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Abstract: The accurate real-time estimation of the remaining useful life (RUL) of lithium-
polymer (LiPo) batteries is a critical enabler for ensuring the safety, reliability, and op-
erational efficiency of unmanned aerial vehicles (UAVs). Nevertheless, achieving such
prognostics on resource-constrained embedded platforms remains a considerable technical
challenge. This study proposes an end-to-end TinyML-based framework that integrates
embedded sensor data fusion with an optimized feedforward neural network (FFNN)
model for efficient RUL estimation under strict hardware limitations. The system collects
voltage, discharge time, and capacity measurements through a lightweight data fusion
pipeline and leverages the Edge Impulse platform with the EON™Compiler for model
optimization. The trained model is deployed on a dual-core ARM Cortex-M0+ Raspberry
Pi RP2040 microcontroller, communicating wirelessly with a LabVIEW-based visualization
system for real-time monitoring. Experimental validation on an 80-gram UAV equipped
with a 1100 mAh LiPo battery demonstrates a mean absolute error (MAE) of 3.46 cycles
and a root mean squared error (RMSE) of 3.75 cycles. Model testing results show an overall
accuracy of 98.82%, with a mean squared error (MSE) of 55.68, a mean absolute error
(MAE) of 5.38, and a variance score of 0.99, indicating strong regression precision and
robustness. Furthermore, the quantized (int8) version of the model achieves an inference
latency of 2 ms, with memory utilization of only 1.2 KB RAM and 11 KB flash, confirming
its suitability for real-time deployment on resource-constrained embedded devices. Overall,
the proposed framework effectively demonstrates the feasibility of combining embedded
sensor data fusion and TinyML to enable accurate, low-latency, and resource-efficient
real-time RUL estimation for UAV battery health management.

Keywords: real-time embedded systems; remaining useful life (RUL) estimation; sensor
data fusion; TinyML; UAV Li polymer battery monitoring

1. Introduction

Unmanned aerial vehicles (UAVs) have evolved into versatile platforms employed
across a broad range of applications, including aerial photography, surveillance, parcel
delivery, and infrastructure inspection. Among the various factors influencing UAV per-
formance, battery life remains a principal constraint that limits operational duration and
mission reliability. Accurate estimation of the remaining useful life (RUL) of lithium-
polymer (LiPo) batteries is essential to enhance flight safety, mitigate the risk of in-flight
power failure, and enable more effective task scheduling and route optimization. Fur-
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thermore, reliable RUL prediction facilitates predictive maintenance strategies, thereby
extending battery service life and reducing replacement costs [1].

RUL estimation refers to the process of forecasting the time span from the current
operational state until the point at which the system’s degradation exceeds acceptable
thresholds under nominal operating conditions. Two primary approaches have been
widely adopted for this task [2]. The first is the model-based approach, which relies
on predefined physical or electrochemical models and utilizes sensor data to describe
degradation behavior. The second is the data-driven approach, which leverages historical
data and machine learning algorithms to predict degradation trends. In recent years, the
data-driven paradigm has garnered increasing attention due to its flexibility and reduced
dependence on explicit physical models, making it more adaptable to varying operating
conditions and system types [3].

Several data-driven approaches for predicting the remaining useful life (RUL) of
systems and components have been proposed in the literature. For example, ref. [4]
employed a linear regression model to derive a health index (HI) from multidimensional
sensor data to forecast the RUL of electrical machines. In ref. [5], a novel inheritance-based
particle filter (PF) was introduced for RUL estimation of lithium-ion batteries, incorporating
a Lamarckian inheritance mechanism within a genetic algorithm framework. This method
demonstrated improved prediction accuracy while requiring fewer tuning parameters
compared to traditional elitism-based genetic algorithm particle filters. Furthermore, ref.
[6] proposed an enhanced RUL prediction technique utilizing an extended Kalman particle
filter in combination with a modified double exponential degradation model, effectively
addressing issues related to particle degeneracy in conventional PF algorithms. In another
study, ref. [7] presented an online state-of-health (SOH) estimation method for lithium-ion
batteries using support vector machines (SVMs) with radial basis function kernels, which
relied on features extracted from partial charging voltage and current profiles.

Recent advancements in deep learning and artificial intelligence (AI) have enabled
the development of sophisticated data-driven approaches for remain useful life (RUL)
prediction. Deep neural networks (DNNs), which consist of multi-layer artificial neural
architectures, are particularly effective for modeling complex nonlinear relationships and
have demonstrated superior predictive performance in RUL estimation tasks. For instance,
ref. [8] proposed a prognostics method based on deep convolutional neural networks (DC-
NNs), which effectively capture complex degradation features from sensor data, thereby
enabling accurate RUL predictions that support enhanced maintenance planning and sys-
tem reliability. Similarly, ref. [9] introduced a novel approach employing deep multi-scale
convolutional neural networks to identify degradation patterns across multiple feature reso-
lutions, leading to more precise and robust RUL forecasts. In another study, Wang et al. [10]
utilized functional data analysis (FDA) to model degradation behavior captured in sensor
readings, offering a framework capable of generating highly accurate RUL predictions and
facilitating informed maintenance decision-making. Moreover, Ciani et al. [11] proposed
an early-stage state-of-health (SOH) estimation method tailored for lithium batteries in
wireless sensor networks. By leveraging long short-term memory (LSTM) networks in
conjunction with a single exponential degradation model, their work demonstrates that
accurate SOH prediction can be achieved with limited training data, thus significantly
reducing the data requirements typically associated with reliable battery health forecasting.

Despite the promising performance of deep learning-based RUL estimation systems,
several limitations hinder their practical deployment in real-world applications. These
include high hardware infrastructure costs, elevated energy consumption, concerns regard-
ing data privacy and security, limited network bandwidth, and significant latency when
relying on cloud-based Al processing [12-14]. To address these challenges, various hybrid
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and resource-efficient solutions have been proposed. For instance, ref. [15] presented a
deep learning framework combining convolutional neural networks (CNNs) and long
short-term memory (LSTM) networks to improve RUL prediction accuracy in industrial
systems. Using the NASA turbofan engine dataset, their approach outperformed both
traditional machine learning algorithms and state-of-the-art methods in terms of reliability
and prediction robustness for IoT device health monitoring. In the context of electric
vehicle battery management, ref. [16] proposed a deep learning-based estimator capable
of accurately determining battery capacity in real time. The model, trained using a mix
of synthetic and real battery data, was validated within an Amesim-based EV powertrain
simulation environment, demonstrating its applicability for real-time onboard diagnostics.
Furthermore, ref. [17] introduced a cloud—edge-integrated approach utilizing lightweight
temporal convolutional networks (LTCNs) to enhance RUL prediction accuracy while
minimizing computational overhead. By deploying the model across both edge and cloud
planes, the framework effectively balances performance with resource efficiency, making it
a viable solution for latency-sensitive industrial prognostics.

Although considerable progress has been made in the domain of UAV battery manage-
ment, several critical challenges remain unresolved, including the high cost of hardware
infrastructure and the limited computational capabilities of embedded systems. To over-
come these limitations, this study introduces an end-to-end TinyML-based framework
for real-time estimation of the remaining useful life (RUL) of lithium-polymer batteries
deployed in UAVs, as depicted in Figure 1. The proposed solution is designed to achieve
high predictive accuracy and low inference latency, while operating efficiently within the
constraints of low-power, resource-limited embedded platforms.

The main contributions of this work are as follows:

*  Embedded Sensor Data Fusion: A lightweight data fusion pipeline is developed to
integrate voltage, discharge time, and capacity measurements into a unified feature
set for the feedforward neural network (FFNN) model.

¢  TinyML Deployment: A compact RUL estimation model is implemented on the
Raspberry Pi RP2040 microcontroller, enabling low-cost, real-world deployment.

*  Model Optimization with Edge Impulse: The EON™Compiler is utilized to com-
press and optimize the neural network, enabling fast and energy-efficient on-
device inference.

*  Real-Time Monitoring: A LabVIEW application based on a state machine architecture
is developed to visualize and monitor RUL predictions in real time.

This framework demonstrates that embedded sensor data fusion combined with
TinyML can deliver high-accuracy, low-overhead RUL estimation, paving the way for safer,
more reliable, and more efficient UAV battery management.

The remainder of this paper is structured as follows. Section 2 presents the materials
and methods employed in this study, encompassing data acquisition, preprocessing, model
training, and optimization. Section 3 introduces the embedded Al sensor system designed
for real-time RUL estimation of UAV batteries, with emphasis on both hardware implemen-
tation and software architecture. Section 4 reports the experimental results and provides a
detailed analysis of the system’s performance under real-world UAV operating conditions.
Finally, Section 5 concludes the paper and highlights potential avenues for future research
and system enhancement.
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Figure 1. UAV, RUL LiPo battery-embedded Al sensor, and LabView application.

2. Materials and Methods

The overall structure of the real-time remaining useful life (RUL) estimation frame-
work for the battery system is illustrated in Figure 2. The process begins with the analysis
of raw battery data, which are subsequently processed through a structured pipeline com-
prising correlation analysis, feature selection, normalization, data labeling, and partitioning
into training and testing datasets. During the model training phase, feedforward neural
networks (FFNNSs), a type of machine learning algorithm, are applied to learn degradation
patterns from the selected features. The testing phase evaluates the performance of the
model and quantifies its prediction accuracy and reliability.

In the system implementation phase, the FENN model is optimized using TinyML
techniques for deployment on resource-constrained embedded hardware. The optimized
model is integrated with an embedded Al sensor and connected to a LabVIEW-based
application for real-time RUL estimation and system performance monitoring. This sys-
tematic methodology emphasizes effective model development and practical deployment
for accurate RUL estimation in battery monitoring applications. The following subsections
describe the methodology in four key stages: data acquisition, data preprocessing, model
training and optimization, and model performance evaluation.

2.1. Data Acquisition

This study utilizes a dataset of lithium-polymer (LiPo) batteries (model LP-503562-1S-3,
nominal voltage 3.7 V, capacity 1100 mAh) published by Galeotti et al. [18], which provides
comprehensive capacity and electrochemical impedance data acquired under various states
of charge (SOCs) and states of health (SOHs). Each battery was subjected to hundreds of
standard and stress charge—discharge cycles. Key measurements include voltage, current,
capacity, impedance spectra, and fitted equivalent circuit model (ECM) parameters. The
capacity measurements were performed during full charge-discharge-charge cycles under
controlled conditions (25 °C), while impedance spectra were acquired through galvanostatic
electrochemical impedance spectroscopy (EIS) across 45 frequency points ranging from
0.2 Hz to 5000 Hz. All data were organized across three stages: standard cycling, partial
discharge with EIS, and stress discharge for accelerated aging.
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Figure 2. The proposed real-time RUL estimation structure.

For this work, the dataset corresponding to two of the batteries was selected, compris-
ing a total of 424 charge—discharge cycles. The data were labeled with cycle-level remaining
useful life (RUL) values and used to train and evaluate multiple machine learning models.
Although the dataset size may be considered moderate, it provides sufficient resolution to
model battery degradation trends and to validate embedded RUL estimation frameworks.
Cross-validation and hold-out methods were employed during model development to
ensure robustness and generalizability. Table 1 summarizes the main characteristics of
the charge and discharge protocols applied to the LiPo batteries used in the degradation
dataset. The charging process followed a constant current—constant voltage (CC—CV) strat-
egy, while the discharging process was conducted under constant current (CC) conditions
with specific cut-off voltage thresholds.

Table 1. Charging and discharging profiles associated with the collected battery degradation data.

Charge Discharge
Profile CC-CV CcC
(Constant Current—Constant Voltage) (Constant Current)
Charge Current 1.0A -
Voltage Threshold 4.2 V (CV phase) Cut-off Voltage 2.75 V
Discharge Current - 3.0A

Temperature 25°C 25°C
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Charge—discharge cycles were conducted iteratively until the measured capacity,
denoted as C, diminished to less than 70% of the initial nominal capacity, represented as
CN. A capacity is determined by integrating the current over the discharge duration:

t
c:/0 I(t) dt, (1)

state of charge is estimated relative to the initial capacity (C at stage 0), accounting for
battery aging and capacity degradation [19]:

1 t
soC=1-— E/0 1(t) dt, @)

Battery RUL is the estimated remaining operational cycles (Mgor) minus the com-
pleted charge cycles (Mcc). In the dataset collection phase, the value of Moy can be
obtained through direct measurement. When complete capacity versus cycle data is avail-
able up to the point of battery failure, the end-of-life cycle count is empirically defined as
the cycle at which the battery capacity drops below a predetermined threshold, typically
70% of its nominal capacity. This allows the actual Mgoy, to be explicitly determined from
the experimental data, enabling accurate calculation of the remaining useful life (RUL) for
any cycle a [20]:

RUL, = MEOL — Mcca, (3)

The capacity degradation trends for all batteries under standard discharge conditions
are illustrated in Figure 3, which plots capacity against cycle numbers. The relationship
between the cycle index and battery capacity (mAh) for two batteries, Battery ID 1 and 2, is
depicted in Figure 4.

Cycles
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- Cycle: 20
- Cycle: 40
= Cycle: 60
3.6 —— Cycle: 80
\.\ = Cycle: 100
N Cycle: 120
— . —— Cycle: 140
> 341 = Cycle: 160
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X Cycle: 204
=
Q
.2 3.21
[
3.0
2.81
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Figure 3. Discharge voltages’ (V) degradation trends.

Features that are derived from raw voltage, capacity, and time data over numerous
charge-discharge cycles are valuable for predicting the remaining useful life (RUL) of the
batteries, serving as key indicators of battery performance, and offering valuable insights
into battery behavior, as indicated by the dataset. Table 2 provides a detailed view of the
central tendencies (mean, median), variability (standard deviation), and ranges (min, max)
for each feature, giving insight into the behavior of the batteries across multiple cycles. The
correlation analysis presented in Figure 5 provided a heatmap of associations between RUL
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(remaining useful life) and other battery-related features. The heatmap reveals that RUL is
most strongly and positively correlated with features that reflect the battery’s operational
performance, such as discharge time, voltage decrement times, and capacity.

1000 A

Battery ID 1
Battery ID 2

950

900 4

850 1

Capacity (mAh)

800 1

750 4

0 50 101 150 200 250

0
Cycle Index

Figure 4. Capacity (mAh) degradation trends.

Table 2. Battery features.

Count Mean Std. Min. 25% 50% 75% Max.

Discharge Time (s)

Decrement 3.6-3.4V (s)

424 1078.29 86.84 881.33 1013.34 110211 1148.43 1029.43
424 199.77 57.31 83.99 147.99 210.0 238.99 281.0

Maximum Voltage Discharge (V) 424 3.82 0.02 3.77 3.80 3.82 3.84 3.85
Minimum Voltage Charge (V) 424 3.44 0.07 3.07 3.41 3.44 3.48 3.52
Time at 4.15V (s) 424 2370.30  333.15 3.38 212711 245443 2623.67 2947.42
Capacity (mAh) 424 898.27 72.36 734.07  844.06 918.0 956.59  1007.44
RUL

424 109.66 67.97 0 52.75 105.5 158.25 253.0

The existence of strong correlations with these performance metrics implies that
these characteristics are essential for estimating the battery’s remaining lifespan. A visual
representation of the relationship between the RUL and three selected features is provided
by the histograms in Figures 6-8. These visual distributions serve as an initial exploratory
analysis of the data, establishing a basis for subsequent statistical analyses that will quantify
the precise relationships between each feature and the RUL. They can be used as inputs
to predict RUL, as variations in capacity, voltage decrement time, and discharge time are
directly correlated with the health of a battery or RUL.

Abnormal data are eliminated using data cleansing and min—-max normalization to
enhance training, as it preserves the original data distribution, aside from a scaling factor,

and converts all data to the range of [0, 1]. The dataset is partitioned into training and test
sets in an 80:20 ratio, respectively [21]:

X — Xmin
Xscaled = —— . —- 4)
scate Xmax — X¥min
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Figure 7. RUL-related feature histograms: decrement 3.6-3.4 V (s).
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Figure 8. RUL-related feature histograms: capacity (mAh).
2.2. Feedforward Neural Network (FFNN)

To accurately estimate the remaining useful life (RUL) of lithium-ion batteries, we
employed a feedforward neural network (FFNN) architecture designed to leverage three
critical battery performance parameters—discharge time (s), decrement time within the
3.6-3.4 V interval (s), and capacity (mAh)—which are selected for their well-established cor-
relation with cycle aging in lithium-polymer cells. As shown in Figure 9, the FFNN consists
of an input layer with three neurons, two hidden layers that capture the nonlinear rela-
tionships among these features, and an output layer that yields the scalar RUL prediction.
This model was specifically chosen to align with the practical constraints of the application,
namely implementation on a resource limited embedded platform, i.e., the Raspberry Pi
RP2040 microcontroller, built around a dual-core Arm Cortex-M0+. The FFNN's architec-
ture is inherently well suited for TinyML applications due to its low computational and
memory footprint relative to more complex recurrent networks. This lightweight nature
enables real-time inference to be performed directly on the embedded hardware, without
reliance on cloud-based resources or specialized hardware accelerators. Moreover, the
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simplicity of the FFNN structure facilitates straightforward deployment and optimization,
which is essential for ensuring low-cost, low-power, and low-latency operation in industrial
battery management system applications [22].

R
A
AN
] R
A
: \ 5 N ,P
S
® .
o« L ®
Dat (
( Raw Data H Proc:s:ing J— .:71 : : ® Output Layer € R!
LR Battery RUL
\ ® ©
. ®
. .
™ T »
\ ‘ 7
Input Layer € R? : . Hidden Layer € R1?
v/,
o
Hidden Layer € R?
Figure 9. Feedforward neural network architecture.
The typical FFNN can be mathematically represented as
Yi = @o[Con(Buj + by) + bo], )

where u; € R3 is the input vector at cycle i, containing the discharge time, decrement
time, and capacity. Matrices B and C denote the learned weight matrices connecting the
input layer to the hidden layers and the hidden layers to the output layer, respectively.
Bias vectors by, and b, account for the biases in the hidden and output layers. Activation
functions ¢y and ¢, introduce nonlinearity and enable the network to approximate complex
mappings between input parameters and the battery’s RUL. y; € R! is the predicted
remaining useful life (RUL) of the battery at cycle index 1.

The rectified linear unit (ReLU) activation function in (6) optimizes and classifies
distribution over output classes:

0 forx<0

f(x) = max(0,x) = ,
x forx >0

(6)

During the training process, feedforward neural network models are constrained to
minimize the error represented by the mean squared error (MSE) cost function, which may
be stated as [23]

1 Y .
MSE = = ¥ (yk — )%, 7)
N k=1
1 A2
J(0) = 5 Baxympona |k — kllz + const, 8)

where N represents the number of training input—output pairings, where 5 denotes the
real output and yy signifies the model output. Equation (8) represents the loss function
J (), which measures the discrepancy between the model’s predictions and the true values
within the dataset. Specifically, it calculates the expected mean squared error (MSE) across
all input—output pairs (x,y) sampled from the empirical data distribution pq,¢,. The term
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Yk — Jx denotes the difference between the predicted output y; for the k-th sample and
its corresponding actual RUL g, with the squared Euclidean norm ||- ||% quantifying the
magnitude of this error. The factor } simplifies the computation of gradients during
optimization. Finally, the constant term does not influence the gradient-based updates but
may arise from certain normalization or regularization processes. Overall, this formulation
ensures that the training procedure minimizes the average prediction error, thereby aligning
the model’s parameters 6 to improve accuracy.

2.3. TinyML On-Device Neural Network Training

TinyML is a machine learning technique that integrates optimized machine learning
and embedded systems for performing on-device microcontroller analytics with low costs,
less energy, and low latency [24]. TinyML is broadly expanded as a wide range of intelligent
devices or applications, such as speech recognition mobile applications, object image
recognition, intelligent early warning, and preventive maintenance systems. This research
estimates the remaining useful life of the battery using the TinyML framework implemented
on the Edge Impulse platform, facilitating efficient feature extraction, neural network
algorithm design, machine learning model training, validation, testing, and optimization
for deployment on embedded devices [25].

Edge Impulse is utilized to establish a pipeline for forecasting the remaining useful
life (RUL) of a 3.7 V Li-Po battery. The model takes raw data as input and produces a scalar
value ranging from 0 to 253, indicating the remaining useful life cycles. The training is set to
1000 cycles, with a learning rate of 0.005, and utilizes the CPU for processing. Furthermore,
20% of the dataset is designated for validation to evaluate model performance, and a batch
size of 32 is established to optimize computational efficiency and memory utilization. The
model is additionally refined for edge deployment via int8 quantization, minimizing its
memory and processing requirements. The neural network architecture seen in Figure 9 is
constructed via the Keras Sequential API, enabling the sequential stacking of layers. The
architecture starts with two fully connected dense levels. The first dense layer comprises
20 neurons and utilizes the ReLU activation function, enabling the model to account for
nonlinearity and enhance gradient flow during backpropagation. The subsequent dense
layer comprises 10 neurons, employing ReLU activation. These layers facilitate the net-
work’s acquisition of intricate patterns in the data by adding learned weights to the input
and propagating it through the network. The final output layer is configured to provide a
singular class, rendering this architecture appropriate for forecasting the remaining useful
life (RUL) of a battery.

2.4. Model Performance Evaluation

The performance of the trained FFNN model will be evaluated using the testing
dataset, which consists of battery data not utilized in the training or validation phases.
Essential performance indicators will be computed to assess the precision and reliability of
the RUL estimates [26]:

*  Root Mean Squared Error: Assesses the average deviation between the predicted
values and the actual values of RUL. A lower RMSE indicates higher prediction
accuracy.

Y (i — Dx)?

RMSE =
MS N ,

©)
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¢  Mean Absolute Error: Indicates the average absolute discrepancy between the pre-
dicted and actual remaining useful life values. A reduced MAE indicates superior
predictive performance.

1 Y .
MAE = = Y |yk — %k, (10)
N =

e R-squared: An elevated R? value indicates a superior alignment of the model with the
data. N 5
R2—1_— Zk;l (]/k - y_k)z , (11)
Vi1 (k=)

3. Embedded AI Sensor for Real-Time RUL Estimation of UAV Batteries
3.1. Hardware Deployment

To manage and predict the remaining useful life (RUL) of a 3.7 V LiPo drone bat-
tery, an embedded Al sensor, shown in Figure 10, was developed using the SparkFun
Battery Babysitter integrated with a Raspberry Pi Pico RP2040 microcontroller. The Battery
Babysitter is a versatile battery management system designed for monitoring, charging,
and protecting single-cell lithium-polymer (LiPo) batteries with a nominal voltage of 3.7 V.
It combines multiple functionalities into a compact module, including charging, discharg-
ing, and power path management. The onboard charger, powered by the MCP73871 IC,
allows the battery to charge via USB or external sources while simultaneously powering the
load. It also features overcurrent, overvoltage, and undervoltage protection to ensure safe
operation. The module includes I2C communication capabilities for real-time monitoring
of battery parameters such as voltage, current, and charge—discharge status.

3.7 V Lipo UAV Battery Battery Babysitter

3.7 V Lipo Battery

Figure 10. Embedded Al sensor components.

The Raspberry Pi Pico enables real-time measurement of key battery parameters
through I12C communication, facilitating accurate RUL estimation using a trained TinyML
model. Additionally, the microcontroller supports Bluetooth communication, allowing
wireless data transfer and visualization on a laptop application. The data collected from the
Battery Babysitter were processed using machine learning algorithms on the Raspberry Pi
Pico, predicting battery remaining useful life based on observed discharge time and voltage
decay time and capacity. This integrated system provides a comprehensive and efficient
solution for battery monitoring and RUL estimation. The custom-developed LabVIEW
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application on the laptop was structured using state machine architecture to manage the
reception, processing, and visualization of RUL data transmitted via Bluetooth BLE from
the UAV.

The drone depicted in Figure 11 is a quad-rotor UAV equipped with the ESP32-52 Wi-
Fi module, facilitating remote control via a mobile application. The main control board is
equipped with necessary sensors for core flight operations, including altitude and stability
control. The quad-rotor arrangement utilizing 8520 DC motors and 140 mm CW/CCW
propellers ensures efficient propulsion, with gear reduction devices enhancing torque while
decreasing the propeller’s revolutions per minute (RPM).

é\?

5

Q¥

&5

Figure 11. A quad-rotor UAV with RUL LiPo battery-embedded Al sensor.

3.2. Software Development

The flowchart in Figure 12 illustrates the process of a C/C++ implementation on a
Raspberry Pi Pico RP2040 W, which initializes and manages a battery monitoring system
using a Babysitter BQ27441 battery gauge integrated with Edge Impulse’s TinyML frame-
work to estimate the battery’s remaining useful life (RUL) using three features. The system
starts by initializing variables, serial communication, Bluetooth, and the battery gauge
configuration. It then reads battery data and normalizes the sensor data to assign relevant
features for the RUL estimation model. If the sensor data pass a validation check, the
FFNN model runs the RUL estimation process. The model inference is further checked for
successful execution, and if all conditions are met, the estimated RUL and battery data are
transmitted via Bluetooth to the LabView application on the laptop. Any failure in sensor
validation or inference triggers an error message to be sent through the serial interface.

The graphical user interface (GUI) of the LabVIEW application in Figure 13 provides
intuitive controls and displays for users. It includes buttons for starting/stopping data
collection, configuring VISA resources for Bluetooth serial communication, and displaying
battery parameters such as state of charge (SOC), state of health (SOH), capacity and the
estimated RUL. The GUI ensures ease of interaction and efficient monitoring of RUL and
battery performance in real time.
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The application architecture is designed as a state machine [27,28]. As depicted in
Figure 14, the process begins in the “Init” state, during which the system configures the
serial port for communication via the VISA protocol. The program subsequently enters
the “Wait” state, during which it monitors for input from users. Upon activating the
“Read Data” button, the application transitions to the “Read Data” state, where it acquires
battery metrics from the hardware through Bluetooth communication, processes the data
(e.g., converting it from strings to numerical values), and verifies for any faults, resetting
indicators as required. The data are subsequently transmitted to the “Display” state, where
real-time battery metrics, including RUL and SOH, are refreshed on the GUI. The “Exit”
state manages the application’s termination upon the user’s activation of the exit button. It
ensures appropriate cleanup by flushing the I/O buffer, closing the VISA connection, and
stopping the program. The modular state machine architecture facilitates explicit event
management and logical advancement, guaranteeing the system effectively handles duties
such as serial connection, data processing, and real-time display. This design is scalable
and robust, rendering it ideal for battery monitoring and remaining useful life estimation
in UAVs.

VISA configure Press :
Serial port Read data button
A
([ Wait

Press :
Exit button

) A 4

1000 msec Event time out :
VISA read
. VISA write

Read data
indicators
rue

T
Read buffer
String to number

Save array data
Display indicators

VISA flush I/O buffer
VISA close
Stop running

Figure 14. RUL LabView events trigger state machine diagram.

The LabVIEW block diagrams depict a state machine-based implementation for a real-
time battery monitoring application, emphasizing remaining useful life (RUL) estimation.
In the initialization state, the VISA protocol is configured to facilitate serial Bluetooth
communication with the hardware. This state ensures the initialization of all requisite
parameters, including baud rate and port configurations, so preparing the system for
seamless operation. The wait state manages event-driven functions. The timeout event in
Figure 15 ensures periodic data verifications, during which the system executes operations,
including reading from and writing to the serial buffer every 1000 milliseconds. The read
data event in Figure 16 is triggered when the user presses the “Read Data” button.
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During this event, data are extracted from the serial buffer, transformed into a us-
able format, and prepared for display or additional analysis. The exit event in Figure 17
is activated when the user presses the “Exit” button, initiating a systematic termination
procedure. This involves flushing the I/O buffer, closing the VISA connection, and con-
figuring the system for shutdown, ensuring no residual tasks persist. In the display state
in Figure 18, the processed data, including battery capacity, state of health (SOH), and
remaining useful life (RUL), are refreshed on the graphical user interface, offering real-time
feedback to the user. Ultimately, the exit state ensures systematic termination of the ap-
plication by executing cleanup operations, including shutting all processes and closing
resources. The LabVIEW application, integrating an embedded Al sensor, offers a reliable
and effective solution for real-time remaining useful life assessment of lithium-polymer
batteries. The system guarantees modularity and reliability by employing a state machine
architecture with clearly specified states. The user-friendly interface facilitates effortless
interaction, while real-time data visualization provides precise monitoring of essential
battery parameters.
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Figure 15. LabView block diagrams: wait state and timeout event.

[ "wait", Default ~P|

5 (2] "Read Data”: Value Change H——| 7 i@
= 7000 Read Data Iwait =
=4
> o
VISA Close

=

Sovres
7T Tooe
Time
VISA Resource CtRef
Olgval
NewVal

Time Dela

P Dslay Tims (s)

Iz :

Figure 16. LabView block diagrams: wait state and read data event.



Sensors 2025, 25, 3810

17 of 28

{ "wait". Default -}
= { [1] "Exit Button": Value Change ~p—— & ot
[init}-= 1000 exit =
>
VISA Close
=
o
VISA Resource - Exit Button
1
[0

Figure 17. LabView block diagrams: wait state and exit event.

e solay” 7]
i 4 True 't
|G}
R, 3"’"" t E
Fract/Exp String To Number IE Capacity (mAh)
Match Pattern = | Indié An.%“
] o | )
v R, = o E Waveform socC VISA Close
[ il = e T
SOH
VISA Resource 1 Estimated RUL
D) ¥DBL]
= Est. RUL
3 L
4 Est. RUL
0.001 |12 i)
- [Volts W)
1¥3EL ]|
1 Time Delay
b Dalay Tims (2)
(0]

Figure 18. LabView block diagrams: display state and read data event.

4. Results and Discussion
4.1. Model Training and Testing Results

A feedforward neural network (FFNN) employing a multi-layer perceptron regressor
was utilized to estimate a target remaining useful life (RUL) variable. The model is defined
with specific hyperparameters, such as a ReLU activation function, an Adam optimizer
for enhancement, and multiple hidden layers. The training procedure is time-constrained,
and predictions are generated on the test data (Xiest) after the model has been fitted to
the training data (Xirain, Yirain). Performance metrics, including R-squared, root mean
squared error (RMSE), and mean absolute error (MAE), are computed and documented.
The model attained an R-squared value of 89.14%, an RMSE of 24.17, and an MAE of 17.62,

as illustrated in Figure 19.
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Figure 19. Feedforward neural network (FFNN).

4.2. TinyML FENN Neural Network Optimized Model Training and Testing Results
4.2.1. FFNN Neural Network Model Optimization

In this study, five optimized TinyML feedforward neural network (FFNN) models
were trained and evaluated for a battery remaining useful life (RUL) prediction task, with
a focus on model size, accuracy, and computational efficiency. Model 1, with a simple
structure of Dense(20) — Dense(10) layers using only three input features, achieved the best
overall performance, recording a loss of 57.24, a mean absolute error (MAE) of 5.83, and an
explained variance score of 0.99. It also demonstrated the lowest memory usage (1.2 kB
RAM, 11.0 kB flash) and fastest inference time (2 ms), making it highly suitable for resource-
constrained devices like the Raspberry Pi RP2040. Models 2 and 5, which employed a larger
architecture with Dense(40) — Dense(20) neurons and dropout regularization, achieved
similar variance scores but slightly higher memory consumption (11.8 kB flash). Model 4
exhibited slightly worse performance with a higher loss (70.00), while Model 3 performed
poorly overall with a loss exceeding 14,000 and was deemed unsuitable for deployment.

Based on the comparative results in Table 3, Model 1 is recommended for deployment
in embedded TinyML systems due to its optimal balance of accuracy, size, and speed. Its
minimal resource demands and robust predictive ability make it ideal for real-time RUL
estimation on ultra-low-power platforms. In contrast, Model 3 should be discarded due
to ineffective learning and inefficient memory use. Future work may involve fine-tuning
hyperparameters and applying advanced feature engineering techniques to further enhance
performance while maintaining the lightweight profile essential for embedded applications.

Figure 20 illustrates the results of training a feedforward neural network (FFNN)
model with the Edge Impulse platform. The degree of variation between expected and
actual values is reflected in the key metrics of a mean squared error (MSE) of 57.24 and
a mean absolute error (MAE) of 5.83. The explained variance score of 0.99 indicates the
model’s remarkable ability to account for data variability, underscoring its robust predictive
efficacy. The training loss is recorded at 57.24, corresponding with the MSE, indicating
consistent model convergence. Green dots indicate correct regression predictions and red
dots indicate faulty predictions based on a threshold (maximum absolute regression error
of 25.3) in the graphical data explorer. The model is efficient for embedded devices with an
inference time of 2 ms, peak RAM consumption of 1.2 KB, and flash memory utilization of
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11 KB. Ideal for real-time applications, this compact and quantized model is accurate and
resource-efficient.

Table 3. Model structure and performance summary.

Model  Neural Network Architecture (]]\“/;); ;) MAE  Variance Latency 11;211; Slsaa;he

Model 1  Dense(20)-Dense(10)-Output(1) 57.24 5.83 0.99 2ms 1.2 kB 11.0kB

Model 2 Dense(40)-Dense(20)-Dropout(0.5)- 57.59 5.77 0.99 2 ms 1.2 kB 11.8 kB
Output(1)

Model 3 Dense(20)-Dense(10)-Dense(5)- 14,218 98.36 0.00 6 ms 1.4 kB 11.3 kB
Dropout(0.25)-Output(1)

Model 4 Dense(20)-Dense(10)-Dropout(0.25)- 70.00 6.73 0.99 2 ms 1.2 kB 11.1 kB
Output(1)

Model 5 Dense(40)-Dense(20)-Dropout(0.5)- 57.59 5.77 0.99 2 ms 1.2 kB 11.8 kB
Output(1)

The red spots denote the training loss, whereas the blue line indicates the validation
loss in Figure 21. Initially, the loss values are very high, indicating significant errors in
predictions at the start of training. However, both losses decrease rapidly during the
early epochs, demonstrating effective learning by the model. Around 500 epochs, the loss
values plateau, reaching a consistent and low range, suggesting convergence of the model.
The model’s ability to generalize well with minimal overfitting is suggested by the close
alignment of the training and validation loss curves.

LOSS MEAN ABSOLUTE ERROR EXPLAINED VARIANCE SCORE

57.24 5.83 0.99

Data explorer (full training set)

Maximum absolute regression error is 25.3, set thresholds.

O regression - correct
@ regression - incorrect
QI
o ) =
© (%Q\FP o8
h ) Qo\ [©)

On-device performance Engine:

INFERENCING TIME PEAK RAM USAGE
2 ms. 1.2K

Figure 20. Training performance and data explorer.
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Figure 21. Training and validation loss.

4.2.2. FFNN Neural Network Testing Results

This performance underscores the model’s capacity to perform consistently on unseen
data and the efficacy of the training process. Figure 22 displays the testing results of a
machine learning regression model, with the model version specified as quantized (int8).
Figure 23 illustrates the comparison between the actual remaining useful life (RUL) and
the estimated RUL from the model testing. In the scatter diagram, the relationship between
the estimated RUL values and the actual RUL values is illustrated. The red dashed line
represents the ideal prediction where the estimated RUL matches the real RUL perfectly.
The proximity of data points to the red line indicates the accuracy of the prediction model.
The model testing results indicate an overall accuracy of 98.82%, alongside a mean squared
error (MSE) of 55.68 and a mean absolute error (MAE) of 5.38.

Model version: Quantized (int8) v

] ACCURACY MEAN SQUARED ERROR MEAN ABSOLUTE ERROR
' 98.82% 55.68 5.38

Feature explorer

O regression - correct
@ regression - incorrect QO-

Figure 22. Testing result data explorer.
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Figure 23. Scatter plot of estimated RUL testing results.

Table 4 presents the deployment testing results for a TinyML model optimized for
real-time applications. Two model versions are compared: a quantized (int8) version
and an unoptimized (float32) version, both deployable via the Arduino library and the
EON™ Compiler on ARM-based embedded platforms. While both models exhibit identical
accuracy at 98.82% and consume the same amount of RAM (1.2 KB), the quantized model
achieves a significantly lower inference latency of 2.0 ms compared to 10.0 ms for the
unoptimized counterpart. Flash memory usage is also comparable, with 11.0 KB for the
quantized model and 10.7 KB for the unoptimized version. These findings highlight the
primary benefit of quantization in latency reduction, making the quantized model more
suitable for time-sensitive, resource-constrained embedded systems. The results confirm
the effectiveness of the EON™ Compiler in delivering high-performance, low-latency
models without sacrificing predictive accuracy.

Table 4. On-device performance comparison between quantized (int8) and unoptimized (float32)

versions.
Quantized (int8) Unoptimized (float32)
Latency 2.0 ms 10.0 ms
RAM 12K 12K
Flash 11.0K 10.7 K
Accuracy 98.82% 98.82%

4.3. Embedded Al Sensor for Real-Time RUL Estimation Results

Figure 24 illustrates the experimental setup and results of the remaining useful life
(RUL) estimation system for a lithium-polymer (LiPo) battery used in an unmanned aerial
vehicle (UAV). The image shows a functional UAV equipped with a Raspberry Pi RP2040
microcontroller, which processes real-time battery sensor data and predicts the RUL using
an embedded feedforward neural network (FFNN) model. The predictions are transmitted
via Bluetooth to a laptop running a LabVIEW application with a state machine architecture.
The LabVIEW interface displays key battery parameters such as capacity, state of health
(SOH), and RUL in real time, offering a user-friendly visualization of the battery’s perfor-
mance. Validation experiments were conducted on an 80 g UAV powered by a 1100 mAh
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LiPo battery. The results were obtained using the input features processed on a Raspberry
Pi Pico RP2040 W, running a trained FFNN (feedforward neural network) model.

Figure 24. RUL estimation experiment.

In this study, the remaining useful life (RUL) of the UAV’s LiPo battery is estimated
during in-flight operation, following a full charge and UAV takeoff. The embedded Al
module continuously acquires real-time data on battery capacity, discharge time, and
voltage decay time throughout the flight mission. Notably, RUL estimation is conducted in
real time rather than post-operation, enabling immediate insight into battery health. It is
important to emphasize that the predicted RUL values are considered valid only within
the operating voltage range of 2.70 V to 2.799 V, which has been empirically validated and
is traceable within the LabVIEW-based monitoring environment. This constraint ensures
both the accuracy and operational reliability of the RUL predictions under embedded
deployment conditions.

The feedforward neural network (FFNN) model demonstrates exceptional accuracy
and consistency in estimating the remaining useful life (RUL) of UAV LiPo batteries under
real-time conditions obtained from the LabVIEW-based monitoring system, as presented
in Table 5. The experimental setup involved two distinct LiPo batteries (Battery 1 and 2),
representing high and medium RUL ranges, respectively. The model achieved a mean
absolute error (MAE) of 3.46 cycles, a root mean squared error (RMSE) of 3.75 cycles, and
a coefficient of determination (R?) of 0.9977. The average prediction error of 0.80 cycles
indicates a slightly conservative estimation, which is generally favorable in safety-critical
applications. These accuracy metrics from the experimental results are marginally superior
to those obtained from the model testing phase. It is important to note that the experimental
results were derived from only 30 real-time data points, while the model testing results
were based on a broader test dataset comprising 20% of the entire dataset, which spans a
wider RUL range.
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Table 5. Real-time RUL estimation of UAV LiPo battery records.
Estimated
Batt. No. Test No. RUL Actual RUL SOH (%) SOC (%) Volts (V)
1 1 231.7 231 94 0 2.722
1 2 228.86 230 94 0 2.720
1 3 226.96 229 94 0 2.728
1 4 226.01 228 94 0 2.721
1 5 225.06 227 94 0 2.725
1 6 223.16 226 94 0 2.727
1 7 220.31 225 94 0 2.723
1 8 217.46 224 94 0 2.720
1 9 216.51 223 93 0 2.726
1 10 214.61 222 93 0 2.733
2 1 78.82 74 83 0 2.775
2 2 77.52 73 83 0 2.766
2 3 75.97 72 83 0 2.732
2 4 74.07 71 83 0 2.745
2 5 73.12 70 83 0 2.748
2 6 72.17 69 83 0 2.721
2 7 71.22 68 83 0 2.719
2 8 70.27 67 82 0 2.778
2 9 69.32 66 82 0 2.793
2 10 68.37 65 82 0 2.765
2 11 54.13 57 81 0 2.760
2 12 53.18 56 81 0 2.788
2 13 52.23 55 80 0 2.751
2 14 51.28 54 80 0 2.723
2 15 50.33 53 80 0 2.773
2 16 49.38 52 80 0 2.798
2 17 47.48 51 80 0 2.739
2 18 45.57 50 80 0 2.758
2 19 44.63 49 79 0 2.734
2 20 51.28 48 79 0 2.747

4.4. Performance Comparison with Related Work

The K-Nearest Neighbor (KNN) Regressor was employed to predict a remaining
useful life (RUL) variable [29]. The model is initialized with n_neighbors set to 3, indicating
that it takes into account the three closest neighbors for regression. Performance metrics,
including R-squared, root mean squared error (RMSE), and mean absolute error (MAE),
are computed for evaluation after predictions are generated using test data (Xtest). The
measurements, accompanied by temporal information, are recorded in a DataFrame. The
model achieved an R-squared score of 66.16%, with a root mean square error (RMSE) of
42.65 and a mean absolute error (MAE) of 29.04, as illustrated in Figure 25.

The objective remaining useful life (RUL) variable was forecasted using the Ran-
dom Forest Regressor [30]. The model is initialized using many hyperparameters:
n _estimators = 100 (indicating 100 decision trees), max _features =’sqrt’, and more con-
figurations, including bootstrap = True, to utilize bootstrapped datasets. The model is
trained using Xiain and Yi,in, and the training duration is documented. Using the test data
(Xtest), predictions are generated, and evaluation metrics such as R-squared, root mean
squared error (RMSE), and mean absolute error (MAE) are calculated. Figure 26 presents
an R-squared score of 63.62%, an RMSE of 44.22, and an MAE of 30.08.

Figure 27 presents a comparison matrix assessing three models, FFNN, KNN, and
Random Forest, according to their scores (R-squared), RMSE, MAE, and computational
times. FFNN has superior performance with an R-squared of 0.8913, the minimal RMSE of
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24.17, and the lowest MAE of 17.62, establishing it as the most precise model. Nonetheless,
its training duration is considerably greater at 9.64 seconds, rendering it less computation-
ally efficient. KNN exhibits middling performance, attaining an R-squared value of 0.6616,
although it is the most rapid in both training and prediction, with an overall runtime of
merely 0.0063 seconds. Random Forest exhibits a little reduced R-squared value (0.6362)
relative to KNN, alongside the greatest RMSE (44.22) and MAE (30.08) with an overall
runtime of 0.209 seconds. In summary, FFNN excels in accuracy, whereas KNN is superior
in speed.
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Figure 25. K-nearest neighbors (KNNs).

250 Linear Fit
Predicted
200
150
5
a4
100
50
0
200 250 300 350 400
Cycle Index

Figure 26. Random Forest.
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Score RMSE MAE Training Time Prediction Time Total Time

FFNN 0.891381 9.642456 0.001554 9.644010

kNN 0.661615 0.002169 0.004096 0.006265

Random Forest JUCE{VEY) 0.174225 0.034817 0.209042

Figure 27. RUL estimation performance comparison.

The selection of FFNN, Random Forest Regressor, and kNN was intended to provide a
balanced comparison between neural and non-neural models with differing computational
complexities. FFNN was chosen for its simplicity and suitability for deployment on
embedded platforms with limited resources, such as the Raspberry Pi RP2040. In contrast,
Random Forest and kNN serve as robust, widely used non-deep learning baselines. This
combination enables a meaningful evaluation of trade-offs between model accuracy and
deployment feasibility in real-world battery management applications.

4.5. Challenges and Potential Improvements

While the proposed TinyML-based framework demonstrates promising real-time RUL
estimation performance on a resource-constrained embedded platform, several challenges
remain. The use of a compact feedforward neural network (FFNN) was necessary to ac-
commodate the strict memory and computational limitations of the Raspberry Pi RP2040
microcontroller. However, more sophisticated architectures, such as long short-term mem-
ory (LSTM) networks, could potentially capture temporal dependencies in degradation
patterns more effectively, offering improved prediction accuracy. The current hardware
platform’s limited RAM, flash storage, and processing capabilities restrict the deployment
of such complex models. Future work may explore the integration of optimized LSTM
variants, model compression techniques, or hardware accelerators to overcome these limita-
tions. Additionally, advancements in lightweight neural architectures specifically tailored
for TinyML applications could further enhance the precision and robustness of real-time
RUL prediction systems for UAV battery monitoring.

5. Conclusions

This study proposes an embedded TinyML-based framework for real-time estimation
of the remaining useful life (RUL) of lithium-polymer (LiPo) batteries in unmanned aerial
vehicles (UAVs). By integrating sensor data fusion with a lightweight feedforward neural
network (FFNN) model optimized via the Edge Impulse platform, the system successfully
addresses the computational constraints of low-power embedded devices. Experimental
evaluations conducted on an 80-gram UAV equipped with a 1100 mAh LiPo battery demon-
strate that the proposed framework achieves a mean absolute error (MAE) of 3.46 cycles
and a root mean squared error (RMSE) of 3.75 cycles. Model testing further confirms the
robustness and precision of the approach, yielding an overall accuracy of 98.82%, a mean
squared error (MSE) of 55.68, a mean absolute error (MAE) of 5.38, and a variance score
of 0.99. Regarding embedded deployment performance, the quantized (int8) version of
the model achieves an inference latency of just 2 ms, with memory utilization limited to
1.2 KB RAM and 11 KB flash, highlighting its suitability for real-time RUL estimation on
resource-constrained microcontrollers such as the Raspberry Pi RP2040. Overall, the results
validate the feasibility and effectiveness of combining embedded sensor data fusion and
TinyML techniques to enable accurate, low-latency, and resource-efficient RUL prediction
for UAV battery health monitoring. Future work will aim to enhance the framework further
by investigating advanced lightweight architectures, such as optimized LSTM networks, to
improve temporal feature extraction under embedded system limitations.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

CNNs Convolutional Neural Networks

DCNNs  Deep Convolutional Neural Networks

DNNs Deep Neural Networks

EON™  Energy-Efficient On-Device Inference Compiler

EV Electric Vehicle

FDA Functional Data Analysis
FFNN Feedforward Neural Network
GUI Graphical User Interface

IoT Internet of Things

KNN K-Nearest Neighbor

LiPo Lithium-Polymer Battery

LTCNs Lightweight Temporal Convolutional Networks
LST™M Long Short-term Memory

NASA National Aeronautics and Space Administration
MAE Mean Absolute Error

MSE Mean Squared Error

PF Particle Filter

ReLU Rectified Linear Unit

RMSE Root Mean Squared Error

RUL Remaining Useful Life

S0C State of Charge

SOH State of Health

UAV Unmanned Aerial Vehicle

VISA Virtual Instrument System Architecture
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