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Abstract: To enhance the signature of an extended target in a SAR image, a robust waveform
design method is presented for spectrally dense environments. First, the problem is
formulated by maximizing the worst-case signal-to-clutter ratio (SCR) over the uncertainty
set of statistics for both target and background scattering characteristics, subject to energy,
similarity, and spectrum constraints. Second, the closed-form solutions for the uncertain
statistics are derived. The problem of maximizing worst-case SCR is boiled down to a
nonconvex fractional quadratically constrained quadratic problem (QCQP). Resorting
to the Dinkelbach’s algorithm and Lagrange duality, the QCQP is split into a series of
solvable semidefinite programming problems. A convergence analysis is conducted, where
a sufficient condition for global convergence is derived. Finally, numerical examples are
presented to demonstrate the performance of the proposed scheme.
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1. Introduction

Synthetic aperture radar (SAR) is an active microwave imaging technique and can
provide high-resolution images independent from daylight and weather [1,2]. The opti-
mization of transmit waveforms is a longstanding issue, requiring high resolution and
sidelobe suppression under point target assumptions. Based on the spectrum shape, they
can be mainly divided into three categories: linear frequency modulation (LEM), stepping
frequency (SF), and nonlinear frequency modulation (NLFM).

The LFM waveform with the rectangular spectrum shape has been widely utilized
in practical SAR systems. With a large time-bandwidth product, simple generation, and
good Doppler tolerance, it achieves desired point-like target detection performance, as
demonstrated by a good shape of correlation function (CF) with a narrow main lobe and
sidelobe level up to —13.3 dB [3]. Also, to pursue high resolution for a point target, the SF
waveform usually has a wide band width, whose frequency changes in the way of off-walk.
The main idea is to divide the large-bandwidth signal into multiple transmissions, thereby
reducing the instantaneous bandwidth of the system [4,5].

The NLFM waveform shapes the power spectrum such that the CF exhibits reduced
sidelobes. No additional filtering is required, so that the signal-to-noise ratio (SNR) degra-
dation can be avoided [6]. Jin et al. [7] reported a novel waveform optimization framework
where an advanced NLFM waveform with lower sidelobes and a higher SNR of 1.29 dB
was constructed. In [8], the authors proposed a scheme with reciprocating NLFM for the
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quasi-orthogonal waveform design, and the sidelobe peak level of the optimized waveform
was reduced by 5.5-9.5 dB.

The above SAR waveform designs are oriented to a desired CF with a narrower mainlobe
and lower sidelobes. Although these properties are basic conditions for SAR to provide
an image with more details, the pursuit of point-like target detection performance does not
indicate a desired imaging quality for extended targets. The returns of extended targets are not
the scaled and attenuated version of the transmit waveform, but its convolution with the target
impulse response (TIR) [9-12]. Moreover, with continuing advances in resolution, targets
can occupy multiple resolution cells of the sensor, giving rise to more than one measurement
per time step. The point target assumption no longer holds in such scenarios [13]. Thus,
specifically designed waveforms for extended targets are needed [14]. Moreover, as SAR
usually desires a wide bandwidth to guarantee high resolution, the coexistence of wideband
systems with other radio frequency transmitters becomes a serious issue. For these reasons, it is
of great importance to study the waveform design problem in spectrally dense environments.

Although the work for SAR waveform designs is rarely reported in the literature for
extended targets, there have been a multitude of studies for other radar systems, which can
be divided into three categories based on the optimization criterion: signal power [15,16],
information theory [17,18], and ambiguity function [19,20]. Among them, the power-based
criterion is widely used in waveform optimization, as it facilitates signal modeling and
enhancement of weak target scattering.

Based on the scattering model, the power-based methods can be classified into
two groups: deterministic and stochastic extended targets, considering the TIR as de-
terministic and random processes, respectively.

*  Deterministic target model

In [21], a joint transmit-receive optimization approach was proposed to facilitate the
optimal detection of a deterministic target, by maximizing the output signal-to-interference
plus noise ratio (SINR). This approach has been further applied for target identification
through waveform optimization [22,23]. Both the SNR and mutual information criteria were
employed in [24] for waveform design, to improve the performance of a closed-loop radar
system for known TIR target recognition purposes. Furthermore, the waveform optimiza-
tion framework provided in [21] was generalized to benefit multiple-input multiple-output
(MIMO) radar performance [25]. This technique is not guaranteed to converge on an opti-
mal solution, while the method in [26] sequentially improves the SINR for a known TIR in
signal-dependent interference, with a proof for convergence. Similarly, an iterative algorithm
maximizing the SINR as a waveform design figure of merit was developed to improve the
detection performance of a deterministic target in [27], and the methodology was further applied
to [21], with significantly improved performance compared to the chirp signal.

®  Stochastic target model

Considering that TIR is sensitive to the line of sight, it is relaxed to an uncertainty
set or a random vector, leading to a stochastic target model that is more general than the
deterministic one [12,26,28-31]. A novel iterative algorithm was proposed to optimize the
waveform and receiving filter such that the detection performance could be maximized,
under the case with knowledge of only the statistics or the uncertainty set of the TIR [26].
A robust design method to jointly optimize the radar transmit code and receive filter
was proposed in [28] with two different uncertainty sets by exploiting the SINR at the
receiver end. Based on the stochastic model of TIR, Yao et al. developed robust design
methods to optimize the detection of extended targets in the presence of signal-dependent
interference [29], where the lowest SINR was considered as the performance measure of
the system. The design method was extended in [30], where two iterative optimization
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schemes were developed to optimize the average and worst-case SINR. With the partially
known TIR falling into an uncertain set, a novel waveform design method was developed
in [31], where SINR was formed as the objective function, subject to the peak-to-average power
ratio constraint. Xu et al. [12] further generalized the work in [31] to the signal dependent
interference environment, and the designed waveform-filter pair was shown to be more robust.

Moreover, the extended-target waveform design with a spectral constraint has at-
tracted a lot of interest in recent years, given the emergence of new wideband and ultra-
wideband radar systems with a strong demand for spectra.

According to the analysis in [32], an optimization design method for phase-only
waveform synthesis involving spectrally dense environments is proposed assuming that
SINR is the figure of merit. Unlike existing approaches which design the waveform for a
single target via output SINR maximization [33], a spectrally compatible waveform design
for MIMO radar in the presence of multiple targets and signal-dependent interference
was studied in [34]. Similarly, Aubry et al. considered the design of radar waveforms
in a spectrally crowded case [35], and the waveform performance was studied in terms
of a trade-off among the achievable SINR, spectral shape, and autocorrelation function.
In [36], a new technique for constant modulus waveform synthesis specifically designed
for spectrally dense environments was proposed, using SINR as the performance metric.
Furthermore, to improve multiple targets’ detectability under spectral constraints, the
joint design of a MIMO radar transmit waveform and receive filter was studied in [37].
In [38], the distribution of output SINR was derived, and a novel waveform design method
was proposed to improve detection performance. A robust joint design of the radar code
and receive filter bank guaranteeing spectral compatibility was studied in [39], where the
average SINR was considered as the performance measure. In [40], Ding et al. introduced
the multi-group optimization problem of MIMO radar by optimizing the output signal-to-
clutter-noise ratio (SCNR) with the spectrum constraint via a cyclic algorithm.

The incorporation of robustness usually results in a highly complex max—min frac-
tional optimization problem with nonconvex quadratic constraints, making conventional
optimization approaches inapplicable or inefficient. In this paper, a customized algorithm
is developed to tackle the fractional non-convex optimization problem arising from robust
waveform design, combining a closed-form solution for minimization subproblems with
iterative semidefinite programming (SDP) solving based on Lagrange duality and the
Schur complement. The problem is formulated as maximizing the worst-case SCR over
the uncertain set of statistics, subject to energy, similarity, and spectral constraints. To
solve the complicated problem with coupled max—min operators, a customized procedure
with polynomial-time complexity is proposed. A closed-form solution for the statistics is
derived, such that the problem is boiled down to a nonconvex fractional quadratically con-
strained quadratic problem (QCQP). The Dinkelbach’s algorithm is applied to decouple the
fractional objective function into a quadratic function. Followed by the Lagrange duality,
the QCQP is tackled by solving a series of SDP problems. The convergence is guaranteed
by the solving method, and a sufficient condition for global convergence is also provided.
As demonstrated by computer simulations, the robust SAR waveform ensures the SCR of
extended targets to be sufficiently high for any statistics in the uncertainty class and also
allows other radiators to coexist in spectrally crowded environments.

The rest of this paper is organized as follows. Section 2 provides the signal model and
formulates the constrained optimization problem for robust SAR waveform design. In Section 3,
the solving procedure is customized, followed by the convergence and complexity analysis.
Numerical results are presented in Section 4, and conclusions are drawn in Section 5.

Notation: Throughout this article, matrices are denoted by bold uppercase letters
and vectors by bold lowercase letters. C and CN represent the set of complex and
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N-dimensional complex column vectors, respectively. The N x N complex Hermitian
space is denoted by HN. R(A) denotes the range space of the matrix. A(!) is the pseudo-
inverse of A, and A~! represents the inverse of A. 1 and I are the all-one and identity

matrices. The superscript () represents the Hermitian transpose. || - || and || - ||, denote

I
the Euclidean norm and the Frobenius norm. tr[-] and E[-] represent the trace of a matrix
and expectation operation, respectively. V and L represent the differential operator and
Lagrange function, respectively. The notation A = B and A > B means that A — B is posi-
tive semidefinite and positive definite, separately. Finally, for any optimization problem P,

V(P) and S(P) represent its optimal value and the set of optimal solutions, respectively.

2. Problem Formation

Without loss of generality, the extended target TIR G(t) is modeled as a general
stationary random process, and it interacts with the transmit waveform x(t) to generate
a scattering signal. Corrupted by background scattering B(t) and noise N(t), the signal
received from G(t) is [28]

Y(t) = G(t) ® x(t) + B(t) ® x(t) + N(t). 1)

where ® is the convolution operator. In discrete form, by using Toeplitz matrix construction
to implement the convolution operator, we have

y = Gx+Bx+n, ()

where G and B are Toeplitz matrices formed by discretizing G(t) and B(t), respectively,

and x, y, n € CN are discrete samples of x(t), Y(t), and N(t), respectively. Suppose that

G(t), B(t), and N(t) are statistically independent, and then the SCR of a SAR range line is
ExHGHGXx] xHRgx

E[xHBHBx]  xHRgx’ ®)

where Rg = E[GHG] and Rp = E[B/B] are correlation matrices involving the second-order
statistics of G(t) and B(t), respectively. In our previous work [18], a joint design method for
SAR waveform and filters was proposed based on maximizing MI, which achieved better
detection performance by utilizing greater freedom resulting from range and azimuth filters.
However, it is more sensitive to the accuracy of prior information, and its performance
degrades with prior mismatch. To this end, we focuses on a robust waveform design under
an uncertainty set of statistics for both target and background scattering characteristics,
which ensures a high signal-to-clutter ratio (SCR) for any priori information within the
uncertainty set. Due to the estimation error of statistics, the actual Rg and Rp are not
known exactly, so they lie in an uncertain region, i.e., [26,41,42]

||RG - R, ||12t <é¢;and HRB Ry ||12D < &g, (4)

where Rg and Rp are the nominal correlation matrices, and ¢ ¢ and ¢, are parameters used
to control the size of the uncertain set. The worst-case SCR regarding uncertain Rg and Rg
is given by

. xHRgx
1{2,11?3 xHRpx
Py [ —Re|? <,

s.t .
IRy — R [ <&,
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To prevent poor resolution, significant modulus fluctuation, or even unrealizability,
appropriate constraints must be introduced into the optimization process. Firstly, the
energy of a transmit waveform is limited, i.e., xHx < E, with maximum allowable energy
E. With preferred wideband and low sidelobe properties, a similarity constraint with a
chirp signal x, is introduced as

Ix=x,[5 <& 5)

where ¢ is the similarity parameter. Moreover, wideband emissions often overlap with
other radio frequency systems, necessitating spectral constraints to ensure coexistence.
Concerning licensed systems coexisting with the radar of interest, it is supposed that each
of them is operating over a frequency band Q; = | ff A1 a=1,...,Q, with ff and f;
denoting the lower and upper normalized frequencies for the g-th radiator, respectively.
The spectral constraint is then expressed as

XHRIX < Ep (6)

with R} = 25:1 740, where the (m, [)th entry of Q is given by

exp{j27ef (m — 1)} — exp{j2fl (m — 1)}
Q1) = 7 7 %

A= flm=

for (m,1) € {1,...N }2 [35,39]. Note that 7, > 0 are the coefficients given to differ-
ent systems, and E; denotes the maximum energy of allowed interference tolerated by

other radiators.

In practical engineering applications, the estimation of the statistical characteristics
of target scattering inevitably involves certain errors. When there is a mismatch between
the prior information and the actual application scenario, it often results in performance
degradation. To enhance system robustness, we adopt the criterion of maximizing the
worst-case SCR, which improves tolerance to errors in prior information and ensures more
reliable performance under uncertain sets. Robust waveform design aims at determining x
so0 as to maximize the SCR, while the worst-case cost is minimized under all possible Rg
and Rg. Collecting all constraints, the robust design problem of x is finally formed as

. XHRGX
max min —
x Rg,Rp X"Rpx
xHx < E,
2
Pl | Ix-xli<e

s.t.d xIRx < Ej

IR — Rg |7 < e,

IRs — Rz <,

3. Solving the Problem
3.1. Algometric Procedure

Due to the complicated max—min form coupled with a quadratic fractional objective
function, it is not easy to find a desired solution through the existing optimization algo-
rithms for P;. In this section, we devise a customized method to enhance the worst-case
SCR over the uncertain region in presence of multiple practical constraints. As the first
step toward this goal, a closed-form solution pair for Rg and Rg is obtained by transform-
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ing P;. Reconsider Pj, and we introduce two auxiliary variables ARg, ARp € HN with
ARG = Rg — Rg and ARg = Rg — Rp, so that Py is transformed into

o .
min X (ARG + I}(;)x
ARg,ARg xH(ARgp + Rp)x

™ {HARGH% <
ARy} <,

As can be seen, when the numerator reaches its minimum value, and the maximum value
is reached for the denominator, the objective function obtains its optimal solution. Thus,
ignoring the terms unrelated to the decision variables, P, can be modified as
min xARgx
ARg
max xTARgx

Rg

2
ot {”ARGHF <ef
- 2 _ 2

|ARB||F < €,

P

Since there is no coupling between ARG and ARg in either the objective function or the
constraints, Pz can be split into two independent subproblems, i.e.,

min xHARGx max xHARBx
ARG ARp

Py ) and Ps )
stl| ARG} < & s.t||ARg |7 < &

As linear objective functions of both problems with only one quadratic constraint, they can
be changed to linear programming (LP) problems:

min xHARGx max x7ARgx
P ARe and P;{ ARe
st. —e,1 2 ARg =X ¢, st —e;1 X AR =2 g1
where their solutions are given by ARL = —¢ c1 and AR;r3 = £,1, respectively. Therefore, it

further leads to the optimal solutions RS = Rg — ¢,1 and R} = Rg + ¢,1 for Rg and Rg,
respectively. Substituting them into (2), P is boiled down to

xHR‘LGx
max 3
x xHREx
Ps xHx < Ex
st.4 x—xo[} < e
XHRIX < E[

Herein, the difficulty in solving Ps lies in f(x) = xAREx/xHREx , but its numerator and
denominator can be decoupled to form a quadratic function, resorting to the Dinkelbach’s
algorithm [43]. To this end, an iteration loop with index k is performed, where Pj is split
into a series of subproblems. At the k-th step, we have

xK) = arg max xR x — F(x*D)xHREx

Hy <
Po x'x < Ey ®)

st [x—xolf <

XHRIX < E[
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By iterating P9, a monotonically increasing sequence {f (x(k))}?:1 is obtained [43].
Meanwhile, if Py can be solved globally in each iteration, global convergence is
guaranteed for Pg, which is proved by detailed derivations in Appendix A.1. Let
h(x) = xHREx — f (x®))xH Rix, and it is either convex or concave. These two cases are
treated separately. Firstly, if RE < f (x(k))RE, then h(x) is concave, and Py is a convex
QCQP. Using the CVX tool, its optimal solution can be found with polynomial complexity.

On the contrary, if RJfG = f (x(k))RJ{s, h(x) is convex, and Py is a nonconvex QCQP, the
solving procedure is provided as follows. For the sake of clarity, Py is reformulated into a
general form, i.e.,

mianon—l—b51x+beo~l—cO
Proq *
s.t. xHAix +b{{x+bei +¢ <0,i=1,23

where AO = f(x(k))RE - RE, A1 = Az = I, A3 = R[, bo = b1 = b3 = 0, b2 = —C,Cyp = 0,
c1=—Ey,co =Ey—ewith Ey = x(I){xo, and c3 = —Ej. The Lagrange is

3
L(xA) = x"Agx + bhix + x by + Y A; (xHAix +bAx+xb; + cl-) )
i=1
with multipliers A1, Ay, and A3. The duality function is g(A) = inf £(x, A). It is an uncon-
X

strained problem for x, and we can find the minimizing x from V,L(x,A) = 0, while

(10)
— 00, otherwise

() = {CW —b(W)TAM) V(1) A(1)=0, b(A) € R[A(A)]

3 3 3
where A(A) = Ag+ ¥ AiA;, b(A) = by + ¥ Ak, c(A) = ¥ Ajc, and A(A)Y is the
i=1 i=1 i=1

pseudo-inverse of A(/\)_. The Lagrange dual p;oblem is

mfxg(/\)
Py A(A)=0
(

It is still a nonconvex problem, while its epigraph form is

e
g(A) > a
P2 A(A)=0
" b(1) € RA()]
A>0,i=1,23

Based on the Schur complementary theorem [44], an equivalent SDP problem is
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Based on the above procedure, Py is finally transformed into a convex problem P;3. Sup-
pose A1, A3, and A} are optimal solutions of Py3, then x¥) = —A(AT) Wb (AT). In conclusion,
Pg is tackled by solving P;3, until the iteration loop is stopped. One reasonable stopping
condition is that

£y = fx) <o

where e represents the minimum variation of the objective function. The overall algorithmic
procedure is summarized as Algorithm 1:

Algorithm 1: Solving procedure for P;

Input decision variables x, Rg, and Rp.
Initialize x(o), Ey,e,Ep e., €€
Form P; with x, R;, Rg and Rg
Find the closed-form solutions for Rg and Rg
Form Pg with RE and R;g
k:=1
Repeat
Construct the Lagrange duality
Form P;3 and solve it.
until stopping criterion is satisfied.
output x" = x(K) with maximum iteration step K.

Here, the initial point x(?) is a feasible point satisfying all constraints, which can be
determined by the following problem:

min x(O)HRlx(O)
x(0)

P1a xOHx(O) < E,
t{ H

x(o) — on <e
2

3.2. Convergence and Complexity Analysis

Reconsidering the original problem P, its convergence verification involves two parts,
which are minimization and maximization operators. The first one achieves closed-form
solutions for both Rg and Rp, leading to a global convergence. The convergence of the
maximization operator is determined by the sequence {f(x(X))}% . Since f(x) is upper
bounded, {f(x(*))}2_, finally converges to a limit point. Its global convergence depends
on whether Py admits a global solution. As mentioned before, Py is transformed into
P13, resorting to the Lagrange duality. There always exists the weak duality inequality
V(P13) < V(Py). If the duality gap is zero, the strong duality holds with V(Py3) = V(Py),
so that the optimal solution of Py is obtained by solving P;3. As the strong duality does
not hold in general, a sufficient condition for the strong duality is derived. To this end, we
introduce the following lemma, and its proof is provided in Appendix A.2.

Lemma 1. With at, A} € S(P13), i = 1,2,3, if A(AT) = 0, then xt = —AAYH Tb(AY) s
optimal to Py with zero duality gap.

Therefore, after completing the iteration, if the obtained af, )\;r € §(P13) allows the
condition of Lemma 1 to be met, then the zero duality gap is achieved to guarantee global
convergence of P;. On the contrary, if Lemma 1 does not hold, a global convergence may
not always be guaranteed. If this undesired case happens, P9 can also be solved globally
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by an alternative method, but it causes more computational burden and more memory.
Resorting to [45], Py is firstly written as an semidefinite relaxation (SDR):

x k) —argmaxtr{[RG F(x*1) )R+]X}
t[IX] < Ex
Pspr . tr[(xox5)X] = € (11)
s.t.
tr[R[X] = E;
X>=0

H

where rank-one constraint X = xx! is relaxed, and ¢’ = [(2x}/xo —€) /2 ]2. Since X% solves

Pspr, we always have

r{[RE — FEDIREXD | > tr{ [RE — F(x* )R} (12)

where X = xx!

is a feasible solution for Pspr. Followed by an efficient rank-one de-
composition, one can find in polynomial time, a desired solution X¥) = x(K)x(H such

that [45,46]
tr{[RE — f(xE)REIX® ) = xH[RE — f(x*=1)RE|x Y (13)

Thus, it is guaranteed that Py converges to a globally optimal point, which further indicates
a global convergence for Py, regardless of whether Lemma 1 holds or not.

The complexity lies in iterating Py3, whose worst-case complexity is of O (max {N, N'}*N05)
where N’ denotes the number of constraints [47]. Meanwhile, if Lemma 1 is violated, an
extra complexity of O(N?) is caused by the rank-one decomposition [45].

4. Numerical Examples

This section provides several numerical examples firstly to verify the theoretical
derivations, including convergence of algorithmic procedure, robustness of uncertain
statistics, and effectiveness of constraints. Then, the proposed scheme is applied to SAR,
where performance evaluation is carried out.

4.1. Theoretical Derivation Verification
4.1.1. Convergence Validation

Set N =120,e = 1074, E, = E. = N, and eé = s% = 10, and the reference waveform
X is a chirp signal. Considering different feasible regions resulting from varied similarity
parameter € and spectral parameter Ej, Algorithm 1 is performed, and the objective function
£(x®)) versus iteration step k is presented in Figure 1.

2 2

= = ~ =

o) R

‘: S~

S15 g 15

3 k3]

=]

& |, &

° o e B =12
E W Z —-—FE;=6
3 1 3 1

_g 1 2 3 4 5 = 1 2 3 4 5

Number of iterations k © Number of iterations &

(a) (b)
Figure 1. Objective function value with different feasible regions: (a) with different ¢; (b) with
different E;.
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As can be seen, the convergence of Algorithm 1 is guaranteed by the monotonically
increasing objective function sequence, which converges rapidly to a desired point after
4 iterations. It means that the customized algorithm is capable of solving P;. As expected,
no matter which one of € and Ej increases, a larger feasible region is obtained, which further
leads to a higher objective function value.

4.1.2. Robustness Property

To evaluate the robustness of the proposed waveform, we compute the achievable
objective function under various randomly generated Rg and Rg. A total of 100 groups
of samples from the uncertain set are randomly picked up to calculate f(x) provided by
the robust waveform. For the sake of comparison, the non-robust design is considered as a
counterpart, where no uncertainty of Rg and Rp is assumed at the design stage. Meanwhile,
the worst-case f(x) for both robust and non-robust cases are also plotted in Figure 2.

1.49
1.48
®
= 147 —e—Robust
E 4 - - --Non-Robust
1;) 1.46 Worst-Case Robust
B B Y B T e T I T B N Worst-Case Non-Robust
o 145
2
S 144
i)
o

1.43

0 20 40 60 80 100
Sample index

Figure 2. Achieved f(x) versus random samples of Rg and Rg.

The simulation results suggest that the proposed scheme exhibits a desired behavior
for the fluctuated statistics Rg and Rg, as robustness is achieved by maximizing the worst-
case f(x) over the uncertainty set. As expected, the robust waveform always maintains a
steadily high value of f(x), regarding the varied Rg and Rg. Meanwhile, the worst-case
f(x) provided by the robust waveform is significantly higher than that of the non-robust
one, which further indicates that the robustness is guaranteed well.

4.1.3. Optimality Condition

As mentioned before, whether P; can achieve a global convergence relies on the
convergence of Py. If Py obtains an optimal solution, then P; can be solved globally. Based
on Lemma 1, it provides a sufficient condition A(A") = 0 for a zero duality gap between
Py and its dual problem. As A(AT) = 0 is equivalent to eig, . [A(AT)] > 0, the smallest
eigenvalue of A(A") is presented versus different feasible regions in Figure 3.

40 30
=30 =

~< =< 20
<20 <

E 210
N N
= 10 =

0 0

0 5 10 15 20 0 5 10 15 20
Similarity parameter € Spectral parameter E
(a) (b)

Figure 3. The smallest eigenvalue of A(A") versus different feasible regions: (a) varied similarity
parameter ¢; (b) varied spectral parameter Ej.



Sensors 2025, 25, 3670

11 0f 18

Figure 3 indicates that eig_. [A(AT)] > 0 is satisfied over all considered feasible
regions, so that the optimality condition is met. To exhibit the duality gap between Py
and P;1, we also plot the objective functions for both primal and dual problems, as shown
in Figure 4.

0 0
—Primal —Primal
= -50 + Dual —= -50 + Dual
= =)
8100 £ -100
£ -150 £ .150
-8 =)
&~ 200 A~ 200
+ o
-250 -250
5 10 15 20 0 5 10 15 20
Similarity parameter € Spectral parameter F;
(a) (b)

Figure 4. The objective functions for both primal and dual problems: (a) with different ¢; (b) with
different E;.

It is clear that the primal problem and the dual one have the same objective function
value, which demonstrates zero duality gap. Therefore, a global convergence of Py is
achieved, such that P; is guaranteed to converge on a global point.

4.1.4. Spectral Compatibility

To validate the spectral constraint, assume two wireless radiators operating over
normalized frequency bands (); = [0.27,0.37] and Q) = [0.62,0.72] calculated by dividing
their actual bandwidths by the sampling rate, coexisting with the radar system. Set different
values of E to limit the energy distributed over the stopband. We plot the energy spectral
density (ESD) of the optimized waveforms in Figure 5, where the reference signal xq is
considered as the benchmark.

0

S5t

Benchmark
—FEr=10
-=-E =2

ESD/dB

0 0.2 0.4 0.6 0.8 1
Normalized frequency

Figure 5. ESDs of optimized waveforms versus varied Ej, where the stopbands are shaded in light gray.

As we can see, the spectral constraint forces the ESD shape to have a deep notch over
the stopbands. The nulls are deeper for smaller Ej, as less energy is distributed over the
frequency band. It indicates that the spectral constraint is effective at achieving spectral
compatibility, so that the proposed method allows more than one radiator to work at the
same time in a spectrally dense environment.

4.1.5. Time Consumption Comparison

As mentioned before, the SDR technique followed by rank-one decomposition pro-
vided in [45] can also solve P9, but may cause additional complexity. Herein, the CPU
time of the duality-based and SDR-based methods are provided in Figure 6 based on a PC
with Inter Core i5 2.4 GHz. As shown, the duality-based method is more computationally
efficient than the SDR-based one.
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Figure 6. CPU time of both methods to tackle Py.

4.1.6. Target Classification

To evaluate the target discrimination capability of the designed waveform, we con-
ducted a classification experiment based on high-resolution range profiles (HRRPs) follow-
ing the procedure outlined in [48]. Still assume each target appears with equal probability,
and the misclassification probability Pp under varying waveform energy levels is presented

in Figure 7.
0.4
—s—Proposed
i S Suboptimal
037, e --+-- Chirp
N “\_ |--+-NLFM
\
0.2 e
0.1 k
0

-12 -10 -8 -6 -4 -2 0
Energy/dB

Figure 7. Misclassification probability.

Experimental results demonstrate the designed waveform yields lower and higher
classification accuracy than benchmarks, particularly at low energy levels. Notably, even at
a low normalized energy of —10 dB, the proposed method maintains robust classification
accuracy. It further confirms the target detection results presented in Figure 7, highlighting
the dual strengths of the proposed approach in both imaging and classification tasks.

4.2. Application to SAR

In order to verify whether the resultant waveform can improve the image quality of
extended targets, a simple SAR system is simulated. Its parameters are listed in Table 1 .

Here, several existing waveforms are considered, including the chirp signal, the NLFM
signal [7,49], and the suboptimal waveform [50]. All of them have the same transmit energy,
and they illuminate the same scene with an airplane being as the interested target. The area
of the airplane is delimited according to its profile, and samples of G(t) are placed into the
designated area. Other cells are covered by the samples of background scatters B(t). As
the SAR platform advances, the associated SAR echoes are obtained, which are processed
by the Range Doppler algorithm to generate the SAR images shown below.

It is obvious that the proposed SAR image achieves the best visual effect for the
extended target, compared with all counterparts. As the SCR is improved by the proposed
method, a greater contrast between target cells and background scatters are presented. More
precisely, the SCR in Figure 8a is 3.5 dB higher than that of the chirp signal. Moreover, since
a SAR image with a higher SCR will benefit target discovery performance, an experiment
based on the obtained SAR image is conducted to evaluate target detection. Set the
threshold of detection to traverse the entire pixel values of SAR image in turn, and the
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two-value images according to every threshold are generated. Through comparing the
ideal case, detection probability P, and false alarm P,, are calculated, as shown in Figure 9.

Table 1. List of simulation parameters.

Parameter Symbol Value
Platform height Hy 6 km
Antenna length D 2m

Effective radar velocity v 150 m/s

Look angle 0 30°

Beam squint angle ¢ 0°
Center frequency fo 5.3 GHz
Pulse duration T 1us
Range Bandwidth B, 100 MHz
Range sampling rate F, 120 MHz
Azimuth sampling rate F, 180 Hz
Number of range lines N, 256
Samples per range line N, 256

As expected, a larger SCR leads to higher SAR image quality, further leading to
more desired target detection result. In conclusion, the proposed method is effective in
highlighting the extended target in a SAR image.

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
| b
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
(c) (d)

Figure 8. SAR images: (a) proposed scheme; (b) suboptimal waveform; (c) chirp signal; (d) NLFM
waveform, where the horizontal and vertical axes are the range and azimuth directions in meters,
and the SCR of each image is 6.3 dB, 3.8 dB, 2.8 dB, and 3.0 dB, respectively.

1
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Figure 9. Detection probability and false alarm.
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5. Conclusions

In this paper, the robust SAR waveform design problem is addressed to improve
extended targets’ scattering signature in spectrally crowded environments. It is formulated
as a max—min fractional problem, where maximizing the worst-case SCR over the uncertain
statistics set is considered as the objective function. Meanwhile, some reasonable con-
straints, including energy, similarity, and spectrum constraints are introduced to achieve
the desired resolution and spectral compatibility. A customized algorithm is developed
to tackle the resultant problem. Firstly, the subproblem with the minimizing operator is
solved by a closed-form solution. Then, the fractional objective function is coupled by the
Dinkelbach’s algorithm, while the Lagrange duality and Schur complement are applied
to form the solving procedure performed by iterating a series of SDP problems. In the
convergence verification stage, a sufficient condition for global convergence is derived. At
the analysis part, the superiority of the proposed design is highlighted by the improvement
of the worst-case SCR, while ensuring a high-quality SAR image for the extended targets.
Since our method is target-driven, changes in the target to be detected require a redesign
of the waveform. In the future, we will further investigate optimized waveforms that are
adaptable to multiple target types.
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Appendix A
Appendix A.1. Globally Solved Py Leads to Global Convergence for Pg

A monotonically increasing sequence { f(x(*)) }oo, is generated by iterating Py. Since
f(x) is upper bounded resulting from x'x < Ey, {f(x())}2 | converges to a limit point,
where f(x(K)) = f(x(K=1)) with a large enough K. Let F(x) denote the objective function
of Py, so that

Fx) = a(x¥) = (X (D) =a(x ) - px¥)fxF) =0 (A

where a(x) and B(x) are the numerator and denominator of f(x), respectively. As B(x(K)) > 0,
we have f(xK)) = a(x(K))/B(x(K)) . Because Pg and Py have the same constraints, x(K) is
also a feasible point to Pg, while

a(x)

x(K)y = xX)=—""£, %
f( ) < f( ) ﬁ(X/)’ € S(PS) (AZ)

Therefore, a(x') — B(x') f(x(K)) > 0. As X' is also feasible to Py, it follows

a(x') = p(x) fF(xX)) < a(x¥) = p(x®) f(x)) = 0 (A3)
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if Py can be solved globally with x(K) € S(P) at the K-th iteration step. We finally have
a(x') = B(x) f(x™)) =0 (A%)

which indicates f(xK)) = a(x')/B(x') . Thus, Pg holds with global convergence, if Py is
solved globally in each iteration.

Appendix A.2. Proof of Lemma 1
Proof. Let Y = [x;1][x; 1]", and then

xTAx 4+ bHx + xHb; + ¢; = tr[M;Y] (A5)
where
_ |Ai b
wly

As a result, Pg changed to an SDP relaxation problem:

rrgn trMpY]
Pis trM;Y] 20,i=1,2,3 (A7)
s.t. < tr[AY]=1
Y>=0
I 0 S .
where A = o 1|’ and the rank-one constraint is relaxed. If any Y € S(Py5) with
Y= P;}{l ﬂ satisfying Y11 = yy'!, then V(P15) = V(Pyg), and the optimal solution of

P10 can be obtained through eigen decomposition of Y. The Lagrange dual of Py5 is
3
L = tMoY}+ ) AitrM;Y] — a{tr{AY] — 1} (A8)
i=1

while the dual function is

3
lx/ M + )\M - DCA t 0
inf £ = 0 LM (A9)

— 00, otherwise

Thus, the dual problem of P;5 is

max «
Ai,a
3
P1s Mot Y AM; —aA =0 (A10)
S.t.

i=1
A>0,i=1,23

It is not difficult to find that Py4 is the same as P;3. Herein, let (A, &) and Y be feasible
solutions to Py and Py5, respectively, and then the complementarity slack conditions for
P16 and P15 can be expressed as [51,52]

tr[HY] =0

, (A11)
Atr[M;Y] =0, i =1,2,3
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3

where H = My + Y A;M; — «A. Assume that at least one of the problems P;5 and Piq
i=1

is bounded and strictly feasible, and then (A, &) and Y are optimal if and only if the

complementarity slack conditions hold [51]. Now, we prove Lemma 1 is equivalent to
determining whether (A11) is satisfied, with Y = [x';1] [x";1] H
To verify the first part in (A11), we have

tr [Hw} —tr [A(M)x*Hx* + bw)x”ﬂ +b(AH X +c(At) —at
(A12)
= —b(AHTAW) DAY +c(AT) —at
In Appendix A.3, at = c(AT) — b(/\*)HA()OL)_lb(A*) is proved, so tr [HY'] = 0.
Looking back to (9), if A(/\Jr) > 0, x' solves the unconstrained problem min £(x, )UL),
X
as x' satisfying the KKT condition VxL(x, AT) = 0 [53]. Meanwhile, suppose that (AT, a*)
solves the problem
min — £(x", 1)
Ai (A13)
st A;>0,i=1,23

Since (A13) is convex, (/\Jr, a*) is an optimal solution, which is also a KKT point. There exist
the Lagrange multipliers w; > 0, i = 1, 2,3, such that

m
Vi (—c(x*,A*) — ZwiAj> =0and wAl =0,i=1,2,3 (A14)
i=1
which further indicates that
w; = —(x"MAX" +bIxt +xMb; +¢;), i =1,2,3 (A15)

Therefore, combined with (A5), the second part in (A11) /\:ftr[MiY*] =0,i=1,23is
confirmed. In conclusion, Y is optimal to Pj5. Since Y! is also a rank-one solution,
x" solves Py through Lagrange duality with zero duality gap. [

Appendix A.3. Proof of a*

Proof. For any feasible solution &, we must have

RO
which means that
a <c(A)—bM)TAN) BN =a (A17)

Therefore, any feasible « is upper bounded by &. Given )QL € S(P13), i =1,2,3, to verify &
is also feasible, there is

cAh) —bH" A (A —a =0 (A18)
It indicates that & is also a feasible solution for P;3, and then

&

IN

af <@ (A19)

such that

=
I
=

(A20)

The proof is completed. O
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