. With the Things-
Board mobile phone application, these visualizations can be available, even outside the
industrial winery environment.

Table 1. Specifications of E-tongue and E-nose end node IoT devices and their sensors.

Device Sensor Connection Min Value Max Value Resolution

E-tongue IoT device

pH meter * Analog 0 14 0.1 pH
Baume meter * Analog 0 g/L 280 g/L 1.75 g/L
Pressure sensor I2C (TWI) 0 Bar 14 Bar 1 mBar
Temperature sensor OneWire −40 °C 125 °C 0.1 °C

RGB Sensor I2C (TWI) 0 16 bit/channel 1 bit

E-nose IoT device

MQ-3 (Alcohol) * Analog 0.4 mg/L 20 mg/L ∼0.018 mg/L
MQ-7 (CO) * Analog 10 ppm 2000 ppm ∼1 ppm
MG811 (CO2) * Analog 350 ppm 10,000 ppm ∼10 ppm
Temperature sensor OneWire −40 °C 125 °C 0.1 °C

* MQ-3 and MQ-7 sensors were calibrated in clear air conditions, calculating base R0 and voltage for MG811 at
400PPM (clear air) and then using the characteristic curves from the sensors’ datasheets provided. pH and Brix
meters have been calibrated using different solutions of alcohol and sugar concentration solutions.

The ability of the SmartBarrel to collect data to the cloud makes it easy to implement
cloud-based machine and mostly deep learning algorithms capable of periodic classifica-
tion/calibration of wine quality parameters (visual, olfactory, and taste characteristics).
Predictive assessment of fermentation stages through deep learning generates alerts for
undesirable fermentation deviations and provides interactive intervention suggestions on
outlier values. Finally, automated parameter correction is performed when values exceed
predefined thresholds, ensuring optimal fermentation conditions throughout the process.
The SmartBarrel system integrates these functionalities through a unified IoT architecture,
combining cloud computing for event-driven response with cloud-based analytics for
long-term process optimization and quality enhancement. An analytical description of
SmartBarrel end-node devices follows.

3.2. SmartBarrel End-Node Devices

The SmartBarrel end-node device consisted of two different pieces of probing equip-
ment, as per the design. A probing nose inherits the Electronic nose functionality, and a
probing tongue inherits the Electronic tongue functionality. Partially, the Electronic eye
functionality has been implemented into the Electronic tongue. Therefore, the two IoT
end-node devices (nose, tongue) acquire the following sensing capabilities (see Table 1):

E-nose: Monitoring of CO gas emissions inside the fermentation tank;
E-nose: Monitoring of CO2 gas emissions inside the fermentation tank;
E-nose: Monitoring of alcohol gas concentrations inside the fermentation tank;
E-nose: Monitoring lid air temperature inside the fermentation tank;
E-nose: Monitoring yeast temperature using a stainless steel temperature probe;
E-tongue: Monitoring temperature and pressure values in the air gap inside the tank;
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E-tongue: Monitoring fermenting wine specific gravity by performing electronic hydrom-
eter measurements that indirectly correspond to sugar concentrations through
density. That is, for liquids heavier than water, Equation (1) applies:

SG = 145
145−◦Baume

◦Brix ≈ ◦Baume × 1.8

Sugar Concentration (g/L) = ◦Brix × SG × 10
(1)

E-tongue: pH meter and temperature sensor for yeast PH and temperature–pressure
measurements;

E-tongue: RGB sensor with LED for capturing the color of red wines, where anthocyanins
are responsible for the red and purple color of wines and tannins contribute
to color stabilization and astringency perception [63] (white wines have low
tannin concentrations and absence of anthocyanins [64]). On the other hand,
it captures the oxidation of phenolic compounds, leading to yellow, gold, or
brown hues over time, and cinnamic acids and other hydroxycinnamates (e.g.,
caftaric acid), which can undergo enzymatic oxidation and contribute to wine
browning [65–67].

3.3. SmartBarrel E-Nose Device

The SmartBarrel E-nose device is illustrated in Figure 2, attached to the stainless steel
lid of the fermentation tank of typical sizes from 50–500 L.

Figure 2. Illustration of the SmartBarrel E-nose device, parts, and sensory components.

Figure 2(11) shows the E-nose placement on a 36” fermentation tank lid. Figure 2(1)
is the plastic case screwed to the lid’s ventilation hole via a plastic rod. (Figure 2(2)).
Figure 2(3) is the DS18B20 temperature sensor measuring lid temperature, and Figure 2(5)
is the device’s (DS18B20) temperature sensor probe that is inserted inside the fermenting
wine measuring liquid temperature. Figure 2(4) is the MG811 CO2 gas sensor typically
measuring ppm in the range of 300–10,000. It is an electrochemical sensing analog device,
and it is attached to the microprocessing unit’s (MPU) 10Bit analog-to-digital converter (see
Figure 2(8)). Similarly, Figure 2(7) and Figure 2(6) are the MQ-3 alcohol and MQ-7 CO gas
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sensors accordingly. These two analog MOS sensors measure resistance changes due to
chemical reactions between gas molecules and the MOS surface. Typically, MQ-3 measures
up to 0–20 mg/L alcohol in the air while MQ-7 up to 2000 ppm of CO in the air and is
connected to the MPU unit via its analog-to-digital (A2D) converter.

The sensors are connected to an Arduino Wi-Fi rev.2 MPU, a Microchip ATmega4809
8-bit microcontroller with a 16 MHz clock, 48 KB of program memory, and 6 KB of SRAM.
It also includes a u-blox NINA-W102 Wi-Fi transponder and an LSM6DS3TR Inertial
Measurement Unit (IMU) (see Figure 2(10)). The device is powered using a DC-12V
transformer and transmits measurements of temperature every 5 min (internal and lid-
external), CO, CO2, gas alcohol concentrations inside the fermenting tank, using either
HTTP/POSTs or MQTT, of JSON-encoded telemetry data. Another MPU device of the
same microcontroller is used by the SmartBarrel E-tongue device to transmit telemetry
data, as described in the following section.

3.4. SmartBarrel E-Tongue Device

The SmartBarrel E-nose device is illustrated in Figure 3, attached to the stainless steel
lid of the fermentation tank. Figure 3(1) illustrates the plastic enclosure of the Arduino Uno
Wi-Fi MPU, attached to the tank’s ventilation hole.

Figure 3. Illustration of the SmartBarrel E-tongue device, parts, and sensory components.

On the inner surface of the lid, the pH probe (Figure 3(6)) has been attached (screwed)
to the ventilation’s hole plastic winding via a flexible sink hose (see Figure 3(3)), with a
plastic curved tube inserted in the hose opening (see Figure 3(4)) for the fermentation CO2
to escape the tank via its ventilation hole. The pH sensor is an analog sensor capable of
measuring from 0 to 14. It is connected to the MPU’s 10-bit analog-to-digital converter via
a BNC connector board with an op-amp amplifier and a voltage regulator. Figure 3(7) is
the analog Baume sensor that includes a capacitive liquid level sensor meter attached to a
sealed glass tube hydrometer capable of measuring Baume degrees that correspond to Brix
units and, therefore, to sugar concentrations on g/L (see Equation (1)).

An I2C MS5803 pressure-temperature sensor is attached to the curved tube (see
Figure 3(4)), capable of providing temperature and pressure measurements inside the tank
for the tongue probe. Finally, the Adafruit I2C TCS34725 RGB sensor (see Figure 3(2))
enclosed in a transparent plastic case is used to obtain RGB color measurements from
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the fermenting wine. In order to obtain color measurements inside the tank, the sensor’s
attached RGB LED opens and stays on for 30 s before acquiring a color measurement.
The analog and I2C digital sensors are connected to the Arduino Wi-Fi rev2 board that,
in turn, transmits them every 5 min to the ThingsBoard AS using either HTTP POST or
MQTT to publish messages of JSON-encoded measurements. Before presenting the authors’
experimental scenarios and their proposed fuzzy inference, data encoder, and V-LSTM
model, the performance measures used to evaluate them are outlined in Section 3.5.

3.5. Performance Measures

Prior to detailing the SmartBarrel fuzzy controlled fermentation inference and GRU
deep learning prediction processes, the evaluation measures employed are defined. The
Root Mean Square Error (RMSE) is calculated according to Equation (2).

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 =

√
RSS

n
(2)

where yi denotes the actual value, ŷi is the predicted value, and n is the total number
of observation samples, depending on either test or training sets. RMSE calculates the
average magnitude of the prediction errors (Root Sum of Squares—RSS) and penalizes
large deviations more than smaller ones due to the squaring operation. The minimum
value of RMSE is 0, which indicates perfect prediction. Higher RMSE values indicate larger
deviations between predictions and actual values. Outliers in RMSE typically arise from
large individual prediction errors and disproportionately affect the score due to squaring.
Thus, RMSE is highly sensitive to extreme values. Alternatives to RMSE metrics to identify
and measure data leakage are presented in [68]. Nevertheless, they are not used by the
authors since the RMSE measure is commonly used in deep learning and machine learning
models with comparable results.

The coefficient of determination (R2, also denoted as R2
2 [69]) shows how well the

model explains the variance in the predicted variable based on the inputs. It measures the
proportion of the total variation in the data captured by the inference results. It is calculated
according to Equation (3).

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 = 1 − RSS

TSS
(3)

where yi is the actual value, ŷi is the predicted value, ȳ expresses the mean of the actual
values, and n is the number of samples. It expresses the fraction of variance (Total Sum
of Squares—TSS) explained by the model. The maximum R2 value is 1, indicating perfect
prediction. If close to 0, it suggests poor model inferences. Negative values can also occur
when the model performs worse than a simple mean-based prediction. Extreme negative
values usually signal serious model misfits.

3.6. Fuzzy Alcohol Controller

A fuzzy controller logic was initially modeled using Python3.10, scikit-fuzzy library
version 0.5 [70] and then implemented at the SmartBarrel tongue IoT device (edge comput-
ing), using the C++ eFLL library [71] version 1.4.1, to provide a fuzzy prediction mechanism
of alcohol concentration in the tank. The controller acquires via HTTP POSTS or MQTT
requests (depending on the device configuration) data from the SmartBarrel E-tongue
and E-nose and infers alcohol concentration measurements. Appropriate fermentation
datasets (25 white wine fermentation curves) have been used to train this fuzzy controller.
Upon training and hyperparameter calibration, the fuzzy controller can provide alcohol
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predictions on measurements similar to those it was trained on. This inference process
is then passed to a Gaussian filter for smooth time-series responses. By using the fuzzy
controller, the alcohol concentration values can be inferred.

Looking at the fuzzy controller implementation, the Gaussian membership function
is used in the fuzzy sets, ranging between 0 and 1. The parameter mean is the center of
the Gaussian curve, where the membership is maximal and equal to 1. The parameter σ

is the standard deviation, which controls the width of the bell-shaped curve. A smaller
σ results in a narrower curve, while a larger σ produces a wider, flatter curve. To take
into account distribution skewness (to the left or the right), the median value is taken into
account. The difference between mean and median is the right or left skew factor of the
Gaussian curve, while the σ is used to: (1) provide a normalized offset distance value of the
gaussian median (expressed as: d = µ−median

σ ), which in turn is used to offset the gaussian
curve centers, and (2) as a representative width of the gaussian bell curve used for each
random variable.

In order to implement a fuzzy controller that takes as input wine fermentation parame-
ters acquired by the SmartBarrel implementation and infers an alcohol value, an appropriate
fuzzy controller F(x0, x1, . . . , xn) has been implemented using as inputs measurements of
the following enumerated and described wine attributes:

• Sugar concentration in (g/L) and pH measurements

• CO2 concentration expressed in g/L. Let Cg/L
CO2

be the concentration of carbon dioxide
produced during dt fermentation intervals, and let Cppm

CO2
be the equivalent concen-

tration of it expressed in parts per million (PPM). The conversion is expressed by
Equation (4).

Cg/L
CO2

= Cppm
CO2

× 1.964 × 10−6 (4)

Since ppm is used to express air concentrations, let Cppm
CO2

be the concentration of CO2
floating inside the tank at a specific dt time interval, and Henry’s law is used, which
describes the solubility of a gas in a liquid according to Equation (5).

Cliquid
CO2

= kH · PCO2 (5)

where Cliquid
CO2

is the concentration of dissolved CO2 in fermenting wine (mol/L), kH is
Henry’s law constant for CO2 in white wine, approximately 1.65 × 10−2 mol/(L·atm)
at 20 °C (lower than water, which is 3.3 × 10−2 mol/(L·atm) ), and PCO2 = 1 atm is the
partial pressure of CO2 in atm. Substituting kH = 1.65 × 10−2, and converting from
mol/L to g/L, by multiplying with the molar mass of CO2 (44.01 g/mol), Equation (6)
is derrived.

Cg/L
CO2

= Cppm
CO2

× 7.262 × 10−7 (6)

Equation (6) calculates the concentration of CO2 inside the fermenting wine. Con-
cluding the ratio of CO2 concentrations in the liquid over the air under equilibrium
conditions is calculated using Equation (7).

Cg/L, liquid
CO2

Cg/L, air
CO2

=
7.262 × 10−7

1.964 × 10−6 ≈ 0.37 (7)

Equation (7) estimates the CO2 content in fermenting white wines from ppm gas-phase
concentrations under typical wine fermentation temperature conditions (20–25 ◦C).
That is, the mass concentration of CO2 in fermenting white wine over time is approxi-
mately 37% of the mass concentration in the gas phase.
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• Biomass fermentation residues. It includes any form of a specific product or metabolite
and substances already included in the must that take part in the fermentation process.
The development of particular components or biological decontamination can be
measured by weighting the solid state extracted material from the fermenting wine (in
g/L) during the controlled decantation of wine from one vessel to another, which is
primarily aimed at separating it from lees and sediment, thereby enhancing its clarity,
microbiological stability, and overall sensory purity.

• Temperature of the fermentation process (maintained constant) in ◦C.
• Alcohol concentration measured in g/L. The alcohol concentration is the output

variable (fuzzy output–fuzzy consequent), while all others are input variables
(fuzzy antecedents).

These measurements were obtained using SmartBarrel debina fermentation data
and a generated dataset stritcly following the white wine fermentation curves of [46].
Given a dataset with column X representing fuzzy antecedent, we assume that all input
variables follow a Gaussian or a Gaussian-skewed distribution during fermentation, except
temperature, which follows more of a constantly controlled profile. We define the following
statistical measures:

µX =
1
n

n

∑
i=1

Xi (8)

where µX is the arithmetic mean of X.

mX = median(X) (9)

where mX represents the median value of X.

σX =

√
1

n − 1

n

∑
i=1

(Xi − µX)2 (10)

where σX is the sample standard deviation (ddof = 1) of X. The mean and median values
provide the peak and skewness of the curve. The mean is sensitive to extreme values, while
the median is robust to outliers. The relationship between these two measures provides
insight into a bell-shaped distribution. We also define a dispersion parameter κ using the
following Equation (11):

κ =

0.01, if σX < 0.01

σX , otherwise
(11)

From Equation (11), the normalized skewness adjustment δ parameter is computed
for each fermentation variable (measurement) using Equation (12):

δ =
µX − mX

κ
(12)

Given the dataset D of N time series attributes (parameters) denoted as: D ={
x(1), x(2), . . . , x(N)

}
, where each x(i) ∈ RT is a time series attribute of length T, given by:

x(i) =


x(i)1

x(i)2
...

x(i)k

 for i = 1, 2, . . . , N
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Then, ∀xi ∈ D, input data measurements denoted as attributes of three Gaussian member-
ship functions MFj are constructed for j ∈ {low, medium, high} with parameters (centers)
expressed by Equation (13):

c = [min(x), mx, max(x)− δ] (13)

where c contains the centers for each attribute. Each Gaussian membership function MFj

for j ∈ {low, medium, high} is defined using Equation (14):

MFj(x) = exp

(
−
(x − cj)

2

2κ2

)
(14)

where clow = min(x) is the minimum observed value, cmedium = x̄ is the mean value
from (8), and chigh = max(x) + δ is the maximum value adjusted by (12). The complete
fuzzy partition for an attribute variable x is then given by Equation (15):

Fx = {MFlow, MFmedium, MFhigh} (15)

where each member of Fx follows Equation (14) with parameters from Equation (13) and
bandwidth κ from Equation (11). Typically, uniform hyperparameters are used across all
input attributes MF functions (high, medium, low) to set the appropriate Gaussian curve
over the range of accepted attribute values. These selected parameters are presented in
Table 2 per measured attribute xi.

Table 2. Fuzzy controller uniform rules used for partitioning attributes (both fuzzy antecedents and
consequents) into the three different classes (low, medium, high) with Gaussian MFs hyperparameters
and calibrated values to achieve minimum RMSE.

Hyperparameter Description Calculation Calibrated Value

min(xi) offset Cmin
offset from minimum value
for the attribute xi

min(xi) + Cmin −2 × min(xi)

max(xi) offset Cmax
offset from minimum value
for the attribute xi

max(xi) + Cmax 0.2 × max(xi)

w curve bandwidth

Width of the
gaussian-skewed gaussian
curve expressed as a
fraction of the xi standard
deviation σ

w = σ
k

k = 1 . . . 10
default k = 3

MFlow
c

center value of the low xi
membership function min(xi)− Clow

off Clow
off = 0

MFmed
c

center value of the medium
xi membership function x̄i + Cmed

off Cmed
off = 0

MFhigh
c

center value of the high xi
membership function high(xi) + Chigh

off
Chigh

off = kd · δ
kd = 1

In order to smooth the time series of the inferred alcohol value of the fuzzy controller,
the Gaussian smoothing of discrete measurements {yi}N

i=1 with a boundary mode set to
the nearest can be used. It is computed via discrete convolution (ỹ = y ∗ G)i, where
the Gaussian kernel G has standard deviation σ and the boundary condition, enforced
as yi = y1 for i < 1, and yi = yN for i > N. The kernel weights of the Gaussian ker-

nel Gk =
1√

2πσ2 exp
(
− (k−i)2

2σ2

)
for k ∈ Z are truncated at |k − i| ≤ 4σ and normalized

to sum to unity, such that each smoothed point ỹi = ∑
min(N,i+⌊4σ⌋)
k=max(1,i−⌊4σ⌋) ykGk−i replicates



Sensors 2025, 25, 3877 14 of 34

the nearest boundary value (nearest neighbor) when the kernel window exceeds the
measurements domain.

The following section presents the authors’ fuzzy autoencoder of a time series of
fermentation parameters, which provides a generalization dataset out of real fermentation
curves for predicting future fermentation curves from their historical data.

Fuzzy Fermentation Autoencoder

In order to provide fermentation parameter predictions, a time series of a dense num-
ber of parameter measurements is required. These datasets should have minute-scale
resolutions for the deep learning RNN models to minimize losses and offer accurate results.
Only machine learning approaches, such as decision tree-based predictors (LightGBM)
or SVR machines, are available if such data are available in more than hourly periods.
Focusing on white wine fermentation processes, and since such dense datasets are not
yet widely available to train RNNs, the authors focused on an autogenerated approach
provided by a fuzzy autoencoder that combines fermentation parameters knowledge from
references [14,43,56,58,72], and accomodated small datasets of collected of wine fermenta-
tions, such as the acquired data from the SmartBarrel system, to generate fuzzy fermentation
data sequences. The fermentation encoder was implemented using the scikit-fuzzy Python
library [70], and it was modeled through fermentation phase-dependent fuzzy rules [40],
implementing the following attributes:

• Biomass [46] and sugar follow mass conservation laws [14,43,56];
• pH drops during active fermentation, then stabilizes [58,72];
• Temperature is strictly controlled regardless of phase, following white wine fermenta-

tion temperatures;
• CO2 production peaks during exponential growth [43,56];
• Alcohol production correlates with biomass and sugar, but it is calculated using the

fuzzy controller as a predictor, as mentioned in Section 3.6.

More specifically, the authors use the following mathematical formulation provided by
Equation (16) to describe parameter dynamics during the fermentation phases, following
also the Boulton model characteristic curves (Biomass, Sugar, Ethanol) [73,74], which fit
closely to the generated experimental of white wine fermentations as presented in [46], and
SmartBarrel debina fermentations.

Phase Transition: µphase(t) = {µlag, µexp, µstat, µdeath}
Biomass Growth: Xbio(t) = fphase(t) + ϵbio

Sugar Consumption: Ssugar(t) = gphase(t) + ϵsugar

CO2 Production: SCO2(t) = hphase(Xbio, t) + ϵCO2

pH Dynamics: pH(t) = kphase(t) + ϵpH

Temperature: T(t) = 15 + ϵT

(16)

where the membership functions for each one of the fermentation phases are defined
according to Equation (17):

µlag(t) = trimf(t(h); 0, 0, 20)

µexp(t) = trapmf(t(h); 15, 20, 70, 80)

µstat(t) = trapmf(t(h); 70, 80, 150, 170)

µdeath(t) = smf(t(h); 150, 336)

(17)
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The trim function represents a triangular membership function defined by three
parameters: the start point, the peak, and the end point. The trapmf function corresponds
to a trapezoidal membership function with four parameters: the start of the rise, the start
of the top plateau, the end of the top plateau, and the end of the fall. The smf function
denotes an S-shaped membership function, smoothly increasing from 0 to 1, defined by the
parameters a and b.

The biomass concentration Xbio(t) is used since it is mentioned in the provided white
wine fermentation curves in [73,74], and mainly fit closely white wine [46]. The SmartBarrel
system also manually monitors the removed solid residues of the wine by weighting
the removed solid residues in each wine clarification step (4–6 during the fermentation
process). This kinetics parameter in g/L is modeled using a phase-specific growth kinetics
Equation (18):

Xbio(t) =


X0(1 − e−t/τ) + ϵbio (lag fermentation phase)

X0 +
Xmax

1+e−r(t−tm) + ϵbio (exponential fermentation phase)

Xmax − α(t − ts) + ϵbio (Stationary fermentation phase)

Xstate−β(t−td) + ϵbio (death fermentation phase)

(18)

where X0 = 0.5 g/L is the initial biomass, τ = 10 h is a Lag time constant, Xmax ∼
U (3.0, 4.0) g/L is the maximum biomass as recorded, r ∼ U (0.25, 0.35) h−1 is the growth
rate, tm = 45 h is the exponential fermentation midpoint, α = 0.01 g/L/h is the decline
rate, β = 0.005 h−1 is the death rate and ϵbio ∼ N (0, 0.052) is the noise process term. The
sugar concentration Ssugar(t) exhibits complementary phase behavior with respect to Xbio,
and it is modeled using Equation (19), according to the literature [14,43,56,73,74]:

Ssugar(t) =


S0 + ϵsugar (lag fermentation phase)

S0e−ket + ϵsugar (exponential fermentation phase)

Smin + ∆Se−ks(t−ts) + ϵsugar (stationary fermentation phase)

Send + ϵsugar (death fermentation phase)

(19)

where S0 ∼ U (200, 220) g/L is the initial sugar concentration modeled using a uniform
distribution (U (min = 200, max = 220)). ke ∼ U (0.01, 0.02) h−1, is the sugar consumption
rate in g/hour (using a uniform distribution U (min = 0.01, max = 0.02)). Smin = 30 g/L
is the residual sugar, ∆S = 50 g/L is the transition amount coefficient at the stationary
fermentation phase, ks = 0.02 h−1 is the stabilization stationary phase rate, Send = 20 g/L is
the final concentration and ϵsugar ∼ N (0, 0.52) is the noise term. Moreover, the fermentation
process evolves using the rate equations described in Equation (20):

dXbio
dt

= µ(Ssugar, pH)Xbio

dSsugar

dt
= − 1

YX/S
µXbio − msXbio

(20)

where µ is the fuzzy-controlled growth rate and YX/S ≈ 0.5 g/g is the yield coefficient.
The complete system has been validated against industrial fermentation data. The pH
rules have been mathematically formulated according to Equation (21), as mentioned and
mechanistically explained in [58,72]:

kphase(t) =


4.5 if lag phase

4.5 − 1.8
1+exp(−0.15(t−50)) if exponential/stationary phase

3.0 + 0.5 exp(−0.01(t − 150)) if death phase

(21)
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Finally, the fuzzy rules for wine fermentation responses that govern the fuzzy autoen-
coder are presented in Table 3 and further analytically elaborated over fermentation phases
and previously expressed equations in Table 4. The noise terms presented in Table 4 are
expressed by Equation (22) [39,73,74]:

N (0, σ2) = Gaussian noise with variance σ2

E(λ) = Exponential noise with rate λ
(22)

Table 3. Fuzzy rule base for fermentation phases.

Fuzzy Antecedent Fuzzy Consequent

IF phase is lag THEN biomass grows slowly (0.5(1 − e−t/10))
THEN sugar concentration remains high

IF phase is exponential THEN biomass follows sigmoid (3/(1 + e−0.3(t−45)))
THEN sugar concentration decays exponentially

IF phase is stationary THEN biomass declines linearly (3.5− 0.01(t − 100))
THEN sugar concentration approaches 30 g/L

IF phase is death THEN biomass decays exponentially (3e−0.005(t−336))
THEN sugar concentration stabilizes at 20 g/L

IF phase is lag THEN pH = 4.5 (constant), T = 25 ± 0.2 ◦C
IF phase is exponential THEN pH decreases sigmoidally, T strictly controlled
IF phase is stationary THEN pH stabilizes near 3.2, T maintenance continues
IF phase is death THEN pH slowly recovers, T control remains active

Table 4. Fuzzy rule-chain used by the fermentation autoencoding process.

Fuzzy Antecedents and Conditions Fuzzy Consequent Conditions and Actions

If lag fermentation phase (0–20 h)

Biomass: Xbio(t) = 0.5(1 − e−t/10) +N (0, 0.022)
Sugar: Ssugar(t) = 210 +N (0, 0.52) (constant high)
pH: pH(t) = 4.5 ± 0.05 (no change)
Temp: T(t) = 15 +N (0, 0.052) (strict control)
CO2: SCO2 (t) = 0.1Xbio(t) + E(0.1) (very low)
Alcohol: Palcohol(t) = 0 (none produced)

If exponential fermentation phase (20–70 h)

Biomass: Xbio(t) = 0.5 + 3.5
1+e−0.3(t−45) +N (0, 0.052)

Sugar: Ssugar(t) = 210e−0.015t +N (0, 12)
pH: pH(t) = 4.5 − 1.8

1+e−0.15(t−50) +N (0, 0.052)

Temp: T(t) = 15 +N (0, 0.052)

CO2: SCO2 (t) = 12Xbio(t)e−0.008(t−60)2
+ E(0.3)

Alcohol: Palcohol(t) = 0.15Xbio(t)(1 − 0.3 sin(t/50))

If stationary fermentation phase (70–150 h)

Biomass: Xbio(t) = 3.5 − 0.01(t − 100) +N (0, 0.032)
Sugar: Ssugar(t) = 30 + 50e−0.02(t−100) +N (0, 0.82)
pH: pH(t) = 3.2 ± 0.1 (stabilized low)
Temp: T(t) = 15 +N (0, 0.052)

CO2: SCO2 (t) = 4Xbio(t)e−0.01(t−120)2
+ E(0.2)

Alcohol: Palcohol(t) = 0.9Xbio(t)(1 − 0.1 sin(t/30))

If death fermentation phase (>150 h)

Biomass: Xbio(t) = 3.0e−0.005(t−200) +N (0, 0.052)
Sugar: Ssugar(t) = 20 +N (0, 0.32) (constant low)
pH: pH(t) = 3.0 + 0.5e−0.01(t−150) +N (0, 0.052)
Temp: T(t) = 15 +N (0, 0.052)
CO2: SCO2 (t) = 0.5Xbio(t) + E(0.1)
Alcohol: Palcohol(t) = 0.8Xbio(t) (slow decline)
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According to the literature, the described fuzzy controller can provide analytical white
wine fermentation parameter curves as modeled using per-phase Equations presented
in Table 4. This can lead to dense fermentation dataset generation, except for alcohol
concentrations, which can be inferred using the alcohol fuzzy controller described in
Section 3.6. This autoencoding simulation process closely resembles the existing minimal
dataset of fermentation curves acquired by the SmartBarrel system and the debina white
wine fermentation processes in the literature [39,46]. These fermentation curves are also
used to validate this mathematical formulation (the formulation tries to resemble acquired
fermentation data with noise).

From Table 3 rules and using a minimal training set of the autoencoder of white wine
fermentations, the fuzzy membership functions in Table 4 are used to generate fermentation
curves, as illustrated in Figures 4 and 5.

Figure 4 presents a sample of fermentation curve parameters over phases. The time
interval presented is between 1 and 300h, horizontally split into fermentation phases.
Figure 4a shows sugar concentrations of actual data and generated data; Figure 4b shows
CO2 concentrations, Figure 4c shows the pH values; and Figure 4d shows the biomass
residue concentrations on g/L. Two curves are illustrated per graph: the actual and the
generated data. Figure 5 shows the alcohol values in g/L calculated for the generated
parameters using the alcohol fuzzy controller. The fuzzy autoencoded dataset is used by
the authors’ proposed fermentation parameters forecasting model, V-LSTM, presented in
the following section.

(a) Sugar Concentration (g/L) over time. (b) CO2 concentration (PPM) over time.

(c) pH values over time. (d) Biomass (X_bio) concentration (g/L) over time.

Figure 4. Fermentation parameters of a sample of generated data from the fuzzy autoencoder and
actual data used for training provided by the SmartBarrel debina white wine fermentations and data
generated following generated white wine fermentation curves as presented in [46]. The upper row
displays (a) sugar concentration in g/L, and (b) carbon dioxide (CO2) concentrations in parts per
million, while the lower row shows (c) pH values and (d) biomass concentration in g/L.
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Figure 5. Alcohol concentration (g/L) over fermentation time of a sample of generated data from the
fuzzy autoencoder, as calculated using the fuzzy inference alcohol prediction model.

3.7. V-LSTM Forecasting Model

A new wine fermentation parameter forecasting model called the Variable-length
Long Short-Term Memory model (V-LSTM) has been implemented as part of SmartBarrel’s
deep learning capabilities. The term variable in the V-LSTM model corresponds to (1) the
temporal depth variability of the model, (2) the forecasting length variability of the model,
(3) the volatile number of cells per layer that are automatically adjusted using minimal
loss calibration, (4) the number of LSTM layers included in the model, also automatically
adjusted on minimal loss calibration, and (5) the type of training mode that is manually
set. The V-LSTM model can predict wine fermentation measurements (parameters) by
taking as input past monitored measurement values of pH, temperature, gas CO2 in
tank concentration, sugar, alcohol, and biomass concentrations [46]. The V-LSTM model
is an LSTM model with fuzzy autoencoding and self-healing capabilities to minimize
loss. Figure 6 illustrates the process steps of the V-LSTM model. Figure 7 illustrates the
V-LSTM model structure of variable cells and layers and its corresponding data inputs and
outputs. The V-LSTM model was developed using the Python Tensorflow API and Keras
backend [75,76].

Figure 6. V-LSTM process flow diagram of fuzzy parameter generation, hyperparameter training,
model training and predictions over new data streams.
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The V-LSTM model can be trained using two different training modes: (a) autoencod-
ing data training mode and (b) actual data training mode. The selection between the two
modes mainly depends on the number of fermentation data. The number of fermentation
curves needed to migrate from autoencoding to actual data training mode is arbitrarily
set to 100 fermentation curves of densely timed fermentation parameters (less than hourly
recordings). Existing actual training data are also used in the autoencoding mode. How-
ever, they are also enriched with data generated by fuzzy membership functions modeled
so that they closely follow the actual data. Experts and the bibliography indicate that
the autoencoder fuzzy rules follow more of a fuzzy consequence of measurement values.
Therefore, the autoencoder is more of a deterministic machine that fits well on the limited
dataset of actual fermentation curves, as shown in Figure 6; if in autoencoding mode,
steps 1, 2 and 3 are used to provide actual training data for the model. The actual data
training mode assumes that a dataset of timely-dense fermentation measurements has
been acquired and moves straight to step 4 in Figure 6 of the model of the hyperparameter
auto-calibration.

Figure 6 describes the V-LSTM model framework integrating fuzzy logic and LSTM
(Long Short-Term Memory) neural networks for fermentation process modeling, particu-
larly focusing on providing data input parameters prediction in the future, called attributes,
looking at variable-timestep windows of paste measurements. The process begins with
collecting a minimal dataset of fermentation parameters such as concentrations of sugar,
CO2 biomass, and pH and a set of fuzzy rules that express their inter-relationship in a
fuzzy manner. The dataset is used to train (1) the alcohol fuzzy controller, as described
in Section 3.6, and (2) provide a validation set that the fermentation data autoencoder
parameters must follow, as described in Section Fuzzy Fermentation Autoencoder with
noise. The autoencoder is used to generate dense measurements of fermentation data. At
the same time, the fuzzy controller that provides alcohol predictions (inferences) is trained
using the same minimal dataset. This alcohol fuzzy controller is then used to provide
alcohol measurement inferences for the data generated by the fuzzy autoencoder.

V-LSTM model training also includes a hyperparameter calibration step (see Figure 6,
step 4). In this step, the determination of the number of cells included in the V-LSTM
model is nc, and the number of layers is l, which achieves minimum loss without a set of
tested numbers of cells per layer and layer configurations. These hyperparameters are first
investigated by performing random searches using, as search parameters, the maximum
number of trials and the minimum distance between values over a pre-defined range of cell
values (8–512 cells per layer) and layer values (1–10 layers in the model included). These
value ranges are manually set in the V-LSTM model. The hyperparameter tuning process
ends with selecting the minimum loss cells first and then using that minimum number
of cells to select the minimum loss number of layers. The loss parameter investigated is
the validation RMSE loss of a portion of the entire dataset used for training and, therefore,
validation of the respective LSTM-generated models. Upon selection of cells and layers
hyperparameters, the final LSTM model is built as illustrated in Figure 7.

The built model is trained over the dataset of k attributes using a pre-selected timestep
nt of a historical data window and the time length pl of predictions to infer for that timestep.
Then, the dataset time series is loaded to memory and transformed into normalized data us-
ing min–max normalization per attribute. The same applies to the dataset labels that include
the next timestep min–max normalized data equal in size to the predictions’ timelength pl .

Figure 7 illustrates the layer-wise architectural diagram of the V-LSTM (Variable-
Length LSTM) model used for time-series predictions. It outlines how input sequences are
transformed through stacked LSTMs and dense (NN) layers, reshaped, normalized, and
finally mapped to a prediction output.
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Figure 7. V-LSTM model structure, layers, data input and output.

This V-LSTM model architecture is a hybrid RNN-NN variable size and depth time-
series model that takes multivariate sequential 2D array inputs of (nt, k) data, where nt

is the historical time series window of the multivariate data of k attributes. It utilizes
pre-tuned l stacked layers of pre-tuned nc LSTM cells each. Then, it uses two dense NNs
to smoothly transform the stacked LSTM output of nc values to k · nc and finally to a
pl · k 1D array of consecutive values from the second NN layer. These values are then
reshaped to form a 2D (pl , k) array. This array is the model’s final prediction output. That
is, after passing through a batch normalization step to smooth outliers on the prediction
value attributes.

The V-LSTM network, combined with BatchNormalization, was employed to help mit-
igate overfitting by stabilizing the learning process and introducing a mild regularization
effect. Additionally, early stopping mechanisms were incorporated during training to halt
the process when performance on the validation set ceased to improve, further preventing
overfitting. In addition, random noise was introduced into the autoencoder data to enhance
the model’s learning of more error-prone features. However, while these actions prevent
overfitting, they do not substitute for explicit regularization techniques such as dropouts or
L1 or L2 penalties.

Finally, the proposed V-LSTM model includes variable depth data training selection
(variable n in Figure 7), variable length of forecasting outputs (variable p in Figure 7), and
model parameter autotuning processes for the number of cells per layer and the number
of layers. It is well-suited for tasks like fermentation process forecasting, sensor data
prediction, or any sequential regression application involving fuzzy or biological systems.

4. Experimental Results and Discussion
The following subsections present the authors’ experimentation and proposed model

evaluation. Scenario I presents the authors’ experimentation with their implemented Smart-
Barrel IoT E-nose and E-torque devices. Scenario II presents the authors’ experimentation
of their SmartBarrel measured fermentation data using a fuzzy controlled process trained
by white wine fermentations, and Scenario III presents the evaluation of their proposed
V-LSTM model for fermentation predictions, trained using a fuzzy autoencoding process.
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4.1. Scenario I: Evaluation of the SmartBarrel E-Nose Device

The alcoholic fermentation of wine progresses through four characteristic phases.
The initial lag phase (6–24 h) involves yeast acclimatization and minimal activity. This
is followed by a transition to the vigorous exponential phase (3–7 days), where rapid
sugar conversion occurs, producing most of the alcohol and CO2. The stationary phase
(5–10 days) follows as yeast growth slows and flavors develop. Finally, the decline phase
(7–14 days) completes fermentation as nutrients are depleted [77]. The maximum total
duration typically ranges from 14 to 21 days (300–500 h), depending on yeast strain,
temperature (typically between 12 and 32 ◦C), and sugar content.

In this experimental scenario, the E-nose SmartBarrel end device is attached to the
fermenting wine at the end of the vigorous phase, where also the pomace removal from the
must (yeast) has been completed (typically 1–3 days for white wines, 5–15 days for rose
wines and 3–30 days for red wines). The grape variety used in this experimentation is the
Debina Zitsa, Epirus, Greece, white grape variety, mixed with a small quantity of Vlachiko
Zitsa, Epirus, Greece, red variety, and therefore vinified as a rosé wine. The tank used was
a 75 L stainless steel tank filled with 50 L of yeast upon the first decantation of wine, which
is primarily aimed at separating it from grape pomace, performed on the fifth day after the
grape crushing process. Then, the E-nose lid was placed on top of the fermentation tank
and air-tight sealed using the air pump at 1 atm. This process is illustrated in Figure 8.

Figure 8. SmartBarrel E-nose evaluation for the fermentation of a Debina rosé mix of Debina white
grape variety with a small quantity of Vlachiko red grape variety in the area of Zitsa, Epirus, Greece.

Figure 8(1) illustrates the SmartBarrel prototype of the E-nose, with the lid placed on
top of the fermenting wine (Figure 8(2)). Figure 8(3) illustrates the one-way release valve
that releases the CO2 from the sealed tank. The lid is pressed against the tank using an
air-pressurized rubber (see Figure 8 (5)). Finally, Figure 8(4) illustrates the E-nose controller
device that connects to the winery Wi-Fi network and, from there, to the ThingBoard
AS. Measurements of CO, CO2, and C2H5OH in tank gas concentrations, internal yeast
temperature, and external room temperature are periodically sent to the cloud every Tp

minutes, which can be set at the ThingsBoard device dashboard. For this experiment, Tp has
been set to 5 min. Figure 9 shows these measurements for the wine four-phase fermentation
interval. Figure 10 shows the temperature measurements of the wine (internal temperature)
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and the fermenting environment (temperature) during the fermentation phases. The mean
internal temperature T=18 ◦C, while the environmental mean temperature is at 26 ◦C.

As shown in Figure 9d, gas analog values were acquired by the analog-to-digital
decoder of 10-bit resolution of the E-nose control device and an Arduino UNO ATmega4809
8-bit AVR at 16 MHz equipped with 48 KB of Flash memory, 6 KB of SRAM, and 256
bytes of EEPROM. This device is also equipped with an onboard u-blox NINA-W102
Wi-Fi transponder and an IMU unit of the LSM6DS3TR module. Both Figure 9a–c follow
similar trend line patterns, an indication of proper sensor calibration that did not lead
to imbalances or erroneous fluctuations that are not illustrated in the corresponding real
analog measurements. As shown in Figure 9c, the conversion from parts-per-million (ppm)
to milligrams per liter (mg/L) for the ethanol (C2H5OH) concentration for the release in the
air is transformed from gaseous ppm to liquid mg/L, according to Equation (23):

Cethanol =

(
ppm × Methanol

Ṽm

)
× 1

α
(23)

where C in mg/L is the alcohol mass concentration, ppm is the volume concentration (parts
per million) of alcohol in the 5–7 cm air gap inside the tank, M is the molar mass of ethanol
in (g/mol), which equals Methanol = 46.07, while Vm = 24.45 is the molar volume of an
ideal gas at standard conditions (L/mol at 25 °C and 1 atm). For nonstandard temperatures,
it is calculated as Vm = 24.45 L/mol × T

298.15 . Coefficient α ≈ 0.00025 is the partition
coefficient set for correction purposes. It expresses the distribution of ethanol between gas
and liquid phases (see Equation (24)):

α =
CC2H5OHgas

CC2H5OHliq
(24)

(a) CO concentration (ppm) over time. (b) CO2 concentration (ppm) over time.

(c) Alcohol concentration (mg/L) over time. (d) Raw sensor output analog signals (normalized units).

Figure 9. SmartBarrel E-nose gas concentration measurements from MQ-7 (CO) MOS sensor, MG-811
(CO2) NDIR like solid-state electrochemical sensor, and MQ-3 MOS alcohol sensor, showing both
processed concentrations and raw signals. The upper row displays (a) carbon monoxide (CO) and
(b) carbon dioxide (CO2) concentrations in parts per million, while the lower row shows (c) gas
alcohol concentrations in mg/L and (d) the corresponding raw sensor outputs.
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During active wine fermentation phases, we expect gas traces of alcohol in the tank
between 100 and 1000 ppm (0.5–5 mg/L) [78], so that the corresponding partitioning
liquid ethanol part inside the fermenting wine should be between 10 and 150 g/L. The
corresponding conversions from g/L and %Vol concentration are calculated based on
Equation (25), and corresponding values are shown in Table 5.

% vol =
CC2H5OH

ρC2H5OH
× 100 (25)

where CC2H5OH is the ethanol concentration in (g/L) and ρC2H5OH = 0.789 (g/mL) is the
ethanol density at 20 ◦C.

Table 5. Wine ethanol concentration conversion table.

Ethanol (g/L) % vol

10 1.27
12.6 1.59 (Table wine minimum)
45 5.7

82.9 10.5 (Dry wine minimum)
94.7 12.0 (Typical non-dry wine)
150 19.0 (Fortified wine maximum)

Figure 10. SmartBarrel E-nose temperature plot in the air and inside the fermenting yeast (inter-
nal temperature).

As shown in Figure 9c, the alcohol curve follows the expected behavior, quadratically
declining to zero alcohol gas inside the tank. Furthermore, the corresponding detected
values of air alcohol vapors inside the fermentation tank match findings in the literature as
expressed by Equation (18) and mentioned in the previous paragraph.

As shown in Figure 9b, there is a high frequency of CO2 bursts close to 10,000 ppm/burst
for the first fermentation phases that start to reduce at the end of fermentation in terms
of burst frequency and intensity for the mid-fermentation interval. However, a slight
mean increase in CO2 gas concentrations remains in the tank at the decline fermentation
phase between 1800 and 2500 ppm. This phenomenon is also indicated by the CO sensor
that abruptly enters zero ppm during that phase (see Figure 9a). From Figure 9a, it is
obvious that there are slight traces of CO during active fermentation phases with a mean of
12.5 ppm, which disappear in the decline fermentation phase.

4.2. Scenario II: Evaluation of the Fuzzy Controler

In this experimental scenario, a set of 25 fermentation curves have been used, provided
by SmartBarrel debina fermentations and data generated to fit white wine fermentations as
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presented in [46], showing the fermentation of a white grape variety. The measurement
included a time series of hourly tank fermentation data of temperature, pH, sugar concen-
tration in g/L, measured alcohol concentrations in g/L, biomass concentrations in g/L,
and CO2 in g/L. Since these measurements were measured hourly, a padding function was
used to provide 5 min interval samples using interpolation. This dataset has been used to
train the fuzzy alcohol concentration controller, as described analytically in Section 3.6.

This controller has been, in turn, used to infer alcohol concentrations of our rosé-
white wine fermenting mixture of the Debina white variety and the Vlachiko red variety.
The equipment used was the authors’ SmartBarell E-nose and E-tongue implementations.
Figure 11 presents the actual and predicted values.

The experimental results present the actual measurements performed at the Debina–
Vlachiko fermenting tank (of 50 L of fermenting wine), and the predicted line illustrates the
predictions of the fuzzy controller. The green line is the finally calibrated fuzzy controller
output with one additional step of a Gaussian filter added for stability. Upon calibration, the
coefficient of determination achieved by the fuzzy controller was R2 = 0.87, meaning that
the controller’s temporal data alcohol inferences slightly declined from reality, specifically
at the end of the stationary fermentation and death fermentation phases.

The authors denote the limitations of the small training dataset, adding to the diver-
gence of the controller inferences (underfitting). Nevertheless, as a fuzzy inference process,
it will be a handy tool for future fermentation of the Debina variety when adequate variety
data are collected by the SmartBarrel implementation for the controller to train. The fact that
the controller managed to follow the actual achievement of a significant R2 score is a strong
indication that it can be a significant tool for wineries to develop autoencoders that, in
turn, can offer more sophisticated fermentation prediction tools like the V-LSTM predictor
presented in Section 3.7. The following Section 4.3 evaluates the proposed V-LSTM model.

Figure 11. Alcohol fuzzy controller inference values (green line) over Debina–Vlachiko (Zitsa, Epirus,
Greece) near-real-time fermentation curve of alcohol concentrations (blue line).

4.3. Scenario III: Evaluation of the V-LSTM Prediction Model

The V-LSTM model evaluation process involved 1200 alcoholic fermentations using the
fuzzy encoder described in Section Fuzzy Fermentation Autoencoder over 21 fermentation
days during which pH measurements, CO2, sugar concentration, total amount of alcohol
concentrations, temperature, and biomass concentrations (enzymatic transformation con-
tent) were used as fuzzy wine fermentation parameters generated for all 1200 fermentations
at a sampling rate of 5 min/parameters batch, which equates to 6048 × 1200 × 6 recorded
data, approximately 7,000,000 time-annotated attribute vectors.



Sensors 2025, 25, 3877 25 of 34

The training was performed on a standard cloud GPU of 4864 CUDA cores and 8 GB
of RAM. That is the average CPU–GPU purchase potential that medium-sized wineries
can achieve for minimal computational capabilities in monthly cloud rental costs. In such
a case, the available generated data cannot be trained and loaded simultaneously, as it
requires at least 128 GB of RAM. For this reason, the dataset has been partitioned into
12 chunks of 100 fermentations each. The number of chunks has been selectively chosen
not to surpass the 7GB of memory required by the training process to load and train on
each chunk. The testing dataset for the evaluation process has been selected as 20% of each
chunked data. The training validation data split was also set to 20% per data chunk.

The training was carried out using a batch size of 32 for 100 epochs, of variable learning
rate adaptation starting from 10−4 up to 10−10 with rate adaptation on constant epoch
validation loss values at a reduction factor of 25% of the previous learning rate. Additionally,
to maintain fault tolerance to vanishing gradients or training efforts of constant loss results,
an early stopping mechanism has been instantiated, monitoring the validation loss function
and storing the best model results, that is, the minimum RMSE values. This scenario splits
the 21 × 1200 data into training and test sets. It has 20 × 12 × 6043 (attribute vectors) data
during testing, which cannot be applied on a GPU as it needs 16 GB of GPU RAM. That is
why the evaluation is performed on a 24-core virtual machine of x86-64bit CPU and 32 GB
of RAM, prolonging training time.

4.3.1. V-LSTM Hyperparameter Auto-Tuning

The V-LSTM model hyperparameter auto-tuning step has been performed using the
fuzzy encoded dataset, first using the number of cells as a tuning parameter on a minimum
of one LSTM-layer architecture, and testing inter-cell distances of ten randomly selected
cell cases (unique cells random process) set to 32. The minimum cell value is 32, and the
maximum is 512. The portion of the dataset used to validate the models was the 1

12 of the
original dataset, calculated similarly to RMSEV, as mentioned in [79]. The configuration
of the RMSE loss function and the final validation loss at 10 training epochs has been
examined for the minimal loss value cells. Figure 12 shows the RMSE loss over the number
of cells per layer of the LSTM layer models examined.

Figure 12. V-LSTM model tuning process of the number of cells per V-LSTM layer using the RMSE as
loss function.

From the cell tuning results in Figure 12, the nc = 64 cells/layer achieved the minimum
RMSE loss of 10.53 for 10 training epochs, followed by the 480 cells/layer model of 10.53.
Therefore, the number of 64 cells per layer has been automatically selected by the V-LSTM
model. Next, the LSTM layer’s depth is tuned. Figure 13 shows the RMSE loss over the
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number of layers of the V-LSTM model examined. The tested LSTM models included a
variable layer depth starting from 1–10 layers with a layer step of 10 and a random unique
selection of 10 models to test keeping the optimal RMSE value number of cells as it was
previously calculated. The portion of the dataset used to validate the models was the 1

12 of
the original dataset. The configuration of the RMSE loss function and the final validation
loss at 10 training epochs have been examined for the minimal loss value layers.

In Figure 13, the LSTM layer tuning process indicated the minimum loss nl = 10,
corresponding to the maximum number of testing layers, followed closely by nl = 4, by
a separate validation set RMSE loss difference of 0.01. The authors also noticed that for
portions of the dataset and a few epochs, the maximum number of layers always superseded
all others, even at a minimal amount. Therefore, for the sake of significantly reducing
the number of trainable parameters, they considered a penalty threshold expressed as
the min–max loss value multiplied by the min–max weight expression of the number of
layers l:

WRMSEl
Loss =

RMSEl − min(RMSE)
max(RMSE)− min(RMSE)

· l − min(l)
max(l)− min(l)

(26)

where RMSE is calculated over a seperate validation set of fermentation parameters
(RSMEV [79]).

Figure 13. V-LSTM model tuning process of the number of model layers using the RMSE as
loss function.

However, in this case, the layer that achieved the minimum RMSEl value was selected
instead of the layer with the minimal WRMSEl

Loss value, and l = 10 layers were selected for
the number of layers of the V-LSTM model. Table 6 shows the training parameters of the
V-LSTM model. Two additional mechanisms are used: (1) an early stop mechanism that
ends training when there is no improvement in validation losses for more than five epochs
(early stopping patience) with a min_delta value of 10−5, and (2) an adaptive learning rate
factor that reduces the default learning rate value of 10−4 using a 25% reduction factor
down to 10−10, with a patience parameter set to 1 epoch.

During training of the V-LSTM model, the selected input temporal depth nt = 288× 5 min
temporal measurements of the k = 6 sensory attribute data together have been transformed
into a 2D array of 288× 6 consecutive fermentation parameters. This array corresponds to the
previous 24 h 5 min vectors of measurements of XBio, pH, T, Ssugar, SCO2 and Salcohol attributes.
Upon data loading, the entire dataset is transformed into batches of (288, 6) two dimensional
arrays. These inputs are processed through the first V-LSTM LSTM layer of pre-selected 64 cells
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out of four layers. The number 64 was chosen during hyperparameter tuning because it
maintained the lowest RMSE value (see Figure 12).

Table 6. Summary of training parameters of the V-LSTM model.

Parameter Value

Number of attributes (k) 6
Time window length (nt) 255 (12 × 24)—24 h
Prediction length (pl) 288 (12 × 24)—24 h
Number of LSTM layers (l) 10
Number of LSTM cells per layer (nc) 64
Optimizer Adam
Minimum learning rate 1 × 10−10

Learning rate reduction factor 25%
Learning rate patience 1 epoch
Early stopping patience 5 epochs
Max number of epochs 100

4.3.2. V-LSTM Evaluation Results

V-LSTM model training validation and evaluation results are presented in Figure 14,
using the RMSE, while Table 7 summarizes the results. Initially, the experiment starts
training on dataset-1 using the system’s GPU, maintaining a 7.2 GB of mean memory
utilization during host-to-device transfers. Since an early stop mechanism is used, the
number of training epochs per dataset varies. Figure 14a shows the achieved validation
loss at the epoch end of each training dataset. Table 7 shows the number of epochs per
dataset prior to an early stop if validation loss does not change for more than five epochs,
as well as the total mean validation loss achieved by the V-LSTM prediction model. The
validation RMSE is relatively low, suggesting the model learns well from the data. The
minimal standard deviation indicates consistent performance across training folds, a strong
sign of model stability.

Similarly, Figure 14b shows the mean evaluation RMSE loss achieved by the model.
In total, 20% of the total dataset has been used for that purpose and evaluated using
24 core x86 CPU and 32 GB of system RAM. Evaluation loss varies between 0.1578 and
0.1610 over the trainable datasets, and its value at the training end of the last dataset (d12)
was 0.1605. The mean RMSE achieved by the model was 0.1599. The evaluation RMSE is
slightly lower than the validation RMSE. This indicates that the model does not overfit and
generalizes well to unseen data. The even smaller standard deviation further confirms the
model’s fair stability. Since the average number of epochs is around 41 (see Table 7), it is
also an indication that the model was not overtrained and converged relatively quickly
(41/100 epochs).

Table 7. Mean and standard deviation of RMSE for V-LSTM evaluation (testing) and validation (train)
over 12 datasets, each one representing 100 fermentations with 5 min resolution measurements.

Measure Mean Std. Dev.

Validation RMSE (Epochs = 40.66 ≈ 41) 0.161468 0.001817

Evaluation RMSE 0.159915 0.000895

Trainable Epochs over train datasets

Dataset D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
Epochs 51 67 47 55 44 38 36 33 33 30 29 25
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(a) Training mean RMSE values (b) Evaluation mean RMSE values

Figure 14. Validation and evaluation results of the V-LSTM model. (a) Training mean RMSE values
over trainable fermentation datasets (d = 1. . . 12) achieved at the last trainable epoch, and (b) Eval-
uation mean RMSE values over trainable fermentation datasets (d = 1. . . 12) using 20% of the total
trainable dataset (d = 1. . . 12).

Four studies have been used to evaluate our V-LSTM predictor RMSE outputs. The
first involves a classifier implemented using input sugar concentrations and alcohol degrees
(alcohol concentrations) to predict fermentation behaviors over the first 72 h of the fermen-
tation process [44]. This proposed model used two hidden NN layers that are only as big
as the bottom part of our proposed V-LSTM predictor and achieved an accuracy of 80% in
detecting normal and problematic fermentations using only one parameter as a predictor
variable (alcoholic degrees), which also denotes the importance having dense number of
samples to achieve significant accuracy results. From the above paper, the authors can only
conclude that from the accuracies of this scale, the MSE loss parameters are significantly
high and usually above 1.

The second study includes SVR modeling with a Gaussian kernel to predict pH values
and sugar content (measured in Brix) of fermenting wines, which showed the minimum
RMSE values achieved of 0.142 for pH and 0.804 for sugar content, giving a minimum
RMSE mean value of 0.473 [45]. This result is 66.17% more than the loss results achieved by
the V-LSTM model (V-LSTM loss is 66.17% less than 0.473).

The third study includes an NN model [46] of one hidden layer of up to 12 neurons
to predict one of the fermentation measurements (preferably alcohol) having the other as
model input (pH, CO2, Ssugar, Xbio), which achieved a minimum MSE value of 0.99 and
corresponds to an RMSE of 0.995, which is 83.92% more than the achieved RMSE values of
the V-LSTM model (V-LSTM loss is 83.92% less than 0.995).

The last study includes an NN model with one hidden layer of 10 neurons that uses
either randomly generated weights or weights set initially by a genetic algorithm for the
prediction of alcohol and substrate concentrations [47]. The provided RMSE results for the
genetic algorithm-defined initial weights are between 0.3 and 0.45. That is, a mean value
of 0.37. The minimum achieved RMSE loss value of 0.3 is 46.67% more than the achieved
RMSE values of the V-LSTM model (V-LSTM loss is 46.67% less than 0.3). The actual
paper mentions in a sentence a testing loss of 0.03–0.045. However, Figures 10–15 from
paper [47], that present actual alcohol and substrate concentrations, predicted values differ
significantly from the actual values for a testing loss of this range. The loss is likely bigger
than the loss of 0.3–0.45.

The SmartBarrel AI logic for forecasting wine fermentation parameters does not
introduce regulatory considerations. From a regulatory perspective, AI technologies may
fall under the European Food Safety Authority (EFSA), particularly when they impact
on product safety, traceability, and labeling. For example, under EU Regulation (EC)
No 178/2002 [80], food business operators are responsible for ensuring that automated
systems do not compromise food safety or misinform consumers. The issues that may arise
here are solely using the SmartBarrel IoT sensors rather than AI models since they only
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predict measurements and do not qualify or classify processes. Moreover, the SmartBarrel
IoT devices issue is also surpassed since the fermentation processes are performed in
small tanks as pilots for big fermentation processes, and the fermentation material by
the SmartBarrel IoT devices is not distributed to the public but instead wasted as pilots
coinciding in the same industrial area with larger qualified fermentation tanks or barrels.
Under the ethical context, the SmartBarrel micro-fermentation processes augment rather
than replace expert decision-making, protect data using centralized cloud repositories
using non publicly available Wi-Fi data transmission channels maintained by the Industry,
and secure HTTP and MQTT data transmissions. Therefore, a sustainable and socially
responsible innovation is maintained.

5. Conclusions
This paper introduces a new wine fermentation monitoring system called SmartBar-

rel. The system is equipped with two low-cost IoT devices implementing an E-nose that
monitors the release of fermenting gases such as alcohol, carbon monoxide (CO), and
carbon dioxide (CO2), and an E-tongue that measures essential wine fermentation parame-
ters, including fermentation residues, pH levels, sugar concentrations, and color changes.
These IoT devices are installed on the lids of stainless steel fermentation tanks, where
they continuously collect and transmit near-real-time measurements to the cloud. The
system leverages the open-source community edition of the ThingsBoard platform and
its mobile application for data visualization. Additionally, the proposed system supports
fermentation forecasting and the ability to incorporate deep learning algorithms as cloud
services, utilizing inputs from the Cassandra NoSQL database of sensory measurements
and outputting classification incidents and predicted values via corresponding dashboards.

The authors also included the ability in their SmartBarrel system to offer an estimation
of alcohol degrees without using an additional meter but with a fuzzy controller capable of
inferring alcoholic content from fermentation parameters. This fuzzy controller can also
be implemented at the IoT device level. The authors also proposed a cloud-based variable
cells and layers LSTM model called V-LSTM for predicting future fermentation parameters
trained on either past fermentation data or data provided by fuzzy logic autoencoders.

The SmartBarrel system data autoencoding process is very important since existing
datasets for wine fermentations are very small in terms of measurement frequency, parame-
ters, and sizes. However, appropriate control of the autoencoded data is needed to fit the
actual experimental parameter curves. This autoencoding step is a preliminary mechanistic
step used temporarily until sufficient fermentation data is acquired. The proposed V-LSTM
model can also auto-tune its model schema of the number of LSTM layers and cells per layer
used based on portions of data training and, therefore, selecting the best hyperparameters
per case study or scenario. The authors set as future work a modification of their currently
proposed V-LSTM model that can have multiple strands due to the selection of different
hyperparameter values on re-training on new data, and therefore, policies to apply the best
strand inferences for each case accordingly.

Experimentation focused on the E-nose and E-tongue SmartBarrel devices, validating
their functionality as well as the overall SmartBarrel system capabilities of data logging
and visualization. Furthermore, they experimented with their alcohol fuzzy controller
inferences, achieving an R2 score of 0.87 over new SmartBarrel fermentation data. The
authors also experimented with their proposed V-LSTM predictor, showing that it can
achieve RMSE scores down to 0.16, which is 46-84% less than existing prediction SVR
and shallow NN models. The authors also denote the need for a dense-cloud-based
measurement of wine fermenting parameters for deep learning models such as V-LSTM to
achieve even better prediction results.
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Given the dynamic and time-sensitive nature of fermentation processes, further evalua-
tion of the forecasting outputs from the V-LSTM model and the fuzzy predictor is necessary.
This evaluation should include a comparison of the fuzzy predictor with support vector
regression (SVR)-trained predictors or even XGBoost-trained predictors, which can be
programmed to operate at the device level and may outperform the fuzzy controller in
terms of R2 score and RMSE loss. Additionally, the introduction of temporal metrics, such
as Dynamic Time Warping (DTW) and rolling window Mean Absolute Error (MAE), should
be considered. Although their use as evaluation measures for deep learning models is
limited in the literature, these metrics could still be employed to assess both the V-LSTM’s
forecasting outputs and the fuzzy controller’s alcohol predictions. Such measures might en-
hance the models’ responsiveness to the various phases of fermentation and increase their
confidence levels. The absence of this type of evaluation is a limitation of the current study.

The authors set as future work the validation extension of their SmartBarrel imple-
mentation and AI capabilities in small-scale fermentations of different Greek varieties
performed and evaluated in the Enology lab of the Agricultural University of Athens,
Greece in cooperation with the Grekis Inox company, Athens, Greece, improving their
system’s technological readiness level and therefore introducing it as a low-cost product
for automated small-scale vinification processes. Furthermore, testing of SmartBarrel IoT
devices’ signal stability and interferences among their sensors and cables is part of future
work, and extensive testing of the SmartBarrel E-nose and E-tongue prototypes as part of
the finalization of an industry-ready, technological readiness level (TRL-9) product will be
performed in cooperation with the Grekis company.
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Abbreviations
The following abbreviations are used in this manuscript:

AS Application Server
CNN Convolutional Neural Network
CPU Central Processing Unit
DL Deep Learning
DSS Decision Support System
E-Eye Electronic Eye
E-Nose Elecgtronic Nose
E-Tongue Elecntronic Tongue
LSTM Long short-term memory RNN
ML Machine Learning
MOS Metal Oxide Semiconductor
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NDIR Non-Dispersive Infrared
NIR Near Infrared Region of wavelength between 750 nm to 2500 nm
NN Neural Networks
PPM Parts Per Million
RNN Recurrent Neural Networks
SVR Support Vector Regression
V-LSTM variable LSTM model
VM Virtual Machines, cloud-hosted
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