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Highlights
What are the main findings?

e The proposed approach combining a single labeled target sample, genetic algorithm-
optimized augmentation, and super-low-threshold self-training more than doubled
pig detection accuracy under domain shift (36.86 — 90.62), achieving a performance
comparable to fully supervised training;

e The proposed system maintained high detection precision across diverse pigsty con-
ditions (e.g., varying lighting, camera viewpoints, and pig sizes), demonstrating ro-
bust object detection performance against real-world domain shifts with minimal
labeled data.

What is the implication of the main finding?

e The proposed solution requires only one labeled target image for model adaptation, dras-
tically reducing the manual labeling effort and enabling quick, cost-effective deployment
of pig detection models in new farm environments;

e By ensuring high accuracy under real-world domain shift scenarios, the system enables
practical and scalable intelligent livestock management, improving monitoring reliability
and overall farm efficiency.

Abstract: As global pork consumption rises, livestock farms increasingly adopt deep
learning-based automated monitoring systems for efficient pigsty management. Typically,
a system applies a pre-trained model on a source domain to a target domain. However, real
pigsty environments differ significantly from existing public datasets regarding lighting
conditions, camera angles, and animal density. These discrepancies result in a substantial
domain shift, leading to severe performance degradation. Additionally, due to variations
in the structure of pigsties, pig breeds, and sizes across farms, it is practically challenging
to develop a single generalized model that can be applied to all environments. Overcoming
this limitation through large-scale labeling presents considerable burdens in terms of time
and cost. To address the degradation issue, this study proposes a self-training-based do-
main adaptation method that utilizes a single label on target (SLOT) sample from the target
domain, a genetic algorithm (GA)-based data augmentation search (DAS) designed explic-
itly for SLOT data to optimize the augmentation parameters, and a super-low-threshold
strategy to include low-confidence-scored pseudo-labels during self-training. The proposed
system consists of the following three modules: (1) data collection module; (2) preprocess-
ing module that selects key frames and extracts SLOT data; and (3) domain-adaptive pig
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detection module that applies DAS to SLOT data to generate optimized augmented data,
which are used to train the base model. Then, the trained base model is improved through
self-training, where a super-low threshold is applied to filter pseudo-labels. The experi-
mental results show that the proposed system significantly improved the average precision
(AP) from 36.86 to 90.62 under domain shift conditions, which achieved a performance
close to fully supervised learning while relying solely on SLOT data. The proposed system
maintained a robust detection performance across various pig-farming environments and
demonstrated stable performance under domain shift conditions, validating its feasibility
for real-world applications.

Keywords: monitoring system; object detection; domain shift; data augmentation; genetic
algorithm; self-training

1. Introduction

According to the Organization for Economic Co-operation and Development (OECD)
and the Food and Agriculture Organization (FAO)’s Agriculture Outlook 2022-2031 [1],
global pork consumption is expected to increase to 129 million tons over the next decade.
Pork is projected to become the most consumed meat not only in Asia but also in Europe.
To meet this continuously growing demand, livestock farms are expanding their production
scale by enlarging their facilities [2]. However, expanding facilities or hiring additional
staff poses significant challenges for small- and medium-sized farms with limited bud-
gets. Researchers have proposed various pigsty management systems to enhance farm
management efficiency [3-5].

Information and communication technology (ICT) has been introduced as a monitoring
technology for pigsty management due to its ability to collect data and analyze information
using various algorithms automatically. Several studies have been conducted in this area.
For example, researchers have developed technologies to detect abnormal behaviors early,
such as tail-biting for dominance establishment, reduced activity due to health issues,
and coughing caused by respiratory diseases. By effectively addressing these abnormal
situations, farms can minimize economic losses and improve breeding efficiency [6-12].

In the early stages of pigsty monitoring system adoption, computer vision techniques
were primarily used [9-12]. Traditional computer vision approaches relied on feature
descriptors, such as Scale-Invariant Feature Transform (SIFT) [13], sped-up robust features
(SUREF) [14], and Binary Robust Independent Elementary Features (BRIEF) [15], combined
with machine learning models, like support vector machines (SVMs) and K-Nearest Neigh-
bors (KNN), to detect pigs and analyze their behavior [16]. However, these methods
required manual feature extraction, making it challenging to effectively process diverse
and unstructured data. Their generalization performance had limits, leading to significant
performance degradation in new environments [16-18].

Deep learning-based computer vision technologies have recently been actively intro-
duced to overcome these limitations [19-21]. Convolutional neural network (CNN)-based
models automatically learn features from data and maintain high accuracy across various
environments, making them a promising solution to the limitations of traditional methods.
Unlike conventional approaches, deep learning models can effectively model complex pat-
terns and interactions, significantly improving the accuracy of abnormal behavior detection
and health monitoring [22-24]. Deep learning-based monitoring systems have progressed
beyond the experimental stage, achieving high accuracy levels that meet industrial de-
mands, making them applicable to real farms [25]. However, technical challenges remain
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to ensure stable performance in real-world environments, with domain shift being one of
the most critical issues.

Domain shift [26,27] is a significant cause of model performance degradation, arising
from distribution differences between source and target data. Deep learning models operate
based on pre-trained datasets, but discrepancies may exist between training data (source)
and monitoring data (target) in real farm environments. Differences between the data
collection environment and the new environment can lead to model performance deteriora-
tion. For example, variations in lighting conditions, camera angles, pigsty structures, pig
growth stages (size changes), breed differences, and other environmental factors can create
different data distributions from the environment in which the model was initially trained.
The greater the disparity between the source and target data, the more significant the drop
in model accuracy [28].

One common approach to addressing this issue is incorporating target data into the
training dataset. However, generating large-scale annotated target data is labor-intensive
and time-consuming [29]. Consequently, researchers have explored self-training techniques
to enable models to automatically learn from unlabeled target data [30-33].

Self-training involves using a pre-trained model on source data to generate pseudo-
labels for unlabeled target data, allowing the model to learn target data features and
mitigate domain shift issues. However, since pseudo-labels are generated without human
intervention, their accuracy depends on the base model’s performance. If the base model
has low accuracy, the generated pseudo-labels may be incorrect, potentially degrading the
final model’s performance instead of improving it (see Figure 1). Despite this limitation,
existing studies aim to train high-accuracy models by allowing the model to learn target-
domain features without any labeled target data [34-36]. This approach disregards the most
reliable method for improving model accuracy—adding labeled target data. Therefore, this
study proposes a method that uses a minimal amount of manually labeled data, called
Single Label On Target (SLOT), which refers to utilizing only a single labeled example from
the target domain, to train the base model for self-training.
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Figure 1. A graph illustrating the contrasting self-training results based on the base model. Although
the same data and parameters were applied, the self-training outcomes differed due to the base
model’s accuracy variation. The blue-colored Model 1 shows a performance improvement as the
training progressed, whereas the green-colored Model 2 exhibits performance degradation.

The SLOT data refer to data that have been manually annotated, specifically containing
ground truth labels for pig objects in images collected from the target-domain pigsty.
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Utilizing SLOT data provides the following advantages: (1) Since it includes high-quality
annotations for the target domain, it allows for the application of intensive and diverse
augmentations. (2) It enables accurate learning of the target domain’s features, including
background and structures. Learning is particularly effective in monitoring systems where
background and structures remain unchanged once installed. If the target domain has
unique structures or patterns, SLOT provides an opportunity to learn these characteristics.
(3) As the base model for self-training learns the target domain’s features, pseudo-labels’
reliability improves, minimizing the risk of accuracy degradation in subsequent training
stages. As a result, SLOT serves as an efficient approach that maximizes benefits while
requiring minimal human labor.

This study proposes a camera-based adaptive pig detection system that addresses
the domain shift problem by leveraging SLOT as minimal human-labeled data to train
the initial base model for self-training. The proposed system first applies a key frame
selection algorithm to remove redundant data from videos collected via sensors in the
target domain and selects SLOT data from the remaining frames. Next, the selected SLOT
data undergo Data Augmentation Search (DAS), a method designed to systematically find
the best augmentation parameters using a Genetic Algorithm (GA), to generate optimally
augmented images. These images and the training dataset are then used to train the
base model, which is subsequently refined through self-training. During pseudo-label
generation, a super-low threshold is applied to include objects with lower confidence scores
in the training process, ensuring that a broader range of target-domain data is utilized.

Ultimately, the core novelty of this study lies in proposing a sustainable and detector-
agnostic pig detection system that addresses the domain shift problem using only a minimal
amount of labeled target data, while enabling generalization across diverse environments
with minimal supervision. To demonstrate the system’s versatility and consistency, we
conducted experiments using multiple object detection models, thereby validating its ap-
plicability and detector independence. The key contributions of this paper are summarized
as follows:

1. This study effectively addressed the domain shift problem using a single SLOT (target
label) sample generated with minimal manual effort. The selected SLOT samples
effectively captured the core characteristics of the target domain, enabling the model
to adapt efficiently to the target environment while significantly reducing the burden
of manual labeling.

2. A DAS based on Genetic Algorithms (GAs) was applied to optimally augment the
data derived from the SLOT sample, thereby constructing a more accurate base model.
The automated exploration of the augmentation parameters improved the model’s
performance in a stable and efficient manner.

3. Anovel super-low-threshold strategy, previously unexplored in existing self-training
approaches, was introduced to incorporate pseudo-labels with low confidence scores
into the training process. Owing to the high accuracy of the base model achieved in
the SLOT+DAS stage, this approach was able to suppress excessive false detection
noise while further enhancing the domain adaptation performance.

4.  Integrating these components into a unified system confirmed that the model consis-
tently maintained high accuracy even under varying real-world deployment condi-
tions (e.g., lighting, camera angles, and background). This integration is considered
a key factor that increases the practical applicability of the system in operational
settings such as livestock farms.

The remainder of this study is structured as follows: Section 2 summarizes the pre-
vious studies on domain shift in pig detection. Section 3 describes the proposed domain-
adaptive pig detection system. Section 4 presents the experimental setup and analyzes the
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results. Section 5 presents ablation studies to examine the effectiveness of each compo-
nent in the proposed system. Section 6 discusses the findings in depth, supporting the
results. Section 7 highlights the limitations of the current study and suggests future research
directions. Section 8 concludes the study.

2. Related Work

Object detection is one of the core areas of computer vision technology that mimics the
human visual system to recognize and classify objects in surrounding environments [37].
With the advancement of deep learning technology, research on CNN-based object detection
has been actively conducted and applied across various industries [38]. Deep learning-
based object detection can be broadly categorized into the following two approaches:
two-stage and one-stage detection.

Two-stage detectors first identify object locations using selective search and then
classify objects within those locations through regression. Representative models include
the R-CNN family, such as Fast R-CNN [39] and Faster R-CNN [20]. While these models
achieve high accuracy, they do not guarantee fast execution speeds. In contrast, one-stage
detectors predict object locations and classes in a single operation without a separate candi-
date region generation process. Examples include You Only Look Once (YOLO) [21] and
Single-Shot MultiBox Detector (SSD) [40], which focus more on speed rather than accuracy.
Among them, YOLO models have been widely adopted in commercial applications due
to their balance between accuracy and speed, continuously improving from YOLOv1 to
YOLOv11 [21,41-50].

However, domain shift remains a critical issue when applying these models in com-
mercial environments. The domain shift problem arises from differences in the data
distributions between the trained source domain and the actual target domain, and this is a
significant challenge in industrial applications such as pig object detection. In real livestock
environments, domain shifts can occur due to various factors, including lighting conditions,
camera placement, variations in individual pigs’ body shapes and colors, and differences
in farming environments. To address this, domain adaptation techniques are required
to enable models trained on the source domain to effectively adapt to the target domain
effectively. This study aims to develop a practical detection system that can flexibly adapt
to various environmental changes, such as lighting, camera placement, and pig appearance,
which commonly occur on real livestock farms. This practical need for adaptability serves
as a primary motivation for our work. Notably, this direction is also in line with recent
neural network research. For example, Tufail et al. [51] emphasized the growing importance
of models capable of self-adjusting to changing environments, highlighting a transition
from static to dynamic architecture.

Table 1 summarizes pig object detection studies published from 2019 to the present
that either report domain shift results (i.e., test performance on unseen data) [52-57] or
apply semi-supervised learning methods [58,59]. Early studies demonstrated the domain
shift problem by testing models trained solely on source domain data with unseen target
data in a supervised learning manner [52,53,55]. Consequently, research efforts have been
directed toward improving the generalization performance of object detection models,
including Faster R-CNN- and YOLO-based models.
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Table 1. Summary of recent studies on domain-adaptive pig detection (published between 2019 and
2025). The summarized studies on pig object detection included domain shift results or applied
semi-supervised learning.

Training Method Model Dorﬁiisrllﬂsthift D:g:)ig tsl (})lrilft é::vaellje t(ill;l;a:tgiz:l Reference
superied PV GO v g < e
Supervised Faster R-CNN v X X Ri;ggét[gg ]al~,
Supervised YOLOv4 v v X Zleggg [’35’54?1-,
Supervised YOLOV5 v X X 124(1)121 ;’E 51‘}.],
Supervised Centérr—ll(;};:;infFCB) v v X | ;é]al"
Supervised 10-YOLOv5 v v X Ii(?; 3et[ ;;-],
Semi-supervised YOLOVS8 v v X W;)té(: [951:82]11.,
Semi-supervised . g}gtogZN v v v V\ggg ?;;]L,
Semi-supervised YOLOvVS8 v v v Proposed

v': Applied or included, X: not applied

Among them, Zhang et al. [54] achieved a 12% relative performance improvement
in mAP (from 0.75 to 0.84), the highest among supervised methods—by training source
domain models with target-like data generated via a style transfer technique. However,
domain shift remained unresolved despite such improvements, and models trained solely
on source data struggled to achieve significant performance gains [56,57].

More recently, semi-supervised learning approaches that utilize target-domain data
have been proposed to improve domain adaptation effectiveness. For example, Ref. [58]
introduced the noisy student [33] training method, achieving a 37% relative performance
improvement in the F1-score (from 0.67 to 0.92) using only unlabeled target-domain data,
the highest accuracy recorded for pig monitoring without labeled target-domain data.
Meanwhile, Ref. [59] added just ten labeled target-domain images, leading to a 61% relative
performance improvement in AP (from 0.57 to 0.92), marking the highest accuracy gain
reported to date. These results highlight that even minimal labeled target-domain data can
significantly impact model performance.

In this study, we propose a novel self-training-based domain adaptation method that
overcomes existing approaches’ limitations, which either avoids using labeled target data
entirely or requires a relatively large amount of labeled target data. Specifically, considering
that pseudo-label quality heavily depends on the initial base model’s performance, we
introduce a method that utilizes a single labeled target image. The proposed method
ensures a reliable initial base model for self-training, enhances pseudo-label quality, and
maximizes domain adaptability.

3. Proposed Method

The proposed system consists of the following three modules: data collection, pre-
processing, and domain-adaptive pig detection. Figure 2 shows the overall proposed
system architecture.
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Data Collection Module Preprocessing Module Domain Adaptive Pig Detection Module
FKey N I;xtractt L Annotate Apply DAS |l Train Ll Self Trainin
q @ s o SLOT to SLOT Base Model &
m Selection Domain

Target domain video

* Real-world field data
* Infrared Camera

* Extract and annotate SLOT » Start self-training with base model

* Apply key frame selection algorithm * Augment SLOT using DAS and train the base
* Extract target domain data model with the generated SLOT data

Figure 2. Diagram of the overall proposed structure on sustainable self-training pig detection system.

3.1. Data Collection Module

In the Data Collection Module, data are gathered using camera sensors. Since this
study collects data from an actual livestock farm operating, illumination conditions vary
significantly between day and night. Low-light conditions may occur at night or on cloudy
days. An infrared camera capable of capturing images in low-light environments was
used to account for these variations. The camera was installed in a tilted view configura-
tion to capture the vertically elongated rectangular pigpen. The collected target-domain
data, which includes pigsty environments and pigs, serves as input for the Preprocessing
Module. Detailed specifications of the camera and data acquisition process are provided
in Section 4.1.

3.2. Preprocessing Module

Since pigs spend approximately 80% of their day resting [60], using raw data without
refinement may lead to redundant images, reducing training efficiency. Therefore, the
preprocessing module applies a key frame selection algorithm to minimize data redundancy
and enhance the efficiency of the proposed method.

3.2.1. Key Frame Selection

Key frame selection algorithms are generally used to efficiently compress entire videos
by capturing meaningful changes and removing redundant frames. Gao et al. [61] proposed
extracting key frames from surveillance videos by calculating entropy and applying the
K-means algorithm to the results. Their experiments demonstrated that entropy calculation
alone, without semantic information from the video (e.g., voice), effectively detect changes
within the footage. In this study, we simplify the approach of [61] by extracting key frames
using only entropy calculations. The simplification reduces the computational burden of
the conventional method while allowing key frames to be selected quickly and intuitively.

To compute entropy, the image is first converted to grayscale, and the frequency of each
pixel intensity value is calculated. Let me generate the following example implementation
for this process:

pill) = 5,5 Y5 fily, x) =1 (1)

here, H and W represent the vertical and horizontal coordinates of the image, respectively,
and f;(y, x) denotes the pixel value of the image in the ith-frame. Based on the result of
Equation (1), the entropy of the corresponding frame is then calculated as follows:

e; = — X220 pi(1)log pi(1) 2)
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here, K represents grayscale values ranging up to 255. As a result, each image can be
represented by a single entropy value, and a video consisting of N frames can be expressed
as a set as follows:

Vent = [e(]/el/~--reN—1reN] (3)

The difference between entropy values is calculated to extract key frames. Specifically,
if the difference between the previously stored entropy value and the entropy value of
the current frame exceeds a predefined threshold T, the frame is considered to contain
a significant change and is stored. The extracted key frames are then used as unlabeled
target-domain data.

3.2.2. Single Label on Target Data Selection

Once the target-domain data are extracted through key frame selection, the next step
is to select SLOT, which plays a crucial role in the proposed system. Here, SLOT refers
to a single manually labeled image from the target domain, which serves as the minimal
supervision signal for domain adaptation in our framework. The extracted key frames
are sorted based on their entropy values to select SLOT. Then, the single image with the
highest entropy value is chosen as the representative SLOT data. Selecting the frame with
the highest entropy ensures inclusion of diverse content (e.g., pigs in varied postures and
positions), making it a strong representative of the target domain with minimal annotation.
Finally, a human annotates the selected SLOT data, which are then utilized in the domain-
adaptive pig detection module.

3.3. Domain-Adaptive Pig Detection Module

This module aims to train a model that resolves the domain shift problem by utilizing
the target-domain data extracted through the preprocessing module and the SLOT data.
The model training process consists of two stages. In the first stage, the DAS method, which
employs a GA-based search for optimal augmentation parameters, is applied to the SLOT
data to train the base model. In the second stage, the trained base model is used as the
initial model for applying self-training. Finally, an algorithm that integrates both training
stages into a unified process is proposed.

3.3.1. Data Augmentation Search for Base Model Training

The proposed system maximizes data augmentation techniques to train the base model
from a single SLOT dataset effectively. However, testing all possible combinations is ineffi-
cient and practically impossible. Therefore, DAS is applied to search for the optimal data
augmentation parameters automatically. DAS consists of the following three components:
search space, algorithm, and estimation metric. The search space refers to the set of data
augmentation parameters to be explored; the search algorithm is used to find the optimal
parameters within the search space; and the estimation metric evaluates the performance
of the explored parameters.

First, the search space defines the augmentation parameters to be explored. The
parameters to be searched in the proposed system are listed in Table 2. Njy¢, determines
the diversity and size of the dataset. Zoom-in/-out enables the learning of objects at various
scales and facilitates learning objects from different perspectives. Here, zoom-in/-out is
applied to the entire image frame, whereas image transformation is applied to individual
objects. Figure 3 illustrates applicable augmentations depending on the activated image
transformation flag.
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Table 2. Summarizing the search space to be explored for data augmentation in the DAS.
Augmentation Parameter Definition
Nimage Number of augmented images
Peoom_in Probability of zoom-in
Mzoom_in Magnitude of zoom-in
Proom_out Probability of zoom-out
Mzoom_out Magnitude of zoom-out
Ftrtms
(0: original, 1: translateX, 2: translateY, Image transformation flag
3: rotate, 4: shear, 5: flipH, 6: flipV)
Prans Probability of image transformation
Mirans Magnitude of image transformation

by Q)

Figure 3. Examples of augmentation using GA-based augmentation: (a) original image; (b) zoom-in;
(c) zoom-out; (d) translateX; (e) translateY; (f) result of rotation; (g) result of shearing; (h) flipH; (i) flipV.

Once the search space is defined, it is necessary to determine which search algorithm will
be used for exploration. Various search algorithms exist, but this study employs a GA, which
can provide multiple reasonable solutions rather than a single solution for discontinuous
data. This is particularly important in our setting, where the augmentation policy consists of
multiple discrete and interdependent parameters (e.g., zoom type, transformation flag, and
magnitude). Compared to brute-force strategies, the GA is known to be more effective in
exploring high-dimensional combinatorial spaces due to its population-based and stochastic
search mechanisms [62]. The GA consists of genes, chromosomes, and a population. A gene
represents each parameter to be applied, while a chromosome represents a set of parameters.
These chromosomes collectively form a population. The core procedure of the GA is as
follows: (1) Randomly initialize the initial population; (2) evaluate the fitness of the parent
chromosomes; (3) select only the chromosomes with high fitness to serve as parents for
the next generation; and (4) generate new offspring chromosomes through crossover and
mutation operations based on the selected parent chromosomes. Here, crossover refers to
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an operation that exchanges portions of genes between two parent chromosomes to create
a new offspring chromosome. At the same time, mutation is an operation that randomly
modifies a chromosome’s genes, typically with a low probability. Repeat steps 2—4 to explore
the optimal augmentation parameters. Figure 4 visually illustrates the GA’s key components
and operational processes. Algorithm 1 shows the pseudo-code of the GA.

Algorithm 1. Pseudo-code of the GA

Input: Objective function: f(x), Population size: P, Number of generations: G
Output: Best solution: ¢*

Initialize: Initialized population: Py < {c1,¢2,..., cp}

1 forg«1toG

2 for each ¢ € Pg1

3 fr < f(c) -- evaluate fitness

4 F < FU{(ck fi)}

5 Peiite < SelectTopP(F, P) -- select top P chromosomes with highest fitness
6 Peross < Crossover(Peite)

7 Pq  Mutation(Peross)

8 " = argmaxfy

(ck fr)€F

3 2|4|8|6|7|2|1| Gene

Population

|1|7|6|2|3|1‘1|9[|Chromosome

(a)
Parent 1

(chromosome)|3|2|4|8|6|7|2|1| ‘ |3|7|4|8|3|1|2|gl

vomasomey 1 7L e[ 2o [1 [ o] =" [i]e]ef2]e]7]+] ]
(b)

momosomey 2 [ 2[ 2 [ o[ ]2 [ 1] o] Sy [2lzl2fs][2]4]s]
(©)

Figure 4. The GA’s components and operations: (a) visually shows the components of the GA,

including the gene, chromosome, and population; (b) visually illustrates the crossover operation, one
of the processes in the GA; (c) visually illustrates the mutation operation, another process in the GA.

Finally, the estimation metric is used to evaluate the model’s accuracy achieved when
trained with the augmented data and to explore the optimal parameters. In this study,
AP, which has already been validated as effective in a previous study [63], is used as the
estimation metric. However, since no labeled target-domain data are available, it was
necessary to construct evaluation data independent of the augmentation candidates used
in the DAS. To address this, we introduced the copy-and-paste technique [64,65] to gen-
erate independent evaluation images explicitly excluded from the DAS parameter search
process. This approach ensures that the evaluation data do not overlap with the training
data, preventing overfitting during augmentation parameter optimization. Furthermore,
we randomly varied the position and number of pasted objects to minimize the risk of
overfitting the specific objects derived when generating the evaluation dataset. This process
introduces high variability in object context and density, thereby increasing the diversity
of the evaluation set and making it more reflective of realistic and unseen scenarios. By
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ensuring that each synthesized image contained different object placements and counts,
we reduced the likelihood of overfitting to specific object instances and enhanced the
robustness of the fitness evaluation.

The copy-and-paste technique extracts objects from labeled images and pastes them
onto background images to augment the data. Object extraction is possible using SLOT
data in the proposed method, but background images are unavailable. Therefore, the
proposed system generates background images by calculating each pixel’s cumulative
moving average (CMA) from easily obtainable monitoring footage. Equation (4) represents
the formula used for the background image generation.

fbackground (.1// x) = ‘total %rame ZZEBOtaI frame fn (]// x) 4)

where y and x represent the pixel values corresponding to the vertical and horizontal
positions, respectively, while f,, denotes the nth frame. As a result, objects extracted from
the SLOT data were copied onto the background images generated using Equation (4) to
create new evaluation images.

As shown in Figure 5, the DAS explores the optimal SLOT data augmentation pa-
rameters within the predefined search space using a GA. In this process, the fitness of
each chromosome is evaluated based on the AP of a detector trained for 30 epochs using a
dataset composed of source images, SLOT images, and SLOT images augmented based
on the given chromosome. An independent validation dataset generated using the copy-
and-paste technique was employed for the fitness evaluation. Early stopping [66] was
applied during model training to ensure efficient AP calculation to reduce the training time.
Early stopping terminates training if the validation loss does not decrease for E consecutive
epochs, preventing overfitting and enabling efficient learning. Finally, the SLOT data were
augmented based on the parameters that achieved the highest fitness among the explored
parameters. Consequently, the base model was trained using source, SLOT, and augmented
SLOT data. The trained base model was then used as the initial model for self-training.

Generated
Evaluation
Data
Initial Fitness N Best 4
Population Evaluation lil)gmentatlon
arameter

Crossover

Mutation

Figure 5. Diagram of the DAS method’s architecture.

3.3.2. Self-Training to Address Domain Shift

Self-training is a method that progressively improves a model by utilizing the pseudo-
labeling technique, allowing it to adapt even to a target domain without labeled data [67].
Self-training was adopted in this study due to its architectural simplicity, high compati-
bility with low-label environments, and ease of integration into existing object detection
frameworks. Unlike adversarial domain adaptation methods that require complex loss func-
tions and auxiliary components [68], self-training improves model performance through
iterative learning solely using target-domain data, making it more reproducible under
real-world constraints such as limited labeling in commercial pig farms. Moreover, because
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self-training is a training strategy rather than an architectural module, it can be applied
directly to state-of-the-art object detectors without modifying the backbone or detection
head. This architectural independence ensures broad compatibility and supports rapid
deployment across various detection models.

In this study, self-training is performed using the previously trained base model as
the initial model, ensuring that the model learns the features of the target data. The key
aspect of self-training is increasing the diversity and reliability of pseudo-labels. The
proposed system applies data distillation (DD) [69], which enhances diversity through
scaling and horizontal flipping. Vertical flipping and 90-degree rotation transformations
are incorporated into the self-training process. Figure 6 illustrates the DD method applied
in the proposed system.

4 Original Model A

v{ Flip(H) Model A

1 |
1 }
Flip(V) } >{ Model A }
— }
1 |

Unlabeled N
image
‘{ Flip(H, V) Model A
“ 90° Rotation Model A N Emle
Data augmentation
v
Improved pseudo-label

Figure 6. A diagram illustrating the image transformation techniques used in DD. The image transfor-
mations include original, horizontal flip, vertical flip, horizontal and vertical flip, and 90° rotation.

The proposed system’s DD technique follows these steps. First, the base model detects
unlabeled target data extracted by the preprocessing module. During detection, DD is
applied to generate various transformed image results, which are then ensembled to assign
bounding boxes. Then, among the predicted bounding boxes, those with confidence scores
above the predefined reliability threshold are assigned as pseudo-labels. Next, the final
target model is trained using SLOT, source, and pseudo-labeled target-domain data. Finally,
these steps are repeated to train a more accurate model progressively.

In this process, the method for pseudo-label filtering plays a critical role. A confidence-
based filtering scheme is employed to determine which predictions are used as pseudo-
labels. That is, bounding boxes with scores above a predefined threshold are selected
and used in the training. Specifically, each target image is first transformed through
multiple geometric augmentations, such as horizontal and vertical flipping and rotation,
as part of the DD process. Object detection is performed on each transformed version,
and the predicted bounding boxes are mapped back to the original coordinate space.
These predictions are then aggregated using non-maximum suppression (NMS), which
identifies overlapping boxes across different transformed views and retains only the one
with the highest confidence score. The retained bounding boxes are then compared against
the predefined confidence threshold, and those exceeding the threshold are selected as
pseudo-labels for self-training.

Most conventional self-training approaches select pseudo-labels based on high confi-
dence thresholds to minimize label noise [70-74]. In contrast, this study adopts a super-
low-threshold strategy. This choice is grounded in the hypothesis that, following the DAS
phase, the performance of the initial base model is sufficiently improved, making even
low-confidence predictions potentially beneficial for learning.
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Accordingly, we significantly lowered the confidence threshold to maximize the num-
ber of pseudo-labels, thereby encouraging the model to learn from a broader distribution
of domain-specific information. While this approach may introduce some noise, we argue
that the expected gains in generalization, achieved through exposure to a more diverse
range of samples, outweigh the potential drawbacks.

In summary, the proposed system was designed to address domain shift while mini-
mizing manual labeling. Initially, SLOT provided essential domain-specific information
with minimal effort. Then, the data diversity was expanded through genetic algorithm-
based DAS to strengthen the base model. Finally, a super-low-threshold strategy was
adopted in the self-training to maximize the domain-adaptation capability by learning from
a broader range of target-domain pseudo-labels. This progressive design enables effective
domain adaptation with minimal human supervision. As a result, the domain-adaptive pig
detection module follows the algorithm outlined in Algorithm 2.

Algorithm 2. SLOT-DAS with Self-Training for Domain Adaptation

Input: Source data: Dsoyree < {(x1, y1), (X2, y2),..., (xN, yn)}, SLOT data:
Dsror < {(xsLor, ysror)}, Copy-and-paste data:
Dcp < {(x1, y1), (x2, ¥2),..., (x1, y1)}, Unlabeled target-domain data:
Dturget — {xlr X2, ey xM}
Output: Best augmentation parameter: c*, Trained target model: M*
Initialize: Number of generations: G, Initialized population: Py < {c1,¢2,..., cx}, Set
of chromosomes: C < &, Self-training iteration: I, Confidence threshold: 7, Set of
DD transformations: T < {t1, ta, .., to}
1 forg+1toG
for each ¢, € Py 1
Ak — AMngTlt(DSLOT, Ck)
Dk < Dsource U DSLOT U Ak

N

3
4
5 My < Train(M, Dy) -- early stop applied
6 f(ck) + Evaluate(Mj, Dcp) -- using AP
7 C « CU{(cu f(e))}

8 Peiite < SelectTopK(C, K)

9 Peross < Crossover(Pyite)

10 Pq < Mutation(Peross)

11 ¢* = argn}fxf(ck)

12 Dy« = Augment(Dgror, ")

13 Dygse = Dsource Y Dspor U D p

14 My = Train(M, Dy, )

15 M; <+ My

16 fori<1tol

17 Dpseudo — 9

18 for each x; € Dtarget

19 xb, =t(xm), VteT

20 g = My(xh), Vi€ T

21 Om = Ensemble({ﬁn}tg)

22 ]ﬁ;seudo = {}/ € 9m‘scoreconf(y> > Tconf}
23 Dpseudo — Dpseudo U { (xmr yﬁseudo) }
24 ' Dlifra]'n < Dsource U Dspor U Dpseudo
25 Ms = Train(Ms, D;, ;)

26 M* = M;
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4. Experiments
4.1. Data Collection and Datasets

The proposed system trains and evaluates the model using data collected from actual
commercial pig farms. The base model training utilizes source domain data and SLOT data,
while the self-training process additionally incorporates unlabeled target-domain data.
Model evaluation is conducted using independent data collected from the target domain.
The frame with the highest entropy value was selected as SLOT data. Table 3 summarizes
the data used for training and testing, while Figure 7 presents the annotated SLOT data.

Table 3. The specifications of the source and target data used for the model’s training and testing.
The Hadong data refer to the images extracted through key frame selection.

. Number . Camera Train/ Label
Name Domain of Pigs Resolution Angle Test Availability Frames Example Image
Hamyang  Source 21 1200 x 600 Top-View Train Yes 342
Jochiwon Source 23 512 x 512 Top-View Train Yes 917
Chungbuk  Source 50r9 1200 x 600 Top-View Train Yes 1182
AI[;SIilb Source Variable 1920 x 1080 Top-View Train Yes 3520
Train Yes 1 (SLOT)
Hadong Target Variable 1920 x 1080 1;1/1:33- Train No 3999

Test Yes 1024
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Figure 7. Annotation result for the SLOT data after the key frame selection algorithm’s application.

The source domain data consist of data from commercial pig farms in Hamyang
and Jochiwon, the Chungbuk data collected from Chungbuk University, and an open
dataset from AI Hub [75]. These datasets were captured using top-view cameras installed
to observe pig behavior. A total of 5961 frames from the entire source domain dataset
were used.

The target-domain data were collected from a commercial pig farm in Hadong,
Gyeongsangnam-do, South Korea. These data were recorded using an infrared dome
camera (QND-6012R, Hanwha Techwin, Changwon, Korea) installed on the ceiling of the
pigsty from 26 October to 27 October 2021, for approximately 25 h. The video was recorded
at 10 frames per second (fps) with a resolution of 1920 x 1080. The camera was installed
with a tilted view to capture the rectangular pigsty comprehensively. The collected data
reflect commercial farm conditions, including day and night transitions and pig move-
ments. The target-domain data underwent preprocessing to be extracted as unlabeled
target-domain data and SLOT data.

During preprocessing, the pre-threshold, T, for the key frame extraction algorithm
was set to 0.05, resulting in 4000 key frames being extracted from 90,000 frames. All
4000 extracted key frames from the target domain were manually annotated for evaluation
to establish a fully supervised benchmark (Oracle). However, during the domain adaptation
training phase, only one of these annotated images was used as the labeled target (SLOT).
In contrast, the remaining 3999 images were treated as unlabeled data for self-training.
This setup ensures a fair comparison across methods; all approaches were evaluated on the
same annotated target dataset, but our method uses only one labeled frame for training.
This benchmark protocol allows us to isolate the effectiveness of our approach.

4.2. Experimental Environment and Setup
4.2.1. Implementation Details

The proposed system was implemented with a single GPU (GeForce RTX 2070,
NVIDIA Corporation, Santa Clara, CA, USA), and for each model, the batch size was
adjusted to the maximum value that could be trained without exceeding the GPU’s memory
capacity. YOLOv8-m was utilized as the object detection model to verify the effectiveness
of the proposed system. Although new YOLO-based models continue to emerge, the latest
models do not necessarily guarantee a better performance, as their effectiveness can vary
depending on specific use cases [76]. Therefore, this study selected YOLOvS, which has
been widely validated and adopted [77-79]. Among the YOLOv8 model structures (s, n, m,
1, x), YOLOv8-m was chosen as it is known to provide the best balance between accuracy
and training time [78,79], making it the most suitable option for small- to medium-sized
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farms by ensuring high accuracy while optimizing computational resources. Nonetheless,
exploring the applicability of newer architectures, such as YOLOv12 [80], may be a valuable
direction for future research to assess potential improvements in performance or efficiency
under different domain conditions.

For comparative experiments, models with similar parameter sizes, including
YOLOv5-m, YOLOv6-s, and YOLOv7, were used to analyze performance differences.
The input image size for all models was fixed at 640, and all other hyperparameters were
kept at their default values to ensure a fair comparison [44—-47].

In the DAS, the search space was constrained, as shown in Table 4, to enable effi-
cient exploration. The parameter settings used in this study, including the probability
and magnitude ranges for zoom-in and zoom-out, were carefully determined concerning
prior work [63]. In particular, to ensure that the original image content is preserved to a
certain extent, the upper bound of the probabilities for both zoom-in and zoom-out was
limited to 0.5. Other parameters were configured based on experimentally validated ranges
reported in a previous study, considering visual plausibility and computational efficiency.
Nimage was set to be selected as an integer between 10 and 500. The probability P,oom_in/out
for zooming in and out was set to be within the range of 0 to 0.5, while the probability of us-
ing the original image was calculated as Pyyigina = 1 — Paoom_in — Pzoom_out- The magnitude,
M_00m_in, iIn zoom-in/-out was searched within the range of 1.2 to 1.9, and Mzoom_out Was
searched within the range of 0.2 to 0.9. Fy4,s was selected as one of six flags (0-6), and the
probability, P, was set between 0.1 and 1. The magnitude, Myy4,5, was assigned values
between 1 and 8 depending on the selected flag. If the selected flag was 0, Pyrgns and Mgrans
did not affect the results and were fixed at 1. Additionally, if the flag was set to 5 (flipH) or
6 (flipV), Mgrans was undefined and was, therefore, fixed at 1. Consequently, the total search
space to be explored was approximately 491 x 6% x 82 x (10 x (4 x 8 +2) + 1) ~ 3.85 x 108.

Table 4. Summary of the data augmentation search space to be explored in the DAS.

Augmentation Parameter Range
Nimage 10-500
0-0.5
Proom_in [0,0.1,0.2,0.3, 0.4, 0.5]
1.2-19
Mzoom_in [1.2,1.3,14,1.5,1.6,1.7,1.8,1.9]
0-0.5
Proom_out [0,0.1,0.2,0.3,04, 0.5]
0.2-0.9
Mzoom_out [0.2,0.3,0.4,0.5,0.6,0.7, 0.8, 0.9]
Firans 0-6
[0: original, 1: translateX, 2: translateY, [0,1,2,3,4 5, 6]
3: rotate, 4: shear, 5: flipH, 6: flipV] A
0.1-1
Prrans [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9, 1.0]
1-8
Mirans (1,2,3,4,5,6,7,8]

The parameters used in the proposed algorithm are as follows: The number of gen-
erations, G, for the DAS was set to 3, and the population size, K, was set to 20. In each
generation, crossover and mutation were performed 10 times each. These parameters were
set based on practical considerations aimed at maintaining a sufficient level of diversity
within the search space while avoiding excessive computational costs. Although systematic
hyperparameter tuning was not conducted, the configuration was deemed appropriate
given the constraints and requirements of the intended application environment. The
model trained for fitness evaluation was trained for up to 30 epochs, with the early stop-
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ping epoch, E, set to 3. The number of iterations, I, for self-training was set to 5, with each
iteration trained for 5 epochs. The confidence threshold, 7., for pseudo-label generation
was set to 0.01. As a result, the base model was trained for 150 epochs, while self-training
continued for up to 175 epochs.

4.2.2. Evaluation Metric

By standard practices in the computer vision field, we adopted AP as the primary
evaluation metric for our object detection task. AP jointly reflects precision and recall,
thereby offering a comprehensive measure of detection performance by accounting for
both false positives and false negatives. In addition to its widespread use in general
object detection tasks, AP is commonly employed in domain shift studies to compare
detection accuracies between source and target domains [53-55,57,59]. Furthermore, since
the self-training framework adopted in this study is susceptible to the quality of pseudo-
labels, using AP based on prediction confidence enables fine-grained monitoring of model
performance and pseudo-label reliability throughout the training process. In our study, AP
serves two roles. It is used as the fitness function during the DAS process and as the main
evaluation metric for assessing the accuracy of the object detection model.

The computation method for AP is presented in Equation (5). It is obtained by dividing
the recall values from 0 to 1 into 11 points and computing the average of the precision
values corresponding to these recall values. In Equation (6), p (?) represents the precision
value corresponding to a specific recall value on the precision-recall curve. The precision
at each point is defined as the highest precision value among recall values greater than or
equal to the given recall value. Precision and recall are defined in Equations (7) and (8),
respectively. Here, true positive (TP) refers to the number of predicted boxes that correctly
detect objects, false positive (FP) represents the number of predicted boxes that fail to detect
objects, and false negative (FN) denotes the number of objects that were not detected.

AP=4 ¢ nterp (7
11re{o,o.l,...,l} Pintery ") ®)
Pinterp (r) = maxp(?) (6)
rir>r
Precision = % (7)
recall = TPE% (8)

4.3. Domain-Adaptive Pig Detection Results
4.3.1. Data Augmentation Search Results

The proposed system utilized the copy-and-paste technique to generate evaluation
data required for the DAS process. In this process, background images were created
using the cumulative moving average of input frames, while objects were extracted from
SLOT data.

Figure 8 illustrates the progressive changes in the background images extracted. Figure 8a
presents the result obtained using 1000 images, where some objects remain distinguishable.
Figure 8b shows the result with 10,000 images, where object traces have diminished, although
static objects retain their shapes. Figure 8c depicts the result using 100,000 images, showing
a further reduction in object traces and a more transparent background. Finally, Figure 8d
demonstrates the outcome with 150,000 images, where nearly all moving objects have en-
tirely disappeared from the background, resulting in a highly stable background image.
Consequently, Figure 8d was selected as the background for the copy-and-paste technique.
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(a) 1000

(b) 10,000 (c) 100,000 (d) 150,000

Figure 8. Results of the background images generated by calculating the cumulative moving average
of each pixel: (a) 1000 images; (b) 10,000 images; (c) 100,000 images; (d) 150,000 images.

Figure 9 presents examples of SLOT annotations and the application of the copy-and-
paste technique. Figure 9a displays annotation details of individual objects extracted from
SLOT data, while Figure 9b shows an example of evaluation data generated by copying
SLOT objects onto the background image. Ultimately, 100 images generated through the
copy-and-paste technique were used as evaluation data for the DAS.

(a) (b)

Figure 9. SLOT individual object annotation information and copy-and-paste application example:
(a) annotation information of objects extracted from SLOT data; (b) evaluation data generated using
the copy-and-paste technique.

Based on the previously generated evaluation data, DAS was applied to explore the
optimal augmentation parameters within the search space. Table 5 presents the results of
applying DAS to SLOT data using YOLOvVS. This table displays the top two parameter
settings with the highest AP scores (TOP1 and TOP2) and the bottom two with the lowest
AP scores (TOP59 and TOP60).

Table 5. DAS results selected parameters. This table shows two parameters with the highest AP
and two parameters with the lowest AP among the 60 chromosomes. The AP was evaluated using
YOLOVS8 and evaluation data generated by the copy-and-paste technique.

Augmentation Parameter TOP1 TOP2 TOP59 TOP60
Ninage 48 140 337 388
P, zoom_in 0 5 3 4
Mzoom?in 1 2 1 7
Proom_out 5 4 1 1
Mzoom_out 8 8 7 9
Firans 0 3 6 3
Ptrans 1 6 8 7
Mirans 1 2 1 9

AP (%) 48.30 45.37 30.94 18.63
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For Nimage, the values for TOP1 and TOP2 were 48 and 140, respectively, which are
significantly lower than the values of 337 and 388 for TOP59 and TOP60. This indicates
that an excessive number of DAS-generated images can lead to unnecessary complexity in
the dataset. If too many images are created, the model may learn redundant information or
noise from diverse data, which can degrade performance.

For the P,y i, parameter, TOP1 was set to 0, meaning zoom-in was not applied,
while TOP2 was set to 5, meaning it was frequently activated. This suggests that the
impact of zoom-in may have been offset by the influence of other augmentation parameters,
which acted complementarily. As a result, zoom-in appeared to have a weaker effect on
performance compared to other parameters. On the other hand, for P, out, TOP1 and
TOP2 exhibited high values and achieved high AP scores. This indicates that zoom-out
positively contributed to model training, and accuracy improvements could be expected
when smaller objects were trained with higher frequency.

Regarding the Fi.;,s parameter, TOP1 was set to 0 (original), while TOP59 and TOP60
were set to 6 (flipV) and 3 (rotate), respectively. This suggests that excessive transformations
may have distorted the visual characteristics of objects, leading to performance degradation.

The experimental results not only identified the most suitable augmentation parame-
ters for the SLOT data but also provided insights into how each augmentation affected the
accuracy through analysis of the search results.

4.3.2. Self-Training Results

Table 6 presents the results of training the base model used as the initial model for
self-training, incorporating various training methods and YOLO series models. The Oracle
method represents supervised learning results using all 4000 labeled target-domain data.
The source-only method represents the model trained without using target data. The SLOT
method represents the training results using source data with the addition of only one SLOT
data instance. The DAS method extends the SLOT method by incorporating augmented
SLOT data generated by DAS.

Table 6. Comparison of base models trained for 150 epochs. Oracle refers to the results of the
supervised learning. Source-Only refers to the results where target data were not involved in the
training. SLOT refers to the results where SLOT data were added to source-only training data. DAS
refers to the results where data generated through DAS were additionally included in the training
data used for the SLOT method. Training duration reflects the approximate time required to train
each model using the DAS method.

Params FLOPs Training Duration AP

Model ™) ©G) (hours) Method Number of Target Labels (%)
Oracle 4000 88.01
Source-Only 0 61.67
YOLOv6 18.51 45.20 8.50 SLOT 1 81.99
DAS 1 (SLOT) + 48 (augmented) 89.67
Oracle 4000 89.69
Source-Only 0 53.52
YOLOv?7 36.91 104.50 10.94 SLOT 1 87.83
DAS 1 (SLOT) + 48 (augmented) 89.60
Oracle 4000 95.15
Source-Only 0 36.86
YOLOv8 25.90 79.32 7.12 SLOT 1 80.25
DAS 1 (SLOT) + 48 (augmented) 85.27
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In the Oracle results, YOLOv7 and YOLOVS achieved the highest accuracy. However,
YOLOvV6’s accuracy was lower than that of the DAS method. This accuracy could be
attributed to overfitting during the 150-epoch training process.

The source-only results show the lowest accuracy across all models. YOLOvS recorded
the lowest accuracy at 36.86, significantly lower than the other models. This result suggests
that applying the model directly to real-world commercial settings without adaptation to
the target domain would likely result in high numbers of false positives and false negatives.
In the SLOT results, YOLOvVS exhibited the highest improvement, achieving a performance
increase of 43.39 compared to the Source-only method. The DAS results demonstrate
performance improvements across all models without requiring additional human labor,
with a maximum accuracy gain of 7.68.

Table 7 summarizes the results of self-training and DD for each model based on
the threshold values and epochs. The 150-epoch model corresponds to the base model
trained using DAS, as shown in Table 6. The experimental results show that the accuracy
also improved as the numbers of iterations in the self-training and DD increased. The
highest accuracy was observed when applying the super-low threshold (7, = 0.01).
This trend was particularly prominent in YOLOVS. For instance, when using a threshold
of 0.5 to generate pseudo-labels, applying the super-low threshold resulted in accuracy
improvements of 4.65 in self-training and 4.15 in DD. Additional self-training results across
the YOLOV5, YOLOvV6, and YOLOv7 models are summarized in Appendix A, further
supporting the generalizability of the proposed framework.

Table 7. A comparison table of the self-training and DD results (%) for each model. APt refers
to the results where data with a threshold of 7,y or higher was designated as pseudo-label data.
Bold values indicate the highest accuracy for each confidence score threshold, and underlined values
indicate the highest accuracy within each model for self-training and DD.

Model Epoch Self-Training DD
APo.01 APo.05 APgy APg3 APy5 APg01 APy .05 APy, APy 3 APy 5
150 89.67 (DAS)
155 90.09 90.06 90.06 90.08 90.06 90.04 90.09 90.06 90.06 90.06
160 90.39 90.40 90.40 90.38 90.40 90.40 90.38 90.39 90.40 90.40
YOLOv6 165 90.43 90.48 90.48 90.44 90.48 90.45 90.44 90.46 90.48 90.48
170 90.48 90.49 90.49 90.48 90.49 90.49 90.49 90.49 90.49 90.49
175 90.50 90.57 90.57 90.54 90.57 90.57 90.52 90.53 90.57 90.57
150 89.60 (DAS)
155 90.16 90.10 90.06 90.12 90.23 91.25 91.16 91.12 91.17 91.26
160 90.38 90.34 90.22 90.35 90.49 91.87 91.74 91.75 92.02 91.87
YOLOv7 165 90.48 90.44 90.49 90.48 90.72 92.50 92.30 92.26 92.62 92.42
170 90.48 90.69 90.53 90.67 90.85 92.80 92.83 92.55 93.21 92.86
175 90.63 90.70 90.64 90.72 90.98 93.11 93.31 93.00 93.70 93.25
150 85.27 (DAS)
155 87.28 86.54 86.38 85.94 85.42 87.80 87.50 87.39 86.93 86.32
160 88.29 87.29 86.87 86.16 85.37 89.86 88.43 88.17 87.36 86.38
YOLOv8 165 89.53 87.81 87.35 86.22 85.38 90.62 89.04 88.52 87.52 86.43
170 90.03 88.23 87.70 86.30 85.36 90.45 89.48 88.63 87.63 86.47
175 90.07 88.52 87.95 86.37 85.39 89.85 89.48 88.73 87.64 86.46

Table 8 summarizes the overall experimental results based on the YOLOv8 model.
The most significant performance improvement was observed when SLOT data were
added. Additionally, incorporating augmented data generated through DAS resulted in an
approximately 5% increase in performance. In the DD results, using a threshold of 0.5 to
generate pseudo-label data led to only a 1.20 improvement in performance. However, when
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applying the super-low threshold, a performance gain of 5.35 was achieved compared to
the DAS results.

Table 8. A summary of the experiments conducted based on the YOLOv8 model.

SLOT DAS DD Super-Low Threshold AP (%)
36.86
v 80.25
v v 85.27
v v v 86.47
v v v v 90.62

v: The check mark indicates whether the corresponding method is activated.

Table 9 compares the results of different self-training techniques across models, in-
cluding the proposed system, naive self-training, and DD for YOLOv6, YOLOV?, and
YOLOVS. The experimental results show that with YOLOv7 and YOLOVS, applying DD
achieved higher accuracy than naive self-training. In contrast, the DD model performed
worse than naive self-training with YOLOvV6. The proposed system achieved the highest
accuracy across all models, with the most significant performance improvement observed
in YOLOVS8 compared to DD.

Table 9. A comparison table of the AP results (%) based on different self-training techniques.

Method YOLOV6 YOLOv7 YOLOVS
Naive Self-Training [67] 80.56 64.59 62.04
DD [69] 79.30 75.98 65.29
Proposed System 90.57 93.11 90.62

Model training was initialized from a source-only baseline without using target-labeled
data, including SLOT, for both naive self-training and DD. In the naive self-training, pseudo-
labels were generated using a fixed confidence threshold of 0.5. For DD, we implemented a
simplified version of the original method by applying multi-view augmentation and en-
semble prediction, while replacing the per-category thresholding strategy employed in the
original DD approach with a fixed threshold of 0.5 for pseudo-label selection. This unified
threshold setting allows for a fair comparison between the two self-training approaches
under consistent pseudo-label filtering criteria.

Table 10 presents the experimental results verifying whether the proposed system
effectively operates under various domain shift conditions. This experiment was conducted
in the reverse scenario of the previous top-view — tilted-view experiment to examine
whether the proposed method can also effectively address domain shift when transitioning
from a tilted view to a top view. For the experiment, Hadong data, corresponding to the
tilted view, were used as the training dataset, while AI Hub data, corresponding to the top
view, were used as the test dataset. A sample of 1000 images was randomly selected from
the test dataset to maintain consistency in the evaluation environment.

Table 10. Comparison of the AP results (%) for the proposed method based on changes in the
camera’s perspective.

Camera Angle Proposed
(Source — Target) Source-Only SLOT DAS System
Top-View — Tilted-View 36.86 80.25 85.27 90.62
Tilted-View — Top-View 69.91 83.80 86.90 90.16

The experimental results show that the Source-Only model exhibited a decline in
performance due to domain shifts. The greatest performance improvement was observed
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when applying the SLOT method. The proposed system achieved a performance gain of
approximately 20 compared to the Source-Only model. Although this improvement was
lower than the 53-point increase observed in the top-view — tilted-view experiment, it still
demonstrates a significant enhancement.

Ultimately, the proposed method maintained a robust performance across various
domain shifts, achieving an accuracy of 90.16. The accuracy experimentally confirms
that the proposed system is not limited to specific domain shifts but can maintain stable
performance under diverse environmental variations.

5. Ablation Studies
5.1. Effect of Entropy-Based SLOT Data Selection

The performance of the proposed system is significantly influenced by the base model,
which is a key factor in determining the final model’s accuracy. Therefore, selecting the
appropriate SLOT data for base model training is crucial. In this study, entropy values
were used as the selection criterion to compare and analyze images from the target domain
with varying entropy levels. Table 11 presents the base model training results based on
SLOT data selected according to entropy values.

Table 11. Base model training results for SLOT data selected based on entropy values. The “Highest”
method shows the results of training the model using the image with the highest entropy value
among the extracted target-domain data. The “Lowest” method shows the results of training the
model using the image with the lowest entropy value among the extracted target-domain data.

Method Entropy AP (%)
Highest Entropy 0.822795 85.27
Lowest Entropy 0.797567 80.43

The results indicate that using images with higher-entropy values led to a better base
model performance. These results can be attributed to high-entropy images containing
more diverse features, providing more meaningful information during model training. In
contrast, low-entropy images often contained more static backgrounds or lacked diversity,
limiting their effectiveness in training the model. These findings suggest that selecting SLOT
data with high-entropy values positively impacts the model’s performance. Ultimately, this
improves the accuracy of the self-training and domain adaptation while ensuring a robust
performance even in changing field environments.

5.2. Initial Model Performance Based on the Number of SLOT Data Samples

Experiments were conducted using varying amounts of SLOT data to investigate the
impact of the number of SLOT data samples on model performance. YOLOvV8 was used
as the evaluation model, and only source and SLOT data were included in the analysis.
The number of SLOT samples ranged from 0 to 4000, and the results are summarized
in Table 12.

The results show that adding just a single SLOT sample significantly improved model
performance, with AP increasing from 36.86 to 85.81. This demonstrates that even minimal
labeled information from the target domain can lead to substantial performance improve-
ments. While further increases in the number of SLOT samples continued to enhance
performance, the improvement gradually diminished. For example, using five SLOT sam-
ples increased AP to 88.62, while using ten samples further improved it to 92.48. However,
beyond this point, the rate of improvement slowed. Specifically, with 100 SLOT samples,
AP reached 93.67, while using 1000 and 4000 SLOT samples resulted in AP scores of 95.26
and 95.78, respectively, indicating that performance gains approached saturation.



Sensors 2025, 25, 3406

23 of 37

Table 12. AP evaluation results based on the number of SLOT data samples. When the number of
SLOT data samples is 0, the model was trained using only source data.

Number of SLOT Data Samples AP (%)

0 (Source-Only) 36.86

1 85.81

5 88.62

10 92.48

100 93.67

1000 95.26

4000 95.78

From a trade-off perspective, annotating bounding boxes for a single image, typically
containing 15-25 objects, takes about 2-3 min of manual effort [29] and improves AP from
36.86 to 85.81, achieving a gain of approximately 49 points. However, further performance
improvements require tens to hundreds of hours of additional manual labeling. For
example, labeling 1000 images yields only an additional 10 percentage point gain. In
contrast, DAS requires approximately 86 h of computation time and is a fully automated
process with no human intervention. This approach replaces labor-intensive labeling with
an automated computational procedure, providing a repeatable and scalable structure even
as the data volume increases, demonstrating high efficiency and scalability.

These findings highlight that even a single SLOT sample can lead to a substantial
improvement in model performance. The sharp increase in AP from 36.86 to 85.81 indicates
that the model can effectively adapt to the target environment with minimal labeled
information. This demonstrates that the proposed approach offers a cost-effective and
efficient solution in real-world scenarios where obtaining labeled data is challenging.

5.3. Early Stopping in Data Augmentation Search

Table 13 compares the results of applying early stopping during DAS execution. In
both cases, the number of generations, G, and chromosome, C, were set to 3 and 60,
respectively, but differences were observed in the number of training epochs and total
training time. Without early stopping, training continued for a total of 1800 epochs (60 x 30)
epoch and took approximately 103 h. In contrast, with early stopping applied, training
was completed in 1595 epochs, reducing the total training time to approximately 86 h. This
resulted in a 16.5% reduction in the overall training time. Furthermore, the model trained
with DAS-generated data achieved a higher AP (85.27) when early stopping was applied.
This suggests that early stopping effectively prevented overfitting by terminating training
at an optimal point, leading to better parameter selection.

Table 13. A comparison of the results based on whether early stopping was applied during the

DAS process.
Early Stop G c Total Epochs  Operating Time (hours) AP (%)
3 €0 1800 103 77.35
v 1595 86 85.27

v: The check mark indicates whether the corresponding method was activated.

As the DAS must perform iterative training over various augmentation combinations,
it inherently requires relatively high computational resources. However, this process is
executed only once during the initial model preparation stage. Once the optimal aug-
mentation parameters are identified through this search, the resulting augmented SLOT
dataset can be reused in subsequent self-training iterations or system redeployment without
repeated searches.
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In this study, applying the DAS led to a performance improvement with YOLOVS,
raising the AP from 80.25 to 85.27—a gain of 5.02 points. Similar improvements were con-
sistently observed across other object detection models, including YOLOv5, YOLOv6, and
YOLOV?. These improvements demonstrate that the proposed DAS is not limited to a spe-
cific architecture but induces performance enhancement across all tested models, proving
its high generalizability and reproducibility. Considering these performance improvements,
the computational overhead incurred during the initial model-building phase is deemed
acceptable and justifiable, even in practical application environments. Furthermore, by
pre-limiting the search space, population size, and number of generations, the proposed
framework maximizes the search efficiency relative to computational resources, achieving
a practical balance between computational cost and long-term system stability. In cases
where environmental changes are very frequent or repeated applications to new domains
are required, the cumulative computational burden from repeated executions of the DAS
should be carefully considered.

5.4. Effect of Key Framesz in Self-Training

Table 14 presents the self-training results comparing the application of the key frame
selection algorithm. Specifically, it compares cases where pseudo-label data were generated
using 4000 frames extracted at uniform intervals versus 4000 frames selected through the
key frame selection algorithm. The comparison shows that applying key frame selection
resulted in a performance improvement of 0.33 (90.29 — 90.62) regarding the highest
accuracy achieved. The improvement indicates that, in addition to the threshold used
for selecting pseudo-labels, the quality of the input images also plays a crucial role in
model performance.

Table 14. A comparison table of model AP (%) based on whether the key frame selection algorithm
was applied. In APep, ep represents the number of epochs for the model. Bold values indicate the
higher accuracy between the two methods for each epoch.

Key Frame Selection Algorithm

AP, L
APi50 85.27

APy55 88.04 87.80
APy 89.95 89.86
APig5 90.29 90.62
APy 90.01 90.45
APy75 89.53 89.85

v': The check mark indicates whether the corresponding method was activated.

5.5. Performance Analysis of Image Transformation Techniques

Recent studies have demonstrated that applying image transformation techniques,
such as perspective transformation [81], can mitigate the domain shift problem by reducing
differences among image domains [81,82]. In this experiment, we compare and analyze
the impact of the recently proposed perspective transformation technique [81] and the
data generalization method (DOG) [82] on the accuracy of the proposed system. The
perspective transformation in [81] enlarges distant objects that appear smaller in a tilted
view, transforming them as if viewed from a top-down perspective. Meanwhile, DOG
enhances the adaptability of object detection models through image generalization.

As shown in Table 15, when the proposed method was applied alone, the AP reached
90.62, demonstrating its effectiveness in mitigating the domain shift problem. When
the perspective transformation technique was additionally applied, the AP improved to
90.73, indicating that image generalization through perspective transformation positively
influenced performance. In contrast, when the DOG method was additionally applied,
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the AP decreased to 79.82. The method suggests that while the DOG method enhances
model adaptability through data generalization, it may introduce noise in specific datasets,
leading to performance degradation.

Table 15. AP (%) comparison on the application of image transformation techniques.

Proposed Method Perspective Transformation [81] DOG [82] AP
v 90.62
4 v 90.73
v v 4 79.82

v': The check mark indicates whether the corresponding method was activated.

These results reaffirm that the perspective transformation technique contributes to
alleviating domain shift while confirming that the proposed method maintains high detec-
tion performance even when combined with other image processing techniques. However,
to effectively utilize the DOG method in future research, it will be crucial to establish a
dedicated training strategy and optimize parameters through fine tuning.

6. Discussion
6.1. Correlation Between Entropy and the Number of Objects

Figure 10 visually presents changes in the pigsty environment based on differences
in entropy values. The experimental results show that images with high entropy con-
tain a more significant number of pigs, providing more diverse visual information. In
contrast, images with low entropy tend to include fewer pigs, reducing the complexity
of the information. The dataset was divided into upper- and lower-entropy groups to
quantitatively analyze this trend, and the average number of pig objects in each group
was compared (Table 16). The analysis revealed that the upper-entropy group had an
average of 26.5 pigs, whereas the lower-entropy group had an average of 19.7 pigs. The
averages indicate that higher-entropy data generally include more objects, increasing the
likelihood of learning diverse pig poses, sizes, and spatial arrangements during model
training. Selecting high-entropy data can, therefore, contribute to more effectively reflecting
the complexity of real-world farm environments, potentially leading to improved domain
adaptation performance.

© 0

Figure 10. Examples of changes in the pigsty environment based on entropy values: (a) 0.8227;
(b) 0.8225; (c) 0.8221; (d) 0.7975; (e) 0.7978; (f) 0.7985.
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Table 16. The difference in the average number of objects between the high-entropy and low-entropy
groups was analyzed. The entropy groups indicate the number of images selected for each category,
while the average object count represents the mean number of objects present in the images within
the upper- and lower-entropy groups.

Entropy Group High-Entropy Group Low-Entropy Group
Category Average Number of Objects =~ Average Number of Objects
A (10 frames) 26.5 19.7
B (100 frames) 26.34 20.16
C (1000 frames) 24.28 20.76

6.2. Data Augmentation Search Evaluation Data Generation Method

The evaluation data used in DAS were generated using the copy-and-paste technique,
which can be categorized into object-based and segmentation-based methods. Determining
which method is more suitable is essential. The object-based approach involves copying
annotated data using bounding boxes onto the background image, while the segmentation-
based approach uses polygon-annotated data for pasting.

The correlation coefficient between evaluation data generated using bounding boxes
and polygons was measured against the target data to assess which method is more appro-
priate. Figure 11 presents the graph comparing the correlation coefficients. In Figure 11a,
the x-axis represents ten experimental cases, each corresponding to a model trained using
different augmented datasets generated with a distinct DAS-selected parameter. The y-axis
indicates the AP score for each model. The results show that the polygon-based method
achieved a higher correlation (0.802) with the target data, whereas the bounding-box-based
method had a much lower correlation (—0.015). Thus, the final evaluation of the DAS
results using the polygon-based method is more appropriate, as it more accurately reflects
the characteristics of the target domain.

@— target
1 polygon

0.9 ® ° bounding box
" 0.8 <= e ’—C ° ® ——
= 0.7 .
8 os — 0. Target Polygon Bounding Box
& 0.
< Correlation 1 0.802 -0.015

0.4 —

0.3

0.2

A B C D E F G H J
Ten experimental cases
(a) (b)

Figure 11. The correlation coefficient calculation results: (a) AP evaluation results of ten models using
target data, polygon data, and bounding-box data. Each model on the x-axis was trained using a different
augmented dataset generated with parameters selected by the DAS. The x-axis represents the individual
models (labeled A-J), and the y-axis indicates the AP score; (b) correlation coefficient calculation results,
from left to right, for target <+ target, target <> polygon, and target <> bounding box.

6.3. Comparison of Detection Results

Figure 12 visually compares the object detection results of the trained models (Source-
Only, SLOT, DAS, Proposed, and Oracle). The image contains 24 pigs, with a tilted view,
causing objects at the top to appear smaller and those at the bottom to appear larger.
The pink bounding boxes represent the objects detected by each model. The Source-Only
model failed to detect standing pigs and smaller pigs compared to the other models,
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highlighting the training limitations with only source data. As the models progressed from
SLOT — DAS — Proposed — Oracle, an improvement in accuracy was visually evident.

Proposed Oracle

Figure 12. The object detection results for each model (Source-Only, SLOT, DAS, Proposed, and
Oracle) are visually shown for the same image. The pink bounding boxes represent the objects
detected by the models.

The Proposed model detected more objects than the Oracle model, demonstrating its
ability to leverage a broader set of pseudo-labels through the super-low-threshold strategy.
While this approach led to significant improvements in accuracy and adaptability under
domain shift conditions, it also resulted in a higher number of false positives than other
models, indicating a potential risk associated with noisy pseudo-labels. In particular,
incorporating low-confidence predictions into training may increase the likelihood of
including uncertain or inaccurate detections, which can introduce label noise and reduce
precision in complex environments. Although the system maintained high AP across
all experimental scenarios, this mechanism inherently carries a level of uncertainty that
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may affect performance when deployed in more diverse or dynamic real-world settings.
Therefore, further refinement of the pseudo-label selection process may help mitigate
residual false positives and enhance the robustness and consistency of the model across a
broader range of deployment environments.

6.4. Sensitivity and Robustness Analysis of the Confidence Threshold

In the self-training process, the confidence threshold serves as a key hyperparame-
ter that determines the criteria for pseudo-label collection, thereby influencing both the
quantity and quality of the labels. Accordingly, analyzing performance variations under
different threshold conditions is a critical step in validating the design soundness and
robustness of the proposed approach.

In this study, we employed seven threshold values (0.001, 0.005, 0.01, 0.05, 0.1, 0.3, and
0.5) and summarized the resulting AP trends over self-training iterations (epochs 155-200)
in Table 17.

Table 17. Comparison of AP (%) changes across self-training iterations (epochs 155-200) according to
confidence threshold values. AP 1, f refers to the results where data with a threshold of 7., r or
higher was designated as pseudo-label data. Bold values indicate the highest accuracy within each
threshold, and underlined value indicate the highest accuracy across all thresholds.

Epoch APg.001 APy.005 APo.01 APg .05 APy, APg3 APg5
155 88.38 88.02 87.80 87.50 87.39 86.93 86.32
160 90.47 90.16 89.86 88.43 88.17 87.36 86.38
165 90.55 90.86 90.62 89.04 88.52 87.52 86.43
170 89.73 90.41 90.45 89.48 88.63 87.63 86.47
175 88.68 89.51 89.85 89.48 88.73 87.64 86.46
180 87.77 88.51 89.09 89.22 88.76 87.58 86.43
185 87.06 87.61 88.32 88.90 88.76 87.47 86.37
190 86.43 86.85 87.59 88.44 88.74 87.40 86.31
195 85.91 86.26 86.95 87.94 88.52 87.33 86.21
200 85.44 85.79 86.36 87.34 88.26 87.20 86.15

The analysis revealed that most threshold configurations reached their maximum
AP before epoch 175, with performance deterioration observed when training continued
beyond a certain point. Specifically, thresholds of 0.001 and 0.005 achieved peak accuracies
of 90.55 and 90.86 at epoch 165, respectively, but declined to 85.44 and 85.79 at epoch 200,
reflecting decreases of 5.11 and 5.07 points compared to their peaks. This suggests that
setting the threshold too low can lead to excessive acceptance of pseudo-labels, causing
noise accumulation in later training stages and resulting in unstable performance.

By contrast, the 0.01 threshold achieved an accuracy of 90.62 at epoch 165 and main-
tained 86.36 at epoch 200, representing a smaller decrease of 4.26 points. This relatively
minimal performance drop indicates that the system achieved both high initial accuracy
and stable performance throughout the self-training process. These results demonstrate
that the super-low-threshold strategy not only increases the quantity of labels but also
effectively balances learning signals and noise by maintaining noise at manageable levels
while providing sufficient training signals.

When the threshold was set at 0.05 or higher, the magnitude of performance decline
over successive iterations was limited, but the overall performance remained low from the
outset. For example, at a threshold of 0.05, the system recorded 89.48 at epoch 175 and
87.63 at epoch 200, showing relatively stable results but ultimately lower peak and final
performances compared to the 0.01 setting. Thresholds of 0.1 or higher (high-threshold
settings) limited the number of pseudo-labels to the point where the benefits of self-training
were not fully realized.
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It is also noteworthy that, despite the performance declines observed in the later
stages for some thresholds (e.g., 0.001 and 0.005), their AP still surpassed that of the high-
threshold settings (>0.05). This suggests that the proposed system possesses structural
robustness, allowing it to tolerate a certain level of label noise without experiencing drastic
performance collapse.

These observations are further supported by the loss curves presented in Figure 13.
The curve corresponding to the 0.01 threshold exhibits fluctuations between epochs 175
and 195, yet the loss remains within a narrow range of approximately 1.08-1.12. In contrast,
the 0.001 threshold shows a steady decline in loss up to epoch 180, followed by a slight
increase, indicating signs of overfitting due to the accumulation of noise in the pseudo-
labels. Meanwhile, the 0.5 threshold maintains an almost flat loss curve throughout the
training process, suggesting underfitting caused by insufficient pseudo-labels for effective
learning. Although the 0.01 curve shows some variation, it minimizes the overfitting
observed at 0.001 and the underfitting observed at 0.5, demonstrating a well-balanced
training tendency that avoids both extremes.

== == Threshold 0.001
1.16 me  Threshold 0.01
\ ===« Threshold 0.5
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Figure 13. Loss curves during self-training under three pseudo-label confidence thresholds: each
line showing 0.001 (blue dashed), 0.01 (red solid), and 0.5 (green dashed-dotted) threshold. The 0.01
threshold demonstrates stable training with minimal loss fluctuation, while 0.001 exhibits late-stage
overfitting, and 0.5 indicates underfitting due to limited pseudo-labels.

Opverall, the 0.01 threshold demonstrated the best results in terms of peak performance,
sustained accuracy across iterative training, and tolerance to label noise. Therefore, this
value was adopted as the baseline for the super-low-threshold strategy in this study.

6.5. Validation and Generalizability Across Models and Scenarios

The experimental results strongly support the validity and generalizability of the
proposed approach across various object detection models and deployment scenarios. As
shown in Tables 6-9, the proposed system consistently improved accuracy across YOLOV®6,
YOLOV7, and YOLOVS. Additional results using YOLOV5 (Appendix A) showed similar
improvements, confirming that the method generalizes beyond the originally targeted ar-
chitectures. This consistency across models highlights the approach’s architecture-agnostic
nature and implementation flexibility.

The method also showed strong adaptability to domain shift conditions. In camera
viewpoint adaptation experiments (Table 10), the adapted models achieved over 90% AP in
both top-view — tilted-view and the reverse direction, while source-only models performed
substantially worse (36.86 and 69.91 AP, respectively). These results demonstrate that the
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proposed system generalizes effectively across viewpoint shifts, suggesting robustness to
diverse environmental conditions in real-world farms.

In addition, ablation studies, as shown in Tables 11-15, quantify the contribution of
each core component. High-entropy frame selection for SLOT (Table 11) and minimal
target annotation (Table 12) significantly improved Source-Only baselines” performance.
Early stopping in DAS (Table 13) enhanced the training efficiency, and key frame selection
in self-training (Table 14) led to better pseudo-label quality. Table 15 shows the effect of
additional transformation strategies, revealing that careful selection of augmentations is
essential for optimal performance.

Table 16 further supports the rationale for entropy-based frame selection. It shows that
higher-entropy images tend to contain more detectable pigs, justifying the use of entropy
as a proxy for informative content in the absence of ground truth.

Finally, Figure 11 validates the reliability of the evaluation procedure. The strong
correlation between AP scores on real and synthetic evaluation sets (Figure 11a,b) confirms
that our augmented test set accurately reflects actual model performance.

In summary, consistent gains across models, domain conditions, and component
settings confirm the repeatability and generalizability of the proposed method. These
findings support its scalability and effectiveness in diverse and practical farm environments.

7. Limitations and Future Work

The proposed system effectively addresses the domain shift problem and demon-
strates robust performance; however, several limitations remain. First, the experiments
in this study were conducted solely in five specific pig farm environments. While these
environments adequately reflect real farm settings, it is difficult to claim that they fully
represent the diversity of all commercial farming environments. Second, the study assumed
relatively static camera installations and did not evaluate the system under dynamic con-
ditions where cameras are mobile or the background undergoes rapid changes. In such
settings, object positions, background configurations, and lighting conditions can fluctuate
significantly over time, potentially causing a frame-based static learning model to produce
false positives or experience performance degradation. Notably, when cameras are in mo-
tion, the same object may appear at varying sizes or against different backgrounds across
frames, further intensifying the decline in accuracy. Third, a copy-and-paste-based syn-
thetic dataset was employed for fitness evaluation within the DAS. However, this approach
may not fully capture key factors observed in real farm environments, such as background
consistency and occlusion, possibly leading to visually unnatural results and reducing the
representativeness of the evaluation data. Finally, the system’s effective domain adaptation
depends on augmentation parameter searches and iterative self-training procedures, which
require substantial computational resources. As additional adaptation becomes necessary
over time, the operational burden increases, introducing constraints to the scalability and
applicability of the system.

To overcome these limitations, future research will proceed in the following directions.
First, additional experiments will be conducted across farms with various pig breeds,
barn structures, and lighting conditions to verify the system’s generalization performance.
Second, a self-training strategy incorporating temporal consistency will be introduced to
ensure robustness in dynamic environments. For example, a tracking module could assign
pseudo-labels only when the same object is consistently detected across consecutive frames.
Alternatively, a temporal ensemble approach could be applied to integrate confidence
scores from temporally adjacent frames, thereby suppressing transient noise and stabilizing
label quality. Thirdly, in building a dataset to be used in the DAS algorithm, a dataset
close to a commercial farm environment can be created by applying a data generation
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algorithm using background and foreground. Moreover, advanced synthetic evaluation
techniques, such as GAN-based image generation, may be explored further to narrow the
gap between synthetic and real-world data distributions. Lastly, future research will focus
on developing a mechanism that can automatically determine the need for model retraining
by monitoring domain shift indicators in real time. The mechanism would enable the
system to proactively respond to continuous environmental changes while minimizing the
need for manual intervention.

These follow-up studies are expected to enhance the system’s adaptability to environ-
mental changes, operational efficiency, and learning stability comprehensively. Ultimately,
they may pave the way for developing a practical and sustainable intelligent livestock
monitoring system applicable in real farm settings.

8. Conclusions

This study presented a novel domain adaptation method for pig detection that com-
bines a genetic-algorithm-optimized data augmentation strategy with a self-training scheme
to overcome severe performance degradation caused by domain shifts in real-world farm
settings. A key novelty of the approach is using only a SLOT sample from the new environ-
ment and DAS to create a robust base model. This base model is progressively improved
through a super-low-threshold self-training process that leverages abundant unlabeled
target data. The proposed method effectively adapts a pig detection model to new domains
with minimal manual effort by integrating these components, minimal supervised input,
targeted augmentation, and aggressive self-training into one unified system.

The experimental results demonstrate the effectiveness and practicality of this system.
The adapted model’s detection accuracy more than doubled compared to a source-only
baseline, rising from roughly 37% to 91%, which is on par with the performance of a
fully supervised model in the target domain. The approach also proved robust across
various domain shift scenarios. For example, it maintained high accuracy when the camera
perspective changed from a top-down view to a tilted angle and under different pen
conditions and lighting setups. These outcomes confirm that our method mitigates the
domain shift issues common in livestock environments. Notably, the system achieves this
improvement while requiring only one new annotated image, highlighting a substantial
reduction in the data-labeling burden. The improvement makes the solution highly practical
for commercial farm deployment, where obtaining large labeled datasets is often infeasible.

In conclusion, the proposed system offers a powerful and efficient domain adaptation
solution. It enables quick, cost-effective model customization to each farm’s conditions and
is expected to maintain reliable performance over time in real operational settings. By dras-
tically lowering the barrier to deploying accurate vision models in new environments, our
approach can contribute significantly to advancing smart livestock farming and improving
the efficiency of animal monitoring systems.
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Appendix A. Performance Verification with YOLOvV5

This appendix evaluates the performance of the proposed system using the YOLOv5
model to verify its applicability across different object detection models, particularly in the
context of DAS and self-training.

DAS is performed based on the YOLOv5 model. Table A1l presents the results of
applying DAS using both YOLOv5 and YOLOvVS. The augmentation parameters shown
represent the highest AP for each model. As with YOLOVS, the YOLOVS results also
demonstrated superior performance when the number of images was low. In the case of
zoom operations, only zoom-in was applied for YOLOv5, whereas zoom-out was used for
YOLOVS, indicating that zoom-in and zoom-out can serve as interchangeable augmentation
strategies. A value of 0 (i.e., original) was selected for both YOLOv5 and YOLOVS, suggest-
ing that the highest AP was achieved when no additional augmentation was applied to
individual objects.

Table A1. The results of applying the DAS with YOLOv5 and YOLOv8 models are compared. The
table shows the parameters that achieved the highest AP among the total of 60 chromosomes.

Augmentation Parameter YOLOV5 YOLOvS

Nimage 24 48
P zoom_in 4 0
Mzaom?in 2 1
P zoom_out 0 5
Mzoom_out 1 8
F trans 0 0
P trans 1 1
Mtnms 1 1

AP (%) 56.46 48.30

Table A2 compares the training results for the base models, used as initial models in
the self-training process, based on different training strategies and various YOLO series
models. In this experiment, DAS was conducted using the YOLOvV5 model as a baseline.

The results show that incorporating DAS-augmented data into the training process
of YOLOV5, YOLOv6, and YOLOV? led to higher AP values than the SLOT method.
Specifically, YOLOV5 achieved up to a 2.65-point improvement over SLOT, while YOLOv6
and YOLOV7 recorded gains of 2.81 and 2.60 points, respectively. Overall, DAS improved
AP across all three models, with YOLOV7 achieving the highest AP of 89.14.

These findings demonstrate that DAS is applicable across various model archi-
tectures and can contribute to performance enhancement regardless of the underlying
model structure.

Table A3 presents the results of applying self-training and DD to the base model
trained with DAS-augmented data based on the YOLOvV5 architecture. Similar to the
findings based on the YOLOv8 model, the experiments using YOLOV5 also demonstrated
that applying a low confidence threshold improved accuracy.
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Table A2. These are the results of training YOLOv5, YOLOvV6, and YOLOv7 models using data
generated by applying the DAS based on YOLOV5. The training duration reflects the approximate
time required to train each model using the DAS method.

Params FLOPs Training Duration AP
Epochs Model ™) ) (h%)urs) Method (%)
Oracle 93.07
Source-Only 59.02
YOLOvV5 20.86 47.87 5.35 SLOT 86.15
DAS 88.80
Oracle 88.01
150 Source-Only 61.67
YOLOvV6 18.51 45.20 8.50 SLOT 81.99
DAS 88.55
Oracle 89.69
Source-Only 53.52
YOLOv7 36.91 104.50 10.94 SLOT 8783
DAS 89.14

Table A3. A table comparing the results (%) of self-training and DD based on a model trained for
150 epochs with data generated through DAS, using the YOLOv5 model as the foundation. AP 7, ¢
refers to the results where data with a threshold of 7, or higher were designated as pseudo-label
data. Bold values indicate the highest accuracy for each confidence score threshold, and underlined
values indicate the highest accuracy within each model for self-training and DD.

Model Epoch Self-Training DD
APy 1 APy 05 APy; APgy3 APy 5 APy APg 05 APy1 APy3 APy5
150 88.80 (DAS)
155 9064 9020 8985 8912 8867 9170 9146 9128  90.65  90.17
160 9144 9089 9027  89.05 8825 9240 9218 9176 9095 9022
YOLOVS 145 9193 9127 9058 8895 8793 9218 9252 9198 9108  90.20
170 9209 9147 9075 8890 8771 9142 9246 9207 9126 9025
175 9216  91.60  90.85 8886 8753 9027 9231 9207 9141  90.26
150 88.55 (DAS)
155 89.00  89.02  89.03  89.03  89.03  89.05  89.03  89.04  89.04  89.04
160 8923 8922 8931 8926 8926 8927 8926 8922 8922 8922
YOLOV6 15 8927 8932 8941 8932 8932 8934 8928 8933 8933  89.33
170 8934 8937 8945 8935 8935 8941 8933 8940 8940  89.40
175 89.35  89.40  89.47 8940  89.40  89.45  89.38 8944  89.44  89.44
150 89.14 (DAS)
155 8996 8991 8974 8986 8971 9093 9075 9082  90.66  90.51
160 90.04 9003 8998 8995 8993 9168 9166 9156 9146 9145
YOLOV7 165 9015 9022  90.07  90.04  90.06 9201 9201 9203 9180 9181
170 9020 9029 9012 9012 9019 9228 9222 9221 9196  91.89
175 9026 9044 9013 9018 9029 9242 9257 9240 9197  91.89

This effect was particularly notable in the self-training process of the YOLOv5 model;
prior to applying the low confidence threshold, the model achieved an AP of 88.67, which
increased to 92.16 after its application—representing a performance gain of 3.49. These
results are consistent with those observed in the experiments using YOLOVS, reinforcing
the effectiveness of a super-low-threshold strategy in enhancing model performance across
different architectures.
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