
Academic Editor: Guanding Yu

Received: 29 March 2025

Revised: 14 May 2025

Accepted: 23 May 2025

Published: 28 May 2025

Citation: Xu, S.; Liu, Q.; Gong, C.;

Wen, X. Energy-Efficient Multi-Agent

Deep Reinforcement Learning Task

Offloading and Resource Allocation

for UAV Edge Computing. Sensors

2025, 25, 3403. https://doi.org/

10.3390/s25113403

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Energy-Efficient Multi-Agent Deep Reinforcement Learning Task
Offloading and Resource Allocation for UAV Edge Computing
Shu Xu, Qingjie Liu, Chengye Gong and Xupeng Wen *

China Nanhu Academy of Electronic and Information Technology, Jiaxing 314001, China
* Correspondence: xupengwen0411@163.com

Abstract: The integration of Unmanned Aerial Vehicles (UAVs) into Mobile Edge Com-
puting (MEC) systems has emerged as a transformative solution for latency-sensitive
applications, leveraging UAVs’ unique advantages in mobility, flexible deployment, and
on-demand service provisioning. This paper proposes a novel multi-agent reinforcement
learning framework, termed Multi-Agent Twin Delayed Deep Deterministic Policy Gradient
for Task Offloading and Resource Allocation (MATD3-TORA), to optimize task offloading
and resource allocation in UAV-assisted MEC networks. The framework enables collab-
orative decision making among multiple UAVs to efficiently serve sparsely distributed
ground mobile devices (MDs) and establish an integrated mobility, communication, and
computational offloading model, which formulates a joint optimization problem aimed
at minimizing the weighted sum of task processing latency and UAV energy consump-
tion. Extensive experiments demonstrate that the algorithm achieves improvements in
system latency and energy efficiency compared to conventional approaches. The results
highlight MATD3-TORA’s effectiveness in addressing UAV-MEC challenges, including
mobility–energy tradeoffs, distributed decision making, and real-time resource allocation.

Keywords: energy-efficient; unmanned aerial vehicles; task offloading; resource allocation;
deep reinforcement learning; multi-agent systems

1. Introduction
The rapid evolution of UAV technology and the Internet of Things (IoT) has catalyzed

the emergence of innovative applications such as virtual reality, high-definition video
streaming, autonomous driving, and smart home systems [1]. These applications demand
substantial computational resources and impose stringent latency requirements, while user
expectations for data transmission speeds and service quality are growing exponentially.
However, traditional mobile devices (MDs), constrained by limited computational power,
storage capacity, and energy resources, often fail to meet these demands, hindering the
widespread adoption of 5G technology. To address this, Mobile Cloud Computing (MCC)
was introduced, leveraging centralized cloud service centers to provide shared resource
pools. While MCC enhances data processing and storage capabilities, improving service
reliability and efficiency, the physical distance between cloud centers and MDs often results
in unstable communication connections and increased data transmission delays [2].

To overcome these limitations, Mobile Edge Computing (MEC) emerged as a trans-
formative paradigm, deploying computational resources closer to MDs [3,4]. Since 2014,
the European Telecommunications Standards Institute (ETSI) has been actively defining
and releasing standard drafts for MEC, detailing its architecture and exploring its critical
applications in the 5G era, such as optimizing mobile video QoS (Quality of Service), VR

Sensors 2025, 25, 3403 https://doi.org/10.3390/s25113403

https://doi.org/10.3390/s25113403
https://doi.org/10.3390/s25113403
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s25113403
https://www.mdpi.com/article/10.3390/s25113403?type=check_update&version=1

Sensors 2025, 25, 3403 2 of 24

streaming, video surveillance, V2X (Vehicle-to-Everything) applications, and industrial
control. These applications aim to reduce network latency and significantly enhance service
quality. In 2016, ETSI rebranded MEC as Multi-Access Edge Computing, reflecting its
expanded scope from traditional 3GPP cellular networks to include fixed networks, Wi-Fi,
and other access networks. Compared to MCC, MEC deploys small-scale data centers
within wireless access networks near users, offering lower latency and higher service qual-
ity. This proximity ensures faster mobile data (MD) transmission and mitigates network
congestion, thereby improving overall resource utilization.

Unmanned aerial vehicles (UAVs) have emerged as a promising platform for MEC,
offering unique advantages such as high mobility, flexible deployment, and the ability
to provide on-demand computational services in remote or disaster-stricken areas. In
single-UAV MEC systems, however, task offloading and resource allocation face challenges
due to the limited number and compact distribution of MDs. In scenarios with sparse MD
distributions, UAVs are constrained by battery life and computational capacity, making
it difficult to provide effective services. To address this, multi-UAV MEC systems have
been proposed, where multiple UAVs collaboratively provide computational offloading
services to ground MDs. Studies on the tradeoff between latency and energy consumption
in multi-UAV MEC systems have focused on weighted system-wide latency and energy
consumption [5] or the latency and energy issues in communication and computation
processes [6].

Recent advances in energy-aware scheduling for Mobile Edge Computing leverage
optimization and machine learning to minimize system energy consumption across diverse
scenarios. Key approaches include deep reinforcement learning for asynchronous task
offloading [7], game-theoretic and iterative methods for multi-user resource allocation [8,9],
alternating optimization in STAR-RIS-assisted systems [10], Lyapunov-based interference
management [11], and Q-learning for dynamic multi-user environments [12]. These studies
collectively demonstrate the effectiveness of model-driven and learning-based techniques
in optimizing MEC energy efficiency, with reinforcement learning emerging as a particu-
larly promising direction for adaptive resource management in complex edge computing
networks. However, these algorithms are limited by resources such as communication,
computing and energy, which makes it necessary to balance its own energy consumption
while reducing the delay of task processing. How to reasonably formulate task offloading
and resource allocation strategies to achieve the goal of balancing task processing delay
and energy consumption of unmanned aerial vehicles is a challenging problem.

This paper investigates task offloading and resource allocation in multi-UAV MEC
systems, aiming to minimize the weighted sum of task processing latency and UAV energy
consumption. Given the non-convex nature of this problem and the inclusion of discrete
variables, it is modeled as a Markov Decision Process (MDP). A MATD3-based task offload-
ing and resource allocation algorithm is proposed, jointly optimizing MD selection, UAV
mobility control, UAV CPU frequency adjustment, and task offloading allocation. This
algorithm accelerates convergence, effectively reducing UAV energy consumption and task
processing latency.

The contributions of this paper are summarized as follows:

(1) A comprehensive task offloading and resource allocation framework for multi-UAV
mobile edge computing systems is proposed, addressing scenarios with sparse MD
distributions. The framework integrates three key components: (i) a mobility model
capturing UAV and MD dynamics, (ii) a communication model accounting for time-
varying channel conditions, and (iii) a computational offloading model with resource
constraints. This integrated approach enables the formulation of a joint optimiza-

Sensors 2025, 25, 3403 3 of 24

tion problem that minimizes the weighted sum of task processing latency and UAV
energy consumption.

(2) By modeling the problem as a Markov Decision Process, a Multi-Agent Twin Delayed
Deep Deterministic Policy Gradient for Task Offloading and Resource Allocation
algorithm, namely, MATD3-TORA, is proposed to solve the optimization problem.
The proposed solution incorporates three key innovations: (i) a twin-critic architecture
to prevent overestimation bias, (ii) a delayed policy update mechanism for training
stability, and (iii) a distributed execution framework that enables scalable coordination
among multiple UAVs.

(3) Extensive experiments demonstrate that the proposed MATD3-TORA algorithm
achieved superior performance compared to benchmark strategies on the weighted
latency and energy consumption. The convergence performance of the proposed algo-
rithm was analyzed under varying learning rates and exploration rates. Furthermore,
the algorithm achieved the lowest weighted sum of task processing latency and UAV
energy consumption across different computational task volumes and transmission
bandwidths, validating its effectiveness.

The structure of this paper is organized as follows. Section 2 provides a comprehensive
literature review, focusing on the application of deep reinforcement learning in UAV-
enabled mobile edge computing systems. Section 3 presents the system models, including
the mobility model, communication model, and computational model, which collectively
form the foundation for the proposed framework. Section 4 elaborates on the novel Multi-
Agent Twin Delayed Deep Deterministic Policy Gradient algorithm. Section 5 provides
an in-depth analysis of the experimental results, including a discussion of the algorithm’s
effectiveness in optimizing task offloading and resource allocation. Finally, Section 6
concludes the paper by summarizing the key findings, contributions, and potential future
research directions.

2. Literature Review
In traditional Mobile Edge Computing systems, research on task offloading and

resource allocation has primarily focused on various optimization objectives, including
minimizing latency [13–16], reducing energy consumption [7–12], lowering costs [17–20],
and maximizing utility [21]. Among these, minimizing latency and energy consumption
has been a central focus.

Several studies have explored latency optimization in MEC systems, yet inherent
limitations persist. Saleem et al. [13] proposed a Joint Partial Offloading and Resource
Allocation (JPORA) scheme for the problem of minimizing total task processing latency in
Device-to-Device (D2D)-enabled MEC systems, but its reliance on centralized optimization
may hinder scalability in large-scale networks. Shu et al. [14] addressed the issue of mini-
mizing expected execution latency for fine-grained tasks in low-power MEC systems and
introduced a lightweight multi-user offloading strategy with a distributed consensus mech-
anism; however, their approach assumes ideal wireless conditions, neglecting dynamic
interference fluctuations. Xiao et al. [15] explored the minimization of system latency in
multi-user, multi-server MEC and decomposed the latency minimization problem into
task offloading and energy allocation subproblems, solving them via matching theory and
heuristics, yet their single-server-per-user constraint restricts flexibility in multi-server
environments. Wan et al. [16] studied latency minimization in Non-Orthogonal Multiple
Access (NOMA)-based MEC systems and developed a heuristic algorithm for NOMA-
based MEC, combining binary search and swap matching, but the computational overhead
increases exponentially with user density. Goudarzi et al. [22] proposed a distributed appli-
cation placement framework leveraging an actor–critic reinforcement learning paradigm,

Sensors 2025, 25, 3403 4 of 24

specifically employing the IMPortance Weighted Actor Learner Architecture (IMPALA) to
optimize resource allocation in edge computing environments. In a complementary study,
Azizi et al. [23] proposed two novel semi-greedy heuristic algorithms—Priority-Aware
Semi-Greedy (PSG) and its enhanced variant incorporating a multi-start procedure—to
address the challenge of deadline-constrained IoT task scheduling in fog networks, demon-
strating significant improvements in mapping efficiency.

Energy-efficient MEC strategies also exhibit critical tradeoffs. Chen et al. [7] addressed
the problem of minimizing total system energy consumption in asynchronous task MEC
systems, proposing a DDQNL-IST-based polling feedback energy-saving offloading strat-
egy, yet their approach lacks adaptability to bursty workloads. Li et al. [8] tackled the
minimization of total energy consumption for all users in multi-user, multi-server MEC
systems, employing game theory and Lagrangian functions to solve the offloading strat-
egy and resource allocation subproblems, but their Nash equilibrium-based solution may
not guarantee global optimality. Wang et al. [9] investigated the minimization of total
energy consumption for all mobile users (MUs) in multi-access MEC systems, introducing
a two-layer iterative algorithm to jointly optimize task offloading rates, computational
frequencies, and transmission precoding matrices for each MU. Zhang et al. [10] studied
energy consumption minimization in Simultaneously Transmitting and Reflecting Recon-
figurable Intelligent Surface (STAR-RIS)-assisted MEC systems, proposing an alternating
algorithm to optimize STAR-RIS transmission and reflection coefficients, but their algo-
rithm assumes static RIS configurations, limiting responsiveness to mobility. Sana et al. [11]
addressed the problem of minimizing system energy consumption under inter-cell and
intra-cell interference, formulating it as a long-term dynamic optimization problem and
decomposing it into CPU scheduling and wireless resource allocation subproblems using
Lyapunov stochastic optimization, yet their long-term dynamic formulation may not suit
real-time applications. Zhou et al. [12] employed Q-learning and DDQN for joint offloading
and resource allocation, but their model suffers from high training complexity in large
state spaces.

In the context of latency and energy optimization in multi-UAV MEC systems,
Liu et al. [24] studied task offloading in a system comprising high-altitude and low-altitude
UAVs, where high-altitude UAVs optimized pricing to maximize revenue, while low-
altitude UAVs minimized latency through task offloading. The authors proposed a multi-
leader, multi-follower Stackelberg strategy to address this problem. Yang et al. [25] focused
on minimizing system energy consumption in multi-UAV MEC systems, introducing a
low-complexity iterative algorithm that jointly optimized user association, energy control,
capacity resource allocation, and UAV positioning. This algorithm solved three subprob-
lems and applied fuzzy c-means clustering to obtain feasible solutions. Zhang et al. [26]
investigated the minimization of response latency in a multi-UAV MEC system consist-
ing of a central top UAV and distributed bottom UAVs, employing stochastic geometric
analysis of the three-dimensional UAV network and queuing theory to solve the problem.
Tun et al. [27] addressed the problem of minimizing total energy consumption during
task execution in multi-UAV MEC systems, proposing a block successive upper-bound
minimization algorithm to jointly optimize offloading decisions, resource allocation mech-
anisms, and UAV trajectories. Almurairi et al. [28] tackled the minimization of UAV
service latency in multi-UAV MEC systems, introducing a multi-layer edge cloud comput-
ing task offloading scheme based on integer linear programming. Zou et al. studied the
minimization of total system latency in a multi-UAV MEC system integrated with Multiple-
Input Multiple-Output (MIMO) technology, employing sequential convex optimization
and block coordinate descent techniques to jointly optimize UAV trajectories and data
offloading strategies.

Sensors 2025, 25, 3403 5 of 24

Recent advancements in UAV-assisted edge computing have introduced innovative re-
inforcement learning approaches to optimize resource allocation and energy efficiency. For
instance, Li et al. [29] developed a triple-learner-based reinforcement learning framework
to simultaneously optimize UAV application placement and energy renewal. Addressing
latency minimization, Liu et al. [30] employed DQN and DDPG algorithms to refine both
UAV trajectories and virtual machine configurations. Wan et al. [31] introduced an online
edge processing scheduling algorithm that dynamically adjusts task processing decisions
based on real-time data rates to enhance computational efficiency. To address resource
constraints, Wang et al. [32] integrated solar energy harvesting to power UAVs while pro-
viding computing services, thereby minimizing overall service costs. For high-dimensional
continuous action spaces, Zhao et al. [33] leveraged a twin delayed deep deterministic
policy gradient (TD3PG) algorithm to jointly optimize trajectory design, task allocation, and
energy management. In the context of vehicular networks, Peng and Shen [34] utilized the
MADDPG algorithm to manage multi-dimensional resources, maximizing the number of
offloaded tasks. Similarly, Wang et al. [35] focused on energy efficiency, jointly optimizing
UAV trajectories and computation offloading decisions while ensuring service fairness
and collision avoidance. Seid et al. [36] proposed a DDPG-based scheme to minimize
service costs and task execution delays by generating optimal computation offloading
policies. Additionally, Liu et al. [37] introduced an attention-based MAPPO algorithm to
optimize UAV computation offloading policies, minimizing weighted energy consumption
while maintaining service fairness. To address resource allocation and energy efficiency
in UAV-assisted networks, Ahmad et al. [38] developed a deep reinforcement learning
framework to enhance spectral efficiency, network capacity, and resource distribution
in beyond 5G networks, employing a deep energy-efficient resource allocation (EERA)
method for dynamic and energy-conscious resource management. Nway et al. [39] pro-
posed a block successive upper-bound minimization (BSUM) strategy to optimize resource
allocation within a two-stage UAV-assisted edge computing system. Omoniwa et al. [40]
introduced a communication-enabled multi-agent decentralized double-deep Q-network
(CMAD-DDQN) approach to simultaneously improve energy efficiency and network cover-
age. These methodologies collectively address critical challenges in UAV-assisted networks,
leveraging innovative optimization techniques to achieve enhanced performance.

From the above literature review, it can be found that current algorithmic approaches
for MEC optimization exhibit methodological deficiencies, particularly in reinforcement
learning (RL)-based methods applied to continuous action spaces. The pervasive issue of
Q-value overestimation stems from inherent flaws in conventional Q-learning and DQN
architectures, where the maximization bias in Bellman updates coupled with function
approximation errors leads to systematic overestimation of the action values. This phe-
nomenon critically undermines the stability and convergence properties of algorithms
designed for fine-grained control tasks such as dynamic task offloading and resource al-
location. In response to the above deficiencies, recent breakthroughs in RL theory have
established dual-critic architectures (e.g., TD3/MATD3) and delayed update mechanisms
as theoretically-grounded solutions to the Q-value overestimation problem. The twin
Q-network paradigm fundamentally mitigates overestimation bias through independent
value function training with minimum operator-based updates, while the policy delay
mechanism prevents premature convergence by decoupling policy updates from value
function optimization. These innovations are particularly salient for MEC systems requiring
multi-agent coordination, as demonstrated by distributed task offloading in UAV swarms
or collaborative resource allocation among edge servers. The MATD3 framework extends
these advantages through its decentralized critic architecture and gradient delay mecha-

Sensors 2025, 25, 3403 6 of 24

nism, enabling stable optimization of continuous control variables in high-dimensional
action spaces.

3. Problem Formulation
In this study, we consider a multi-UAV Mobile Edge Computing (MEC) system,

where multiple UAVs operate in the air to provide computational offloading services for
ground-based mobile devices. Existing research on the tradeoff between latency and energy
consumption in multi-UAV MEC systems has been limited in scope. For instance, the
authors of [5] focused solely on the weighted system-wide latency and energy consumption
of computational offloading among UAV clusters, while [6] only addressed the latency and
energy consumption associated with communication and computation within the system.
Notably, none of these studies have considered the joint optimization of task processing
latency and UAV energy consumption as a weighted sum.

To address this gap, this paper investigates the problem of task offloading and resource
allocation in multi-UAV MEC systems, aiming to minimize the weighted sum of task
processing latency and UAV energy consumption. Given the non-convex nature of this
problem and the inclusion of discrete variables, we model it as a Markov Decision Process
(MDP) and propose a novel task offloading and resource allocation algorithm based on
MATD3-TORA. This algorithm jointly optimizes mobile device selection, UAV trajectory
planning, UAV CPU frequency adjustment, and task offloading allocation.

3.1. Mobility Model

In the multi-UAV Mobile Edge Computing (MEC) system, we consider a scenario
comprising N mobile devices (MDs) and M UAVs equipped with edge servers. Each MD
has generated a set of computational tasks that exceed its local processing capabilities. To
address this, MDs offload a portion of their tasks to UAV edge servers based on a predefined
offloading ratio. Additionally, UAVs optimize their positions by selecting appropriate MDs
and adjusting their locations to minimize the distance to MDs, thereby leveraging line-of-
sight (LoS) channels to achieve enhanced channel gain and transmission rates.

The edge computing system, consisting of multiple MDs and UAVs, employs Time
Division Multiple Access (TDMA) for communication between UAVs and MDs, while
Frequency Division Multiple Access (FDMA) is used for communication among UAVs.
The service period T is divided into n time slots, each with a duration of τ, during
which only one MD occupies the channel to communicate with a UAV. At time slot t,
the MD in the system is denoted as l ∈ {1, 2, . . . , N}, with its coordinates represented as
zmd

l (t) = [xmd
l (t), ymd

l (t), 0]⊤ ∈ R3×1. Similarly, the UAV is denoted as u ∈ {1, 2, . . . , M},
with its coordinates represented as zu(t) = [xu(t), yu(t), H]⊤ ∈ R3×1, where H is the
UAV’s altitude.

Given the stochastic mobility pattern where mobile devices (MDs) can randomly tran-
sition between spatial points within a given time interval, we employ the Gauss–Markov
random mobility model to characterize this movement behavior. Specifically, the position
of an MD at time slot t + 1 is updated according to

xmd
l (t + 1) = xmd

l (t) + vmd
l (t)cos(θmd

l (t))τ (1)

ymd
l (t + 1) = ymd

l (t) + vmd
l (t)sin(θu(t))τ (2)

zmd
l (t + 1) = [xmd

l (t + 1), ymd
l (t + 1), H]⊤ (3)

In Equations (2) and (3), vmd
l (t) and θmd

l (t) represent the moving speed and direction
of the mobile device UAV l in the time slot t, which can be expressed as

Sensors 2025, 25, 3403 7 of 24

vmd
l (t) = c1vmd

l (t− 1) + c2v̄ +
√

1− c2
1ϕl (4)

θmd
l (t) = d1θmd

l (t− 1) + d2θ̄ +
√

1− d2
1ψl (5)

where v̄ and θ̄ represent the moving speed and direction of the mobile device UAV l in the
time slot t, and parameters c1, c2, d1, and d2 are used for evaluating the movement consis-
tency of mobile devices UAV l within continuous time intervals. Meanwhile, ϕl and ψl are
two random variables that follow an independent Gaussian distribution, i.e., ϕl ∼ (ξ̄vl , ζ2

vl
)

and ψl ∼ (ξ̄θl , ζ2
θl
). These two distributions represent the randomness of the movement of

the two devices.
For the multi-UAV MEC system, UAV u initiates its movement at the beginning of

time slot t and updates its position by the start of time slot t + 1 as follows:

xu(t + 1) = xu(t) + vu(t)cos(θu(t))τf ly (6)

yu(t + 1) = yu(t) + vu(t)sin(θu(t))τf ly (7)

zu(t + 1) = [xu(t + 1), yu(t + 1), H]⊤ (8)

In Equations (6) and (7), vu(t) and θu(t) represent the velocity and direction of UAV u
at time slot t, respectively, and τf ly denotes the flight duration of the UAV.

This model ensures efficient task offloading and resource allocation by dynamically
optimizing UAV trajectories and communication protocols, thereby enhancing the overall
performance of the MEC system.

3.2. Communication Model

Assume that in a three-dimensional Cartesian coordinate system, the UAV maintains a
constant altitude H, within which it can freely move on the corresponding horizontal plane.
At time slot t, the initial coordinates of the UAV are denoted as z(t) = [x(t), y(t), H]⊤ ∈ R31,
while its final position is represented as z(t+ 1) = [x(t+ 1), y(t+ 1), H]⊤ ∈ R31. The position
of the mobile device (MD) l is given by zmd

l (t + 1) = [xmd
l (t + 1), ymd

l (t + 1), 0]⊤ ∈ R31. Thus,
the Euclidean distance between UAV u and MD l at time slot t is expressed as

dl,u(t) =
√
(x(t)− xmd

l (t))2 + (y(t)− ymd
l (t))2 + H2. (9)

Let β0 denote the channel gain at the reference distance d = 1 m. For the line-of-sight
(LoS) link, the channel gain between UAV u and MD l is given by

hl,u(t) = β0/(dl,u(t)2). (10)

In practical scenarios where obstacles may block the signal, the impact of such obstruc-
tions must be considered. The wireless transmission rate between UAV u and MD l is then
expressed as

rl,u = Blog2(1 + Puphl,u(t)/(σ2 + PNLoSbl,u(t))). (11)

where B represents the signal bandwidth of the wireless communication, Pupdenotes the
uplink transmission energy of the MD, σ2 is the noise energy, and bl,u(t) is a binary indica-
tor of whether an obstruction exists between UAV u and MD l at time slot t. Specifically,
bl,u(t) = 0 indicates no obstruction, while bl,u(t) = 1 indicates the presence of an obstruc-
tion. PNLoS represents the energy loss due to non-line-of-sight (NLoS) conditions caused
by obstacles such as trees or hills in the environment. This model captures the dynamic
nature of UAV–MD communication, incorporating both LoS and NLoS conditions to ensure
accurate representation of real-world scenarios.

Sensors 2025, 25, 3403 8 of 24

3.3. Computational Model

In the multi-UAV Mobile Edge Computing (MEC) system, the offloading strategy
adopts a partial offloading approach consistent with the single-UAV MEC system. Assume
that mobile device (MD) l is served by UAV u during time slot t. Let Dl(t) denote the total
computational task volume of MD l at time slot t, and let αl,u(t) represent the offloading
ratio of tasks from MD l to UAV u. Consequently, 1− αl,u(t), u(t), represents the proportion
of tasks processed locally. Thus, the local processing delay of MD l at time slot t can be
expressed as

tlocal
l,u (t) = (1− αl,u(t))Dl(t)S/ fmd, (12)

where S denotes the number of CPU cycles required to process one unit of data, and fmd

represents the computational capability of the MD’s processor.
The processing delay for tasks offloaded from MD l to UAV u consists of two

components—transmission delay and computational delay—formulated as follows:

ttr
l,u(t) = αl,u(t)Dl(t)/rl,u(t), (13)

tcomp
l,u (t) = αl,u(t)Dl(t)S/ fu(t), (14)

Since the computational results generated by MEC are typically small, the transmission
delay of returning results via the downlink is negligible. In Equations (6)–(11), UAV u
can dynamically adjust its operating frequency using Dynamic Voltage and Frequency
Scaling (DVFS) technology. The CPU frequency of UAV u at time slot t, denoted as f uav

u (t),
is given by

fu(t) = ku(t) f uav
max, (15)

where f uav
max is the maximum CPU frequency of the UAV, and k(t) is the CPU frequency

adjustment factor at time slot t.
For the task volume Dl(t) generated by MD l, the total processing delay is determined

by the maximum of the local processing delay and the UAV processing delay. Therefore,
the processing delay of UAV u for MD l is defined as

tde
l,u(t) = max{tlocal

l,u (t), ttr
l,u(t) + tcomp

l,u (t)}, (16)

For multiple UAVs at time slot t, the overall task processing delay is determined by
the maximum delay among all UAVs. Thus, the task processing delay at time slot t is
defined as

tdelay(t) = max{tdelay
l,u (t)}, ∀u ∈ {1, 2, . . . , M}, (17)

The energy consumption of UAVs consists of two components: flight energy consump-
tion and energy consumed by the MEC server during task computation. Let Muav denote
the mass of the UAV. At time slot t, UAV u flies at a constant speed v(t) ∈ [0, vmax], with an
adjustment angle θuav ∈ [0, 2π], moving from its initial position to its final position over a
duration τf ly. The energy consumed during this flight is given by

e f ly(t) = ϕ||vu(t)||2, (18)

where ϕ = 0.5Muavτf ly represents the energy consumption coeffient. Additionally, the
energy consumed by the MEC server of UAV u during computation is

pu(t) = κ[fu(t)]3, (19)

Sensors 2025, 25, 3403 9 of 24

where κ is a constant coefficient. Therefore, the energy consumed by UAV u for computing
tasks offloaded from MD l at time slot t is

ecomp(t) = pu(t)t
comp
l,u (t) = κ[fu(t)]2αl,u(t)Dl(t)S. (20)

Given the small data size of computational results, the energy consumption for trans-
mitting results back to the MD is negligible [41]. Thus, the total energy consumption of
UAV u at time slot t is

eto(t) = e f ly(t) + ecomp(t), (21)

In summary, the total energy consumption of all UAVs is

Eto(t) = ∑
t

∑
u

eto, (22)

This model provides a comprehensive framework for optimizing task offloading and
resource allocation in multi-UAV MEC systems, balancing both processing delays and
energy consumption.

3.4. Mathematical Formulation

Assume that at time slot t, the computational task generated by a mobile device is
divided into two parts based on the offloading ratio: one part is processed locally on the
device, and the other part is offloaded to the UAV server for processing. These two parts are
executed in parallel. This implies that, during a specific time slot t, the task processing delay
consists of two components: the delay for local processing and the delay for offloading the
task to the UAV edge server and processing it on the server. In the task processing workflow,
the energy consumption of UAVs is divided into two major components: mobility energy
consumption and computational energy consumption. Mobility energy consumption
is primarily influenced by the UAV’s movement behavior, while computational energy
consumption is mainly determined by the task volume and the UAV’s CPU frequency.
Assume that each UAV u serves only one mobile device at each time slot t. Let ηl,u(t)
indicate whether mobile device l is served by UAV u at time slot t. The selection of
mobile devices, UAV mobility, task offloading, and the UAV’s CPU frequency adjustment
collectively impact both task processing delay and UAV energy consumption. Therefore,
this study aims to jointly optimize mobile device selection, multi-UAV mobility control,
UAV CPU frequency adjustment, and task offloading allocation, with the objective of
minimizing the weighted sum of task processing delay and UAV energy consumption
across all time slots while satisfying the total computational task requirements and service
period constraints. The optimization problem is formulated as follows:

minηl,u(t),zu(t+1),αl,u(t),k(u)

T

∑
t=1

N

∑
l=1

ηl,u(t)[w0tde(t) + w1eto(t)] (23)

C1 : xu(t), xl(t) ∈ [0, L], ∀t, ∀l, ∀u, (24)

C2 : yu(t), yl(t) ∈ [0, W], ∀t, ∀l, ∀u, (25)

C3 : ηl,u(t) ∈ 0, 1, ∀t, ∀l, ∀u, (26)

C4 :
N

∑
t=1

ηl,u(t) = M, ∀t, ∀u, (27)

C5 : w0 + w1 = 1, w0 ∈ [0, 1], w1 ∈ [0, 1], (28)

C6 : ||zu(t)− zv(t)||2 ̸= 0, ∀u ̸= v, (29)

C7 : bl,u ∈ 0, 1, ∀u, ∀l, ∀t, (30)

Sensors 2025, 25, 3403 10 of 24

C8 :
T

∑
t=1

eto
u (t) ≤ Emax, ∀u, (31)

C9 : 0 ≤ αl,u(t) ≤ 1, ∀t, ∀l, ∀u, (32)

C10 :
T

∑
t=1

N

∑
l=1

M

∑
u=1

ηl,u(t)Dl(t) = Dmax (33)

The constraints are defined as follows:

• Constraints C1 and C2 specify that the horizontal and vertical coordinates of UAVs and
mobile devices must not exceed the predefined geographical boundaries, ensuring
that all devices operate within the designated area.

• Constraint C3 indicates whether mobile device l is served by UAV u at time slot t,
where ηl,u(t) = 0 denotes that mobile device l is not served by UAV u, and ηl,u(t) = 1
denotes that mobile device l is served by UAV u.

• Constraint C4 ensures that each UAV serves exactly one mobile device at any given
time slot t.

• Constraint C5 defines w0 as the weight factor for task processing delay and w1 as
the weight factor for UAV energy consumption, with w0 + w1 = 1. This constraint
explicitly captures the tradeoff between processing delay and energy consumption.

• Constraint C6 enforces that the positions of UAVs must not overlap, preventing
potential collisions and crashes.

• Constraint C7 describes the communication link obstruction between mobile device
l and UAV u, where bl,u(t) = 0 indicates a line-of-sight (LoS) link, and bl,u(t) = 1
indicates a non-line-of-sight (NLoS) link.

• Constraint C8 ensures that the total energy consumption of all UAVs does not exceed
their maximum battery capacity Emax over the entire service period.

• Constraint C9 restricts the offloading ratio ηl,u(t) to the range [0,1], where ηl,u(t) = 0
represents full local execution, and ηl,u(t) = 1 represents full offloading to the UAV
edge server.

• Constraint C10 guarantees that the total computational task volume Dmax is completed
by the end of the service period.

This formulation provides a comprehensive framework for balancing task processing
efficiency and energy consumption in multi-UAV MEC systems, ensuring optimal resource
utilization and system performance.

4. The Proposed Algorithm
4.1. Markov Decision Process Modeling

The optimization problem is formulated as a Markov Decision Process (MDP), which
comprises three core components: states, actions, and rewards. In the multi-UAV MEC
system, at each time slot t, the UAVs interact with the environment, execute actions At

based on the current state St, receive rewards Rt, and transition to the next state S′t. Below,
we detail the design of the state space, action space, and reward function for the multi-UAV
MEC system.

4.1.1. State Space

The state space in the multi-UAV MEC system includes UAV states, mobile device
states, and channel states. Specifically, the UAV state is represented by its battery energy,
position, and current CPU frequency. The ground environment state is characterized by the
positions of all mobile devices, the remaining task volume, the randomly generated task

Sensors 2025, 25, 3403 11 of 24

volume of each mobile device, and the channel obstruction status between mobile devices
and UAVs. Thus, the state of the UAV MEC system at time slot t is defined as

st = (s1, . . . , su, . . . , sM, senv), (34)

where s1, . . . , su, . . . , sM represent the states of all UAVs, and senv denotes the task volume,
mobile device positions, and channel obstruction status of the environment. Specifically,
the UAV state and environment state at time slot t are expressed as

su = (eu(t), zu(t), fu(t)), (35)

senv = (Zmd(t), Dremain(t), Dmd(t), Bmd(t)), (36)

where eu(t) is the remaining energy of UAV u, zu(t) is the position of UAV u, f uav
u (t)

is the CPU frequency of UAV u, Zmd(t) = zmd
1 (t), . . . , zmd

N (t) represents the positions
of mobile devices 1 to N, Dremain(t) is the remaining task volume of the system,
Dmd(t) = D1(t), . . . , DN(t) denotes the task volumes generated by mobile devices 1 to
N, and Bmd(t) = b1,u(t), . . . , bl,u(t) indicates the channel obstruction status between
UAV u and mobile devices 1 to l. At the initial time slot (t = 1), eu(t) = Emax, and
Dremain(t) = Dmax. At the final time slot (t=T), Dremain(t) = 0.

4.1.2. Action Space

In the multi-UAV MEC system, continuous actions are related to mobile device selec-
tion, UAV mobility, UAV CPU frequency adjustment, and task allocation. Based on the
observed environmental state, the action vector for all UAVs at time slot t is defined as

At = (a1, . . . , au, . . . , aM), (37)

au = (lu(t), θu(t), vu(t), αl,u(t), ku(t)), (38)

where a1, . . . , au, . . . , aM represent the actions of UAVs 1 to M. For UAV u, the action au

includes the selected mobile device index lu(t) ∈ [0, N], the flight angle θu(t) ∈ [0, 2π], the
flight speed vu(t) ∈ [0, vmax], and the task offloading ratio αl,u(t) ∈ [0, 1]. Similar to the
single-UAV MEC system, the action space consists of continuous values, while the selected
mobile device index lu(t) is discrete. Specifically, if lu(t) = 0, then lu = 1; if lu(t) ̸= 0, then
lu = [lu(t)N]. Additionally, if mobile device lu is selected, the service indicator is defined
as ηl,u(t) = 1. The factor ku(t) adjusts the CPU frequency of UAV u.

4.1.3. Reward Function

As analyzed above, minimizing the task processing delay and energy consumption of
each UAV contributes to minimizing the overall objective function. Therefore, the reward
for UAV u at time slot t is defined as ru, which is the negative value of the weighted sum
of task processing delay and energy consumption. A balancing factor ζ is introduced to
normalize the scales of delay and energy. The reward function is formulated as

Rt = (r1, . . . , ru, . . . , rM), (39)

ru = r(su, au) = −ηl,u(t)[w0tu(t) + w1eu(t)ζ]. (40)

This MDP framework provides a systematic approach to optimize task offloading and
resource allocation in multi-UAV MEC systems, balancing both delay and energy efficiency.

Sensors 2025, 25, 3403 12 of 24

4.1.4. MATD3-TORA-Based Task Offloading and Resource Allocation Algorithm

After modeling the optimization problem as a Markov Decision Process (MDP), we
integrate the MATD3 algorithm with the multi-UAV MEC system to propose the MATD3-
TORA (Multi-Agent Twin Delayed Deep Deterministic Policy Gradient for Task Offloading
and Resource Allocation) algorithm framework, as illustrated in Figure 1. Each agent is
equipped with an independent actor network and dual-critic networks—consistent with
the core design of the TD3 algorithm. The actor network generates actions based on the
current state, while the dual-critic networks evaluate the expected returns of actions to
guide the actor network’s updates.

Figure 1. The MATD3-TORA algorithm framework.

Unlike the single-agent TD3 algorithm, the critic networks in MATD3-TORA con-
sider the states and actions of all agents during evaluation. Specifically, the global state
St = (s1, . . . , su, . . . , sM, senv) and the global action At = (a1, . . . , au, . . . , aM) are used to
estimate the value of each actor network’s decisions. During training, each agent’s critic
network predicts the expected reward for the agent given the current state and the actions
of all agents. Although the input to the critic networks includes the states and actions of all
agents, the output is an expected reward value specific to each agent, guiding the learning
and optimization of its actor network. This approach allows each agent to optimize its
policy based on the global environment state and the actions of other agents, ensuring
coordinated and efficient strategies.

Based on this framework, we propose the MATD3-TORA algorithm, as outlined in
Algorithm 1, which consists of the following eight steps:

(1) Initialization

Initialize the actor networks µ(s1
t |θ1), . . . , µ(s1

t |θ
µ
M), the critic networks Q1(stθ

Q1
1), . . . , sθQ1

M
and Q2(stθ

Q2
1), . . . , sθQ2

M , and their target networks. Initialize the experience replay buffer D
and the simulation parameters of the multi-UAV MEC system.

Sensors 2025, 25, 3403 13 of 24

(2) Environment Reset

Reset the environment state st of the multi-UAV MEC system and normalize the state st

using Algorithm 1 to obtain snor.

(3) Action Execution

Each UAV u selects its action au based on the current policy µ(snor|θu) and Gaussian
noise nt ∼ N(µ, θ2):

au = µ(snor|θu) + nt. (41)

After executing action au, UAV u observes the next state s′ and the immediate reward r.
The transition tuple (s, au, r, s′) is generated. Once all agents complete their actions and
normalize their states, the global transition tuple (St, At, Rt, S′nor) is stored in the experience
replay buffer.

(4) Sample Batch Extraction

Randomly sample a batch of Nb transition tuples (Sb, Ab, Rb, S′b) from the experience
replay buffer to update the actor and critic networks. For agent u, the corresponding sample
is (su, au, ru, s′u).

(5) Critic Network Update

For each agent u, MATD3-TORA employs a dual-critic structure to mitigate overesti-
mation. The target Q-value yu is computed using the minimum of the outputs from the
two critic networks:

yu = ru + γmini=1,2Qθ′i(s
′
u, a′u), (42)

where γ is the discount factor. The parameters of the critic networks are updated by
minimizing the loss function:

θQi ← θQi − αcritic∇θQi L(θQi), i = 1, 2, (43)

where αcritic is the learning rate of the critic networks, and the loss function L(θQi) is
defined as

L(θQi) = 1/Nb

Nb

∑
b=1

(yu −QθQi (su, au))
2. (44)

(6) Actor Network Delayed Update

MATD3-TORA introduces a delayed update mechanism for the actor networks to
reduce fluctuations caused by critic network estimation errors, thereby enhancing learning
stability. The parameters of the actor network u are updated as

θu ← θu − αactor∇θu Ju, (45)

where αactor is the learning rate of the actor network, and the gradient ∇θu Ju can be
computed as

∇θu Ju = ∇aQθQ1
(su, au)|au=µ(su |θu ∗ ∇θu µ(su|θu), (46)

(7) Target Network Update

MATD3-TORA employs soft updates to update the parameters of the target networks:

θ′Qi
← τθQi − (1− τ)θ′Qi

, (47)

θ′µu ← τθµu − (1− τ)θ′µu , (48)

Sensors 2025, 25, 3403 14 of 24

where τ is a small constant close to 0, controlling the update step size.

(8) Iterative Update

Repeat Steps 2 to 7 until the total number of training iterations Imax is reached. Finally,
output the trained actor networks µ(s|θ1), . . . , mu(s|θM).

This algorithm framework ensures efficient task offloading and resource allocation in
multi-UAV MEC systems, balancing coordination, stability, and performance.

Algorithm 1: The MATD3 algorithm for task offloading and resource allocation.
Input: The total number of training iterations (Imax), the learning rate for the actor

network (αactor), the discount factor (γ), the experience replay buffer size
(Np), the mini-batch size (Nb), and the Gaussian action noise (nt);

Output: The actor networks µ(s1
t |θ1), . . . , µ(s1

t |θ
µ
M);

1 Initialize the actor networks µ(s1
t |θ1), . . . , µ(s1

t |θ
µ
M), the critic networks

Q1(stθ
Q1
1), . . . , sθQ1

M and Q2(stθ
Q2
1), . . . , sθQ2

M ;
2 Initialize the experience replay buffer D;
3 for k = 1, 2, . . . , Imax do
4 Reset: s0 ← env.reset() ;
5 Initialize the simulation parameters for the multi-UAV MEC system

environment ;
6 for u = 1, 2, . . . , Imax do
7 UAV u executes an action au

t perturbed by Gaussian noise nt according to
Equation (41);

8 Obtain the next state su
t and reward ru

t ;
9 Calculate the normalization state snor

t ;

10 D ← Store the transition tuple (s, a, r, s′) in the experience replay buffer;
11 Sample Nb from the experience replay buffer D;
12 for u = 1, 2, . . . , Imax do
13 Add truncated Gaussian noise ϵ to the action au

t ;

14 Update the critic network u according to the Minimize loss function L(θQi
u)

of Equations (43) and (44);
15 if Update the actor network then
16 Update the actor network u according to Equations (45) and (46);

17 Soft update on the target network parameters according to the
Equations (47) and (48);

5. Experiments and Analysis
5.1. Experiment Settings

The experiments were conducted on a computational platform running Python 3.75
equipped with a 3.80 GHz CPU and 32 GB of RAM. The UAV simulation environment
was configured within a three-dimensional space of 200 × 200 × 100 m. The total service
period spanned 320 s, discretized into 40 time slots, each lasting 1 s. The UAVs were
constrained to a maximum flight speed of 20 m/s. The transmission bandwidth was set
to 1 MHz, with a channel gain of −50 dB at the reference distance of 1 m. The uplink
transmission energy of the mobile devices was fixed at 0.1 W, while the non-line-of-sight
(NLoS) penetration loss was set to 20 dB. The noise energy at the receiver was −100 dBm.
Each UAV was equipped with a battery capacity of 500 kJ and a maximum CPU frequency
of 1.2 GHz. The mobile devices operated at a CPU frequency of 0.6 GHz, with a compu-
tational requirement of 1000 CPU cycles per bit of data processed. The weight factors for

Sensors 2025, 25, 3403 15 of 24

delay and energy consumption were assigned values of 0.9 and 0.1, respectively. For the
MATD3-TORA algorithm, the scaling factors for the state variables of individual UAVs
were carefully determined. Specifically, the scaling factor for battery energy was set to
the maximum battery capacity of the UAV. The scaling factors for UAV and mobile device
positions were derived from the spatial limits of the ground environment, namely, its
length and width. Additionally, the scaling factors for the total task volume and the task
volumes of individual mobile devices were aligned with their respective upper bounds. The
above parameters were rigorously selected based on well-established methodologies from
the literature [42–45]. All environmental simulation parameters and their corresponding
mathematical notations have been systematically defined to ensure reproducibility and
consistency with prior research.

5.2. Algorithm Comparison

To effectively compare and evaluate the performance of the MATD3-TORA task of-
floading and resource allocation strategy in multi-UAV MEC systems, this study employed
benchmark methods, including MAPPO [46] and QMIX [47]. All reinforcement learning
algorithms underwent state normalization, as described below:

(1) Comparison with Edge-only

In this approach, the UAVs are stationed at fixed positions at the center of the region,
functioning exclusively as Mobile Edge Computing servers for the mobile devices. At
each time slot, all computational tasks generated by the mobile devices are offloaded to
the UAVs for processing. This method relies entirely on the computational capabilities
of the UAVs, with no tasks executed locally on the mobile devices. While this approach
leverages the UAVs’ processing energy, it fails to optimize resource utilization and may
lead to inefficiencies in task distribution.

(2) Comparison with Local-only

In contrast to the Edge-only method, this approach executes all computational tasks
locally on the mobile devices without any assistance from the UAVs. The mobile devices
rely solely on their own processing capabilities to complete all tasks. Although this method
eliminates the need for task offloading, it is constrained by the limited computational
resources of the mobile devices, resulting in higher delays and energy consumption for
resource-intensive tasks.

(3) Comparison with Random

In this method, the UAVs are positioned at fixed locations at the center of the region
and randomly select mobile devices and offloading ratios to process computational tasks.
The movement of the UAVs and the selection of tasks are entirely random, lacking any op-
timization or strategic decision making. As a result, this method fails to achieve consistent
performance and is highly inefficient in resource allocation.

(4) Comparison with MADDPG

The MADDPG algorithm, a well-established multi-agent reinforcement learning
method, employs a single-target critic network to handle continuous action spaces. While
it is suitable for multi-agent environments, it is prone to Q-value overestimation, which
can hinder its convergence speed and optimization performance. Despite these limitations,
MADDPG serves as a relevant benchmark for comparison due to its applicability to similar
problem domains.

Sensors 2025, 25, 3403 16 of 24

(5) Performance Analysis of MATD3-TORA

All reinforcement learning algorithms were trained for a total of 1000 iterations. As
shown in the figure, the Random algorithm failed to converge due to its reliance on random
selection or generation of solutions rather than deterministic rules or optimization processes.
In contrast, both MADDPG and MATD3-TORA achieved convergence, with MATD3-TORA
demonstrating superior performance. Specifically, this accelerated convergence of MATD3-
TORA can be attributed to its innovative design, which addresses the issue of Q-value
overestimation through the use of dual-critic networks, delayed policy updates, and target
policy smoothing. These features enable MATD3-TORA to achieve more stable and efficient
optimization compared to MADDPG.

Furthermore, the MATD3-TORA algorithm significantly outperformed the Edge-only
and Local-only methods in terms of weighted delay and energy consumption. Specifically,
MATD3-TORA achieved reductions in weighted delay and energy consumption, respec-
tively. These results underscore the superior performance of MATD3-TORA in optimizing
task offloading and resource allocation in multi-UAV MEC systems. By intelligently balanc-
ing the computational load between UAVs and mobile devices, MATD3-TORA minimizes
delays and energy consumption while maximizing system efficiency.

In summary, the experimental results demonstrate that MATD3-TORA not only con-
verges faster than MADDPG but also achieves significant performance improvements over
traditional methods such as Edge-only and Local-only. Its ability to address Q-value over-
estimation and optimize resource allocation in a multi-agent environment highlights its po-
tential as a robust and efficient solution for task offloading and resource allocation in multi-
UAV MEC systems. These findings validate the superiority of MATD3-TORA and its appli-
cability to real-world scenarios requiring dynamic and adaptive resource management.

5.3. Sensitivity Analysis
5.3.1. Sensitivity Analysis for Learning Rates

Figure 2 illustrates the convergence performance of the MATD3-TORA algorithm
in a multi-agent environment under varying learning rate configurations. In actor–critic
algorithms, the learning rates of the policy network (actor) and the value network (critic),
denoted as αactor and αcritic, play a pivotal role in ensuring stability and convergence.
Typically, these learning rates require meticulous tuning to adapt to diverse learning
environments and tasks. For instance, αactor and αcritic can be set to 0.1 and 0.5, smaller
values such as 0.01 and 0.02, or even 0.001 and 0.002. As depicted in the figure, all three
learning rate combinations achieved convergence. However, when αactor and αcritic were
set to 0.1 and 0.5 or 0.01 and 0.02, the algorithm converged to suboptimal solutions. This is
primarily attributed to excessively high learning rates, which result in large update steps
during iterations, causing the algorithm to overshoot the optimal solution. In contrast,
when αactor and αcritic were set to 0.001 and 0.002, the algorithm converged to superior
results. This is because a moderate learning rate allows the algorithm to explore the
solution space more thoroughly, enabling the discovery of better strategies. This analysis
underscores the importance of carefully selecting learning rates to balance exploration
and exploitation, thereby enhancing the algorithm’s ability to identify optimal policies in
complex multi-agent environments.

Sensors 2025, 25, 3403 17 of 24

Figure 2. The convergence of the MATD3–TORA algorithm under varying learning rates α.

5.3.2. Sensitivity Analysis for Exploration Rates

Figure 3 presents the convergence performance of the MATD3-TORA algorithm under
varying exploration rates (σexplore). The exploration rate was initialized at 1 and exponentially
decayed with a fixed decay factor of 0.9997 per iteration until it reached the target value. When
σexplore was set to 0.5, the algorithm relied heavily on random action selection for exploration,
leading to convergence to a suboptimal solution. At σexplore = 0.25, the algorithm maintained
a balance between exploring new actions and exploiting learned knowledge, reducing be-
havioral randomness and yielding solutions that approached the optimal solution. When
σexplore was further reduced to 0.1, the algorithm, after sufficient exploration, predominantly
exploited acquired knowledge to make decisions, resulting in convergence to the optimal
solution. Notably, setting σexplore to 0.05 yielded results identical to those at 0.1, indicating that
sufficient exploration had already been achieved, and further reduction in the exploration rate
was unnecessary. This analysis highlights the critical role of the exploration rate in balancing
exploration and exploitation, ensuring the algorithm’s ability to discover optimal strategies
while minimizing unnecessary randomness in decision making.

Figure 3. The convergence of the MATD3-TORA algorithm under varying exploration rates (σexplore).

Sensors 2025, 25, 3403 18 of 24

5.3.3. Sensitivity Analysis for Weights of Latency and Energy Consumption

As illustrated in Figure 4, the weighted cost (combining latency and energy consump-
tion) exhibited distinct trends across different algorithms as the latency weight factor w0

increased from 0.1 to 0.9. The Local-only strategy demonstrated a linear growth pattern
(slope = 0.82), which is expected since it exclusively depends on local processing latency
and remains unaffected by UAV energy consumption. Conversely, the Edge-only approach
showed a decreasing trend (slope = −0.76) due to its complete reliance on UAV resources,
making it more sensitive to energy consumption factors. The proposed MATD3 algorithm
and baseline MADDPG approach both exhibited decreasing weighted costs, with MATD3
achieving superior performance. This improvement stems from MATD3’s optimized task
offloading ratio that simultaneously considers both latency and energy factors. Specifically,
while both algorithms are influenced by processing latency, MATD3 demonstrates better
adaptability to the changing weight factors through its twin-delayed policy updates and
more accurate value function estimation.

Figure 4. The convergence of the MATD3-TORA algorithm under varying weights (w).

5.4. Performance Analysis

To comprehensively evaluate the performance differences between the MATD3-TORA
task offloading algorithm and other benchmark methods, this section conducted a detailed
analysis under varying total task volumes and transmission bandwidths. Notably, the
Random algorithm was excluded from the analysis due to its failure to achieve convergence.
Consequently, the comparison focused on four algorithms: MATD3-TORA, MADDPG,
Local-Only, and Edge-Only. This approach ensured a rigorous and meaningful evaluation
of the proposed algorithm’s effectiveness in diverse operational scenarios.

5.4.1. Performance Variation of Algorithms Under Varying Total Task Volumes

As illustrated in Figure 5, the performance of the MATD3-TORA and MADDPG al-
gorithms was evaluated as the task volume increased from 100 Mbits to 200 Mbits, with
measurements taken at 20 Mbit intervals. The results demonstrate that both MATD3-TORA
and MADDPG significantly outperformed the Local-Only and Edge-Only strategies in

Sensors 2025, 25, 3403 19 of 24

terms of weighted delay and energy consumption. Notably, the rate of increase in weighted
delay and energy consumption for MATD3-TORA was lower than that of Local-Only and
Edge-Only algorithms. This advantage stems from MATD3-TORA’s ability to determine
optimal offloading ratios, thereby validating its effectiveness in task allocation. Although
the convergence results of MADDPG and MATD3-TORA show minimal numerical differ-
ences, this is expected, since MATD3-TORA is an enhanced version of MADDPG, which is
primarily designed to improve learning efficiency and stability rather than significantly
altering the final outcomes. This analysis underscores the superior performance of MATD3-
TORA in handling varying task volumes, highlighting its capability to achieve efficient and
stable task offloading in dynamic environments.

Figure 5. The performance variation of algorithms (MATD3-TORA, Edge-only, and MADDPG) under
varying total task volumes.

As seen in Figure 6, the proposed MATD3-TORA algorithm demonstrated superior
adaptability and efficiency compared to MAPPO and QMIX when handling diverse task
volumes. While existing methods struggle to maintain optimal offloading decisions under
increasing computational loads, MATD3-TORA dynamically adjusts its resource allocation
strategy through its hybrid decentralized–centralized architecture. This enables more
effective balancing of latency and energy consumption across the UAV network. In contrast,
MAPPO exhibits policy divergence under heavy task loads due to its unconstrained
policy updates, while QMIX suffers from rigid value decomposition that fails to adapt to
varying computation requirements. MATD3-TORA’s twin-delayed learning mechanism
and task-aware optimization allow it to maintain stable performance across different
workload intensities, whereas competing methods show significant degradation as task
volumes scale.

Sensors 2025, 25, 3403 20 of 24

Figure 6. The performance variation of algorithms (MATD3-TORA, MAPPO, and QMIX) under
varying total task volumes.

5.4.2. Performance Variation of Algorithms Under Varying Transmission Bandwidths

As depicted in Figure 7, the weighted delay and energy consumption of the Edge-only,
MADDPG, and MATD3-TORA algorithms exhibited a decreasing trend as the transmission
bandwidth increased from 1 MHz to 5 MHz. Notably, the Local-only algorithm is unaf-
fected by changes in transmission bandwidth, since it does not involve task offloading via
communication channels and was thus excluded from this analysis. The observed decline
in the other three algorithms is attributed to the enhanced transmission rates resulting
from increased bandwidth, which reduces the time required to transfer computational
tasks to the UAVs, thereby lowering the weighted delay and energy consumption. This
trend was particularly pronounced in the Edge-only algorithm, as it relies entirely on task
offloading to the UAVs, making its performance more sensitive to variations in transmis-
sion rates. In contrast, the MATD3-TORA and MADDPG algorithms, through effective
exploration, achieved optimal offloading ratios across different bandwidths. This adapt-
ability is facilitated by the centralized training and decentralized execution mechanism of
MADDPG, enabling these algorithms to operate efficiently in large-scale, high-dimensional,
and dynamically changing environments. Consequently, MATD3-TORA and MADDPG
were less susceptible to the significant performance fluctuations observed in the Edge-
only algorithm when transmission rates varied. This analysis highlights the robustness of
MATD3-TORA and MADDPG in optimizing task offloading under varying transmission
bandwidths, demonstrating their superior adaptability and efficiency compared to the
Edge-only approach.

As seen in Figure 8, it can be found that when subjected to different transmission
bandwidths, MATD3-TORA outperformed both MAPPO and QMIX in maintaining efficient
task offloading and network stability. The algorithm’s integrated channel-state awareness
and distributed critic networks enable intelligent adaptation to bandwidth fluctuations,
optimizing both communication and computation resources simultaneously. MAPPO’s
performance varies substantially due to its sensitivity to partial observability in dynamic
channel conditions, while QMIX’s centralized mixing network becomes a bottleneck under
limited bandwidth. MATD3-TORA’s novel federated learning-inspired update scheme

Sensors 2025, 25, 3403 21 of 24

ensures robust decision making even in constrained bandwidth scenarios, preventing the
performance collapse observed in baseline methods. This bandwidth-agnostic characteristic
makes MATD3-TORA particularly suitable for UAV deployments where communication
resources may vary unpredictably.

Figure 7. The performance variation of algorithms (MATD3-TORA, Edge-only, and MADDPG) under
varying transmission bandwidths.

Figure 8. The performance variation of algorithms (MATD3-TORA, MAPPO, and QMIX) under
varying transmission bandwidths.

Sensors 2025, 25, 3403 22 of 24

5.5. Limitations

While MATD3-TORA demonstrates promising performance in controlled UAV net-
work scenarios, its scalability to large-scale deployments remains a critical limitation. The
algorithm’s computational complexity grows exponentially with increasing network size
due to its multi-agent decision-making architecture, potentially leading to impractical
training times and real-time inference delays. Furthermore, the centralized critic com-
ponent may become a bottleneck in distributed UAV networks with hundreds of nodes,
as it requires global state information that becomes increasingly difficult to collect and
process efficiently. The current formulation also assumes perfect communication links
between agents, which may not hold in real-world large-scale operations where packet
loss and latency variations are prevalent. These scalability challenges suggest the need
for hierarchical architectures or distributed learning paradigms to enable MATD3-TORA’s
application in massive UAV swarms while maintaining its coordination advantages.

6. Conclusions
This paper addresses the task offloading and resource allocation problem in multi-

UAV mobile edge computing (MEC) systems, where UAVs provide communication and
computational services to mobile devices. The study focuses on jointly optimizing mobile
device selection, multi-UAV mobility control, UAV CPU frequency adjustment, and task
offloading allocation to minimize the weighted sum of task processing delay and UAV en-
ergy consumption. To tackle this non-convex optimization problem, a novel task offloading
and resource allocation algorithm based on MATD3-TORA (Multi-Agent Twin Delayed
Deep Deterministic Policy Gradient for Task Offloading and Resource Allocation) has been
proposed. The MATD3-TORA algorithm demonstrates superior performance by effec-
tively reducing the weighted sum of task processing delay and UAV energy consumption,
outperforming traditional benchmark methods.

Through extensive simulations, the convergence performance of MATD3-TORA was rig-
orously compared with benchmark methods, highlighting its faster convergence and greater
stability. The algorithm’s robustness was further validated by analyzing its performance under
varying learning rates, exploration rates, and training strategy parameters, which consistently
show its adaptability to dynamic environments. Additionally, the study examines the algo-
rithm’s performance under different task volumes, transmission bandwidths, and weight factors,
demonstrating its ability to maintain optimal efficiency across diverse operational scenarios. The
MATD3-TORA algorithm’s superiority lies in its ability to balance exploration and exploitation,
leveraging dual-critic networks, delayed policy updates, and target policy smoothing to achieve
more stable and efficient optimization. These features enable MATD3-TORA to outperform
traditional methods such as Edge-only, Local-only, and MADDPG, particularly in complex
and dynamic multi-UAV MEC systems. This research not only validates the effectiveness of
the proposed algorithm but also provides valuable insights into its potential for real-world
applications requiring adaptive and robust resource management.

Author Contributions: Conceptualization, S.X.; methodology, Q.L.; software, X.W.; validation,
C.G.; investigation, X.W.; resources, Q.L.; writing—original draft preparation, S.X.; writing—review
and editing, X.W.; supervision, Q.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Joint Funds of the National Natural Science Foundation of
China under Grant U24B20173.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2025, 25, 3403 23 of 24

Data Availability Statement: Data available on request due to restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey on enabling technologies,

protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]
2. Taleb, N.; Mohamed, E.A. Cloud computing trends: A literature review. Acad. J. Interdiscip. Stud. 2020, 9, 91–104. [CrossRef]
3. Amin, M.R. Mobile cloud computing-challenges and future prospects. Int. J. Inf. Syst. Comput. Technol. 2023, 2, 44–51. [CrossRef]
4. Abkenar, F.S.; Ramezani, P.; Iranmanesh, S.; Murali, S.; Chulerttiyawong, D.; Wan, X.; Jamalipour, A.; Raad, R. A survey on

mobility of edge computing networks in iot: State-of-the-art, architectures, and challenges. IEEE Commun. Surv. Tutor. 2022,
24, 2329–2365. [CrossRef]

5. Rahbari, D.; Alam, M.M.; Moullec, Y.L.; Jenihhin, M. Fast and fair computation offloading management in a swarm of drones
using a rating-based federated learning approach. IEEE Access 2021, 9, 113832–113849. [CrossRef]

6. Lai, S.; Zhao, R.; Tang, S.; Xia, J.; Zhou, F.; Fan, L. Intelligent secure mobile edge computing for beyond 5G wireless networks.
Phys. Commun. 2021, 45, 101283. [CrossRef]

7. Chen, M.; Liu, W.; Wang, T.; Zhang, S.; Liu, A. A game-based deep reinforcement learning approach for energy-efficient
computation in mec systems. Knowl.-Based Syst. 2022, 235, 107660. [CrossRef]

8. Li, Z.; Zhu, Q. An offloading strategy for multi-user energy consumption optimization in multi-mec scene. KSII Trans. Internet Inf.
Syst. (TIIS) 2020, 14, 4025–4041.

9. Wang, M.; Shi, S.; Zhang, D.; Wu, C.; Wang, Y. Joint computation offloading and resource allocation for mimo-noma assisted
multi-user mec systems. IEEE Trans. Commun. 2023, 71, 4360–4376. [CrossRef]

10. Zhang, Q.; Wang, Y.; Li, H.; Hou, S.; Song, Z. Resource allocation for energy efficient star-ris aided mec systems. IEEE Wirel.
Commun. Lett. 2023, 12, 610–614. [CrossRef]

11. Sana, M.; Merluzzi, M.; Pietro, N.D.; Strinati, E.C. Energy efficient edge computing: When lyapunov meets distributed reinforce-
ment learning. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops),
Virtual, 14–23 June 2021; IEEE: New York, NY, USA, 2021; pp. 1–6.

12. Zhou, H.; Jiang, K.; Liu, X.; Li, X.; Leung, V.C. Deep reinforcement learning for energy-efficient computation offloading in
mobile-edge computing. IEEE Internet Things J. 2021, 9, 1517–1530. [CrossRef]

13. Saleem, U.; Liu, Y.; Jangsher, S.; Tao, X.; Li, Y. Latency minimization for d2d-enabled partial computation offloading in mobile
edge computing. IEEE Trans. Veh. Technol. 2020, 69, 4472–4486. [CrossRef]

14. Shu, C.; Zhao, Z.; Han, Y.; Min, G.; Duan, H. Multi-user offloading for edge computing networks: A dependency-aware and
latency-optimal approach. IEEE Internet Things J. 2019, 7, 1678–1689. [CrossRef]

15. Xiao, S.; Liu, C.; Li, K.; Li, K. System delay optimization for mobile edge computing. Future Gener. Comput. Syst. 2020, 109, 17–28.
[CrossRef]

16. Wan, Z.; Xu, D.; Xu, D.; Ahmad, I. Joint computation offloading and resource allocation for noma-based multi-access mobile edge
computing systems. Comput. Netw. 2021, 196, 108256. [CrossRef]

17. Liu, M.; Liu, Y. Price-based distributed offloading for mobile-edge computing with computation capacity constraints. IEEE Wirel.
Commun. Lett. 2017, 7, 420–423. [CrossRef]

18. Pan, Y.; Pan, C.; Wang, K.; Zhu, H.; Wang, J. Cost minimization for cooperative computation framework in mec networks. IEEE
Trans. Wirel. Commun. 2021, 20, 3670–3684. [CrossRef]

19. Pham, X.-Q.; Nguyen, T.-D.; Nguyen, V.; Huh, E.-N. Joint service caching and task offloading in multi-access edge computing: A
qoe-based utility optimization approach. IEEE Commun. Lett. 2020, 25, 965–969. [CrossRef]

20. Leivadeas, A.; Falkner, M.; Lambadaris, I.; Ibnkahla, M.; Kesidis, G. Balancing delay and cost in virtual network function
placement and chaining. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft),
Montreal, QC, Canada, 25–29 June 2018; IEEE: New York, NY, USA, 2018; pp. 433–440.

21. Sun, M.; Xu, X.; Huang, Y.; Wu, Q.; Tao, X.; Zhang, P. Resource management for computation offloading in d2d-aided wireless
powered mobile-edge computing networks. IEEE Internet Things J. 2020, 8, 8005–8020. [CrossRef]

22. Goudarzi, M.; Palaniswami, M.; Buyya, R. A distributed deep reinforcement learning technique for application placement in edge
and fog computing environments. IEEE Trans. Mob. Comput. 2021, 22, 2491–2505. [CrossRef]

23. Azizi, S.; Shojafar, M.; Abawajy, J.; Buyya, R. Deadline-aware and energy-efficient iot task scheduling in fog computing systems:
A semi-greedy approach. J. Netw. Comput. Appl. 2022, 201, 103333. [CrossRef]

24. Liu, J.; Li, L.; Yang, F.; Liu, X.; Li, X.; Tang, X.; Han, Z. Minimization of offloading delay for two-tier uav with mobile edge
computing. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC),
Tangier, Morocco, 24–28 June 2019; IEEE: New York, NY, USA, 2019; pp. 1534–1538.

http://doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.36941/ajis-2020-0008
http://dx.doi.org/10.58325/ijisct.002.02.0050
http://dx.doi.org/10.1109/COMST.2022.3211462
http://dx.doi.org/10.1109/ACCESS.2021.3104117
http://dx.doi.org/10.1016/j.phycom.2021.101283
http://dx.doi.org/10.1016/j.knosys.2021.107660
http://dx.doi.org/10.1109/TCOMM.2023.3277531
http://dx.doi.org/10.1109/LWC.2023.3236411
http://dx.doi.org/10.1109/JIOT.2021.3091142
http://dx.doi.org/10.1109/TVT.2020.2978027
http://dx.doi.org/10.1109/JIOT.2019.2943373
http://dx.doi.org/10.1016/j.future.2020.03.028
http://dx.doi.org/10.1016/j.comnet.2021.108256
http://dx.doi.org/10.1109/LWC.2017.2780128
http://dx.doi.org/10.1109/TWC.2021.3052887
http://dx.doi.org/10.1109/LCOMM.2020.3034668
http://dx.doi.org/10.1109/JIOT.2020.3041673
http://dx.doi.org/10.1109/TMC.2021.3123165
http://dx.doi.org/10.1016/j.jnca.2022.103333

Sensors 2025, 25, 3403 24 of 24

25. Yang, Z.; Pan, C.; Wang, K.; Shikh-Bahaei, M. Energy efficient resource allocation in uav-enabled mobile edge computing networks.
IEEE Trans. Wirel. Commun. 2019, 18, 4576–4589. [CrossRef]

26. Zhang, Q.; Chen, J.; Ji, L.; Feng, Z.; Han, Z.; Chen, Z. Response delay optimization in mobile edge computing enabled uav swarm.
IEEE Trans. Veh. Technol. 2020, 69, 3280–3295. [CrossRef]

27. Tun, Y.K.; Park, Y.M.; Tran, N.H.; Saad, W.; Pandey, S.R.; Hong, C.S. Energy-efficient resource management in uav-assisted mobile
edge computing. IEEE Commun. Lett. 2020, 25, 249–253. [CrossRef]

28. Almutairi, J.; Aldossary, M.; Alharbi, H.A.; Yosuf, B.A.; Elmirghani, J.M. Delay-optimal task offloading for uav-enabled edge-cloud
computing systems. IEEE Access 2022, 10, 51575–51586. [CrossRef]

29. Li, J.; Yi, C.; Chen, J.; Zhu, K.; Cai, J. Joint trajectory planning, application placement, and energy renewal for uav-assisted mec:
A triple-learner-based approach. IEEE Internet Things J. 2023, 10, 13622–13636. [CrossRef]

30. Liu, Y.; Yan, J.; Zhao, X. Deep reinforcement learning based latency minimization for mobile edge computing with virtualization
in maritime uav communication network. IEEE Trans. Veh. Technol. 2022, 71, 4225–4236. [CrossRef]

31. Wan, S.; Lu, J.; Fan, P.; Letaief, K.B. Toward big data processing in iot: Path planning and resource management of uav base
stations in mobile-edge computing system. IEEE Internet Things J. 2019, 7, 5995–6009. [CrossRef]

32. Wang, H.; Ke, H.; Sun, W. Unmanned-aerial-vehicle-assisted computation offloading for mobile edge computing based on deep
reinforcement learning. IEEE Access 2020, 8, 180784–180798. [CrossRef]

33. Zhao, N.; Ye, Z.; Pei, Y.; Liang, Y.-C.; Niyato, D. Multi-agent deep reinforcement learning for task offloading in uav-assisted
mobile edge computing. IEEE Trans. Wirel. Commun. 2022, 21, 6949–6960. [CrossRef]

34. Peng, H.; Shen, X. Multi-agent reinforcement learning based resource management in mec-and uav-assisted vehicular networks.
IEEE J. Sel. Areas Commun. 2020, 39, 131–141. [CrossRef]

35. Wang, L.; Wang, K.; Pan, C.; Xu, W.; Aslam, N.; Hanzo, L. Multi-agent deep reinforcement learning-based trajectory planning for
multi-uav assisted mobile edge computing. IEEE Trans. Cogn. Commun. Netw. 2020, 7, 73–84. [CrossRef]

36. Seid, A.M.; Boateng, G.O.; Anokye, S.; Kwantwi, T.; Sun, G.; Liu, G. Collaborative computation offloading and resource allocation
in multi-uav-assisted iot networks: A deep reinforcement learning approach. IEEE Internet Things J. 2021, 8, 12203–12218.
[CrossRef]

37. Liu, W.; Li, B.; Xie, W.; Dai, Y.; Fei, Z. Energy efficient computation offloading in aerial edge networks with multi-agent cooperation.
IEEE Trans. Wirel. Commun. 2023, 22, 5725–5739. [CrossRef]

38. Ahmad, S.; Zhang, J.; Nauman, A.; Khan, A.; Abbas, K.; Hayat, B. Deep-eera: Drl-based energy-efficient resource allocation in
uav-empowered beyond 5g networks. Tsinghua Sci. Technol. 2024, 30, 418–432. [CrossRef]

39. Ei, N.N.; Alsenwi, M.; Tun, Y.K.; Han, Z.; Hong, C.S. Energy-efficient resource allocation in multi-uav-assisted two-stage edge
computing for beyond 5g networks. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16421–16432. [CrossRef]

40. Omoniwa, B.; Galkin, B.; Dusparic, I. Communication-enabled deep reinforcement learning to optimise energy-efficiency in
uav-assisted networks. Veh. Commun. 2023, 43, 100640. [CrossRef]

41. Chen, S.; Shi, L.; Ding, X.; Lv, Z.; Li, Z. Energy efficient resource allocation and trajectory optimization in uav-assisted mobile
edge computing system. In Proceedings of the 2021 7th International Conference on Big Data Computing and Communications
(BigCom), Deqing, China, 13–15 August 2021; IEEE: New York, NY, USA, 2021; pp. 7–13.

42. Wu, Q.; Zeng, Y.; Zhang, R. Joint trajectory and communication design for multi-uav enabled wireless networks. IEEE Trans.
Wirel. Commun. 2018, 17, 2109–2121. [CrossRef]

43. Cao, X.; Xu, J.; Zhang, R. Mobile edge computing for cellular-connected uav: Computation offloading and trajectory optimization.
In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), Kalamata, Greece, 25–28 June 2018; IEEE: New York, NY, USA, 2018; pp. 1–5.

44. Wang, L.; Wang, K.; Pan, C.; Xu, W.; Aslam, N.; Nallanathan, A. Deep reinforcement learning based dynamic trajectory control for
uav-assisted mobile edge computing. IEEE Trans. Mob. Comput. 2021, 21, 3536–3550. [CrossRef]

45. Guo, H.; Liu, J. Uav-enhanced intelligent offloading for internet of things at the edge. IEEE Trans. Ind. Inform. 2019, 16, 2737–2746.
[CrossRef]

46. Yu, C.; Velu, A.; Vinitsky, E.; Gao, J.; Wang, Y.; Bayen, A.; Wu, Y. The surprising effectiveness of ppo in cooperative multi-agent
games. Adv. Neural Inf. Process. Syst. 2022, 35, 24611–24624.

47. Rashid, T.; Samvelyan, M.; Witt, C.S.D.; Farquhar, G.; Foerster, J.; Whiteson, S. Monotonic value function factorisation for deep
multi-agent reinforcement learning. J. Mach. Learn. Res. 2020, 21, 1–51.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TWC.2019.2927313
http://dx.doi.org/10.1109/TVT.2020.2964821
http://dx.doi.org/10.1109/LCOMM.2020.3026033
http://dx.doi.org/10.1109/ACCESS.2022.3174127
http://dx.doi.org/10.1109/JIOT.2023.3262687
http://dx.doi.org/10.1109/TVT.2022.3141799
http://dx.doi.org/10.1109/JIOT.2019.2954825
http://dx.doi.org/10.1109/ACCESS.2020.3028553
http://dx.doi.org/10.1109/TWC.2022.3153316
http://dx.doi.org/10.1109/JSAC.2020.3036962
http://dx.doi.org/10.1109/TCCN.2020.3027695
http://dx.doi.org/10.1109/JIOT.2021.3063188
http://dx.doi.org/10.1109/TWC.2023.3235997
http://dx.doi.org/10.26599/TST.2024.9010071
http://dx.doi.org/10.1109/TITS.2022.3150176
http://dx.doi.org/10.1016/j.vehcom.2023.100640
http://dx.doi.org/10.1109/TWC.2017.2789293
http://dx.doi.org/10.1109/TMC.2021.3059691
http://dx.doi.org/10.1109/TII.2019.2954944

	Introduction
	Literature Review
	Problem Formulation
	Mobility Model
	Communication Model
	Computational Model
	Mathematical Formulation

	The Proposed Algorithm
	Markov Decision Process Modeling
	State Space
	Action Space
	Reward Function
	MATD3-TORA-Based Task Offloading and Resource Allocation Algorithm

	Experiments and Analysis
	Experiment Settings
	Algorithm Comparison
	Sensitivity Analysis
	Sensitivity Analysis for Learning Rates
	Sensitivity Analysis for Exploration Rates
	Sensitivity Analysis for Weights of Latency and Energy Consumption

	Performance Analysis
	Performance Variation of Algorithms Under Varying Total Task Volumes
	Performance Variation of Algorithms Under Varying Transmission Bandwidths

	Limitations

	Conclusions
	References

