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Abstract: Millimeter-wave (mmWave) radar is increasingly used in smart environments for
human detection due to its rich sensing capabilities and sensitivity to subtle movements.
However, indoor multipath propagation causes severe ghost target issues, reducing radar
reliability. To address this, we propose a trajectory-based ghost suppression method that in-
tegrates multi-target tracking with point cloud deep learning. Our approach consists of four
key steps: (1) point cloud pre-segmentation, (2) inter-frame trajectory tracking, (3) trajectory
feature aggregation, and (4) feature broadcasting, effectively combining spatiotemporal
information with point-level features. Experiments on an indoor dataset demonstrate its
superior performance compared to existing methods, achieving 93.5% accuracy and 98.2%
AUROC. Ablation studies demonstrate the importance of each component, particularly the
complementary benefits of pre-segmentation and trajectory processing.

Keywords: millimeter-wave radar; ghost suppression; multi-target tracking; point cloud
segmentation; multipath

1. Introduction

With the rapid development of smart homes and the Internet of Things (IoT), there
is an increasing demand for efficient and accurate human detection. Smart applications
such as presence-sensitive lighting and adaptive airflow systems—where lights respond to
entry and exit, and fans adjust to follow or avoid a person—are creating demand for more
precise and robust human detection technologies. Traditional human sensors have specific
limitations. For example, passive infrared (PIR) sensors can only detect moving humans
and are susceptible to thermal interference.

Millimeter-wave radar, with its high sensitivity to millimeter-scale displacements, can
detect subtle movements such as breathing and even heartbeats [1,2], making it effective
for detecting stationary human targets. Additionally, it provides rich information includ-
ing range, angle, Doppler, and amplitude, enabling more complex applications such as
fall detection [3,4]. However, due to multipath propagation and other effects, mmWave
radar suffers from severe ghost (false detections) issues in indoor environments, reducing
its reliability.

To mitigate ghost effects, researchers have proposed various approaches. Since ghosts
are primarily caused by wall reflections, some methods rely on prior knowledge of wall
geometry to distinguish real targets from multipath ghosts [5-7]. However, wall parameters
are often unknown, prompting studies on wall estimation—for both single walls [8,9] and
complex multi-wall environments [10-13].
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Alternative methods eliminate the need for explicit wall parameter estimation. For in-
stance, polarization-based approaches exploit changes in wave polarization upon reflec-
tion [14], though they require specialized antennas. Other techniques leverage linear
patterns in range-Doppler spectra via the Hough transform [15]. Recent advances exploit
differences between the direction of departure (DOD) and direction of arrival (DOA) for
first-order multipath identification [16-19].

While physics-based methods offer strong interpretability, their reliance on simplified
assumptions limits performance in complex multi-target, multi-wall scenarios. Conse-
quently, data-driven approaches such as machine learning and deep learning have gained
increasing attention. Some studies combine hand-crafted features with classifiers such as
random forests (RFs), support vector machines (SVMs), or fully connected neural networks
for ghost suppression [15,20-23]. Others take an image-based approach, using convo-
lutional neural networks (CNNSs) to process grid maps [24], range-Doppler maps [25],
or DOD-DOA images [26]. Some works adopt point cloud-based methods, using networks
such as PointNet and PointNet++ for point cloud segmentation [27-30].

To further enhance ghost suppression in complex environments, this paper proposes
a method that integrates multi-target tracking with point-cloud-based deep learning. Al-
though some existing works also incorporate tracking [5,18,21,31], they often rely on
handcrafted features and utilize trajectory information through only simple heuristic rules.
In contrast, our proposed method combines trajectory features with a point-cloud-based
deep neural network, enabling automatic extraction of spatiotemporal features (combin-
ing spatial and temporal patterns across radar frames). Our key contributions include
the following:

1. A robust tracking framework that associates detections across frames while maintain-
ing trajectory consistency, even in challenging scenarios with closely spaced targets
and ghosts.

2. Aninnovative trajectory feature aggregation network that combines PointNet-style
point feature extraction with temporal CNN processing, enabling effective learning of
spatiotemporal patterns.

3. A comprehensive system architecture that integrates preliminary segmentation, trajec-
tory tracking, feature aggregation, and feature broadcasting to achieve state-of-the-
art performance.

The experimental results demonstrate that our method achieves superior perfor-
mance compared to existing point cloud segmentation approaches, with 93.5% accuracy
and 98.2% AUROC on the test set. The ablation studies confirm the importance of each
component, particularly showing that the combination of preliminary segmentation and
trajectory-based processing captures complementary features that together improve the
overall performance.

The remainder of this article is organized as follows. Section 2 introduces the basic
theory of radar detection and ghost formation mechanisms. Section 3 details the proposed
method. Section 4 presents the experimental results. Finally, Section 5 concludes this study.

2. Basic Theory of Radar and Ghosts
2.1. FMCW Radar

In frequency-modulated continuous-wave (FMCW) radar, the transmitted signal
adopts a “chirp” waveform with a frequency that varies linearly over time. It is modeled
as follows:

se(t) = exp <j27r<fot + 2BTt2)>' 0<t<T, 1)

where fj is the starting frequency, B is the sweep bandwidth, and T is the sweep time.
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When the signal propagates to a target and reflects back, a round-trip time delay 7 is
introduced. After mixing the received signal with the transmitted signal and applying a
low-pass filter, the resulting intermediate frequency (IF) signal is

s(t) = exp (j%r(fjt +for) ) ()

The IF signal is sampled by an analog-to-digital converter (ADC) with sampling
interval Ts, producing Ns = T/ Ts samples per chirp. The radar transmits multiple chirps
with period T (T, > T) over N, cycles, resulting in 2D data of the shape (N, Ns). For
a uniform linear array with Ny receivers spaced by d., the data forms a 3D cube of the
shape (Nix, N¢, N). The time delay 7 satisfies

2(Ro + vTcne) + drx sin 6 - nyy

c ne € [0, Nc), mx € [0/ Nix). 3)

T(nc/ nrx) =

where Ry is the initial target distance, v is the radial velocity, 8 is the azimuth angle, and ¢
is the speed of light.

Substituting t = Tsn; and Equation (3) into Equation (2), we derive the following data
cube expression:

S(ng, e, nex) = exp(J27t(frny + fonie + forx + fo70)), 4)
_ 2B e, o g _c
where f, = N Ro, fo= 1 v, fo= ) sinf, A= 7 (5)

The signal exhibits frequency characteristics along all three dimensions. By applying a
fast Fourier transform (FFT) along each axis, the target parameters can be estimated.

The complete signal processing chain, as depicted in Figure 1, proceeds as follows:
first, moving target indicator (MTI) processing is applied to the raw radar data to eliminate
direct leakage between transmitters and receivers, as well as static clutter. Subsequently,
a 3D-FFT is performed across the range, Doppler, and angular dimensions. Target extraction
is then accomplished through 3D constant false alarm rate (CFAR) detection combined with
peak identification. The detected frequency-domain peaks are converted into the following
target parameters: range r, radial velocity v, sine of azimuth angle sin 6, and signal power
P. Finally, the polar coordinates are transformed into Cartesian coordinates x and y.
Consequently, each point in the point cloud contains six features: x, y, r, v, sin 6, and P.

Radar Raw Data

Range Doppler Angle CFAR Coordinate
FFT FFT FFT Peak Detection Transformation

—>  MTI ¥

Fast-time

(X, y,r,Vv,sing, P)

Slow-time
Figure 1. Flowchart of millimeter-wave radar signal processing.

2.2. Ghost Model

Under ideal conditions, radar detects target positions by analyzing the reflected echoes,
as illustrated by Path 1 (A—B—A) in Figure 2a. However, in real indoor environments,
signal propagation becomes significantly more complex due to reflections from surrounding
surfaces. These multipath effects are a major source of ghost targets. For example, Path 4
(A—C—B—C—A) produces second-order multipath ghost D, while Path 2 (A—-C—B—A)
and Path 3 (A—B—C—A) generate first-order multipath ghosts E and F, respectively.

We conducted an experimental validation of the multipath model using a 2T4R radar in
real-world scenarios. Figure 2b clearly shows both first-order and second-order multipath
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phenomena. Second-order ghosts appear symmetrically positioned relative to the true
target about the wall surface, while the first-order multipath produces two distinct clusters.
These clusters maintain approximately equal distances from the radar, positioned between
the true target and second-order ghost locations. One cluster shares the same direction as
the true target, while the other aligns with the second-order ghost’s direction.
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Figure 2. (a) Schematic of the geometry of multipath propagation. (b) Experimental multipath point
cloud over a 2-s duration. Green circles indicate real targets, while red/yellow circles represent
ghost targets.

Compared to visible light, mmWave exhibit stronger specular reflection characteristics,
resulting in more numerous ghost targets. This phenomenon stems from two key factors.
First, according to the Fraunhofer criterion [32], surfaces become effectively smoother
as the wavelength increases. In the mmWave band, only surfaces with millimeter-scale
roughness, such as carpets, appear rough, while most other indoor surfaces behave like
mirrors, creating numerous reflected ghost targets. Second, according to the Fresnel
equations, reflection coefficients increase with higher relative permittivity. In general,
materials exhibit lower permittivity at higher frequencies. Thus mmWave experiences
higher reflectivity than optical frequencies, further contributing to ghost target formation.

The scenario becomes significantly more complex in environments with multiple
targets and walls, making it increasingly difficult to distinguish real targets from ghosts.
Physics-based modeling approaches struggle to simultaneously account for all of these
interacting factors. Therefore, we employ a data-driven deep learning methodology to
achieve more robust and reliable target discrimination.

3. Methods

The ghost suppression problem can be equivalently formulated as a point cloud
segmentation task, where each point is assigned a probability indicating whether it cor-
responds to a real target or a ghost. However, directly performing segmentation on each
frame’s point cloud may lead to suboptimal performance. To address this, we propose a
trajectory-based point cloud segmentation method. As illustrated in Figure 3, the over-
all framework consists of four stages: preliminary segmentation, inter-frame trajectory
tracking, trajectory feature aggregation, and trajectory feature broadcasting.
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Figure 3. Overall pipeline of the proposed trajectory-based ghost target segmentation framework.

3.1. Inter-Frame Trajectory Tracking

Due to fluctuations in target energy and other factors, it is challenging to identify
ghosts using only single-frame point clouds. To improve the recognition rate, it is beneficial
to accumulate multiple frames for joint analysis. As shown in Figure 2b, by aggregating
over a period of time, the overall amount of information increases significantly. In theory,
the more frames are accumulated, the better the recognition performance should be. How-
ever, increasing the number of frames also results in a larger number of points, which not
only increases the computational complexity but also poses challenges for the scalability of
the algorithm with respect to temporal accumulation.

To enhance the model’s ability to extract multi-frame information, we propose
a tracking-based approach that maintains multiple trajectories and extracts features
from them.

Each trajectory consists of four components: a trajectory ID, a first-in-first-out (FIFO)
queue of associated historical points, a Kalman filter state, and a counter for consecutive
unmatched frames. The most critical component is the FIFO queue, which has a depth of T
and stores all points associated with the trajectory across the past T frames. Assuming that
a maximum of P points can be associated per frame, the FIFO can hold up to T x P points.

Standard Kalman filtering [33] is used to estimate the current position and uncertainty
of the trajectory, enabling more reliable data association. The Kalman state is defined using
a 2D constant-velocity model:

2
X Oy Oxy Oxop  Oxo,
2
Oy (% Tyo, Tyo
x= 7|, p= |0 v Ty T 6)

Uy Oxvy  Oyoy 0Oy, Ouvyoy,

2

vy Oxo, Oy, Ooio, O,

As shown in Figure 4, the detailed process of multi-target tracking is as follows:

1. Assume that N targets are detected by radar in each frame, and each target has C
features. These detections are associated with existing trajectories. During association,
each detection searches for the closest trajectory in spatial distance. If the distance
between them is less than the threshold dy,, they are associated with each other.

2. Each detection can be associated with at most one trajectory, but each trajectory may
be associated with multiple detections. These associated detections are added to the
trajectory’s FIFO and used to update its Kalman filter state.

3. If a trajectory is not associated with any detection, a null value is added to the trajec-
tory’s FIFO; if no detection is associated with the trajectory for T4e consecutive frames,
the trajectory is deleted.

4. For detections not associated with any trajectory, DBSCAN clustering [34] is performed
(eps = dy, MinPts = 1). Each cluster creates a new trajectory; the points in the cluster
are added to the trajectory’s FIFO and used to initialize the Kalman state. Setting
MinPts = 1 allows each unassociated detection to potentially form its own cluster,
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ensuring that no detection is discarded and every point can be assigned to a trajectory
for subsequent processing.

5. After all detections have been associated, each trajectory performs a Kalman prediction
step to update its state and uncertainty for the next frame.

6. Since one human body is often detected as multiple points, to avoid two trajectories
tracking the same person, a repulsion mechanism is introduced. If the distance
between two trajectories is less than dy,, they are forcibly repelled by adjusting their
positions to make the distance equal to dy,. Here, the position refers to the position in
the Kalman state. The repulsion is asymmetric, depending on the size of the Kalman
state variance. A trajectory with higher uncertainty (i.e., a larger trace of the covariance
matrix) is adjusted more, reflecting its lower reliability:

~pi—pj  t(P)
Ipi —pjll tr(P;) + tr(P))

Ap; = (dw — [Ipi — pjll) 7)

where p; = [x;,y;]" is the position of track i, and p; is that of a nearby track j; tr(P)
denotes the trace of the covariance matrix.

7. After the above steps, the tracking module completes all operations for the current
frame. Finally, the contents of each trajectory’s FIFO are output. In this way, an in-
put point cloud of the shape (N, C) is transformed into trajectory data of the shape
(M, T,P,C), where M denotes the number of trajectories, T denotes the number of
historical frames stored in each trajectory, P denotes the number of associated points

per trajectory per frame, and C denotes the number of features per point.

> Deleted
Age Threshold
Unmatched
Tracks 1
: Data Matched Track
Detections —> < atche . | racks
Association Tracks Tracks Information
I Unmatched _ DBSCAN |
Inter-Track Detections Clustering  New Tracks
Repulsion
Kalman « Kalman
Filter Predict Filter Update

Figure 4. Inter-frame trajectory tracking pipeline.

The tracking parameters are set as follows: association threshold dy, = 60 cm, deletion
delay T4e = 9, and trajectory buffer depth T = 30. These key parameters are empirically
selected; dy, and Ty are tuned based on visual inspection of stable tracking results on the
dataset, while T balances temporal context with memory and computation requirements in
the subsequent network. Other parameters are determined by the system characteristics;
N = 24 is based on the radar point cloud density, and M = 32 (maximum number of
trajectories) and P = 12 (maximum number of points per trajectory per frame) are chosen
to cover typical scene demands, with zero-padding applied when necessary. The data
modality within the FIFO is illustrated in Figure 5.
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Figure 5. Structure of the trajectory FIFO. Colored circles: detections; empty circles: free slots.

After this process, all detections are assigned to a trajectory. This operation can be
viewed as a form of clustering, where the clustering is implicitly performed in a temporally
aware manner.

3.2. Preliminary Point Cloud Segmentation

Due to the presence of a considerable number of ghost targets in the point cloud,
directly performing tracking on the raw data may lead to trajectory confusion. This issue
is particularly prominent in narrow spaces such as corridors, where some ghost points
may appear spatially close to real targets, causing the trajectory to be dragged by ghosts
during the tracking process. To mitigate such effects, we apply frame-wise preliminary
segmentation to the point cloud before tracking in order to suppress the interference caused
by ghost targets to some extent.

The point cloud segmentation assigns each point a class probability, denoted as P,, and
1 — Py, representing the likelihoods of being a real target and a ghost, respectively, where
n € [0, N). This probability is later used in the Kalman measurement update to adjust the
measurement noise covariance matrix R, which quantifies the uncertainty of point n’s
position estimation.

As shown in Figure 6, when a ghost point falls within the dy, range of a trajectory,
it will be associated with that trajectory. Assuming that ghost points are uniformly and
randomly distributed, the equivalent measurement noise covariance of a ghost point,
denoted as Ry, satisfies

)
Ri = |7 02] (8)
0 oy
_ - 21 rdiy B - 1 . d2
aj:aﬁ:E[(x—x)Z]:E[xz]:/o /0 (FC059)2-W%}1rdrd6:fh 9)

where % denotes the position offset from the trajectory center in the x-direction, and (7,8)
are the corresponding polar coordinates centered at the trajectory. The integral assumes a
uniform probability density S over the circular region of radius dy,.

. Trajectory position (last frame)

True detections

L]
—_—— ~
Ve

/ * \\ . Ghost detections (random)
/ \ . True detection distribution
' . , ©
\\ * / Ghost detection distribution

/ -
N ~__" l ) dy, boundary

Ghosts within dyy, (integration region)

Figure 6. Geometric relationship of trajectories and detections with threshold dy,.
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2
Thus, we have Ry = l%hlz, where I is the 2 X 2 identity matrix. For a point with real
target probability P, the mixed measurement covariance is defined as

2

R, = P,Re+ (1 — PH)%‘IZ (10)

where R; is the measurement noise covariance of real targets. In this work, we set

R; = 0.011,, which is a small value. This linear mixing provides a soft transition be-

tween the low-noise model for real targets and the high-uncertainty model for ghosts,

enabling more robust Kalman filtering under uncertainty. The use of adaptive measure-

ment noise, combined with the trajectory repulsion mechanism, helps the tracker focus on

high-confidence measurements and improves robustness in the presence of ghost targets.

In general, point cloud segmentation can be addressed using classical deep learning

architectures such as PointNet [35]. The PointNet segmentation framework is defined
as follows:

f(xi, X) =g (xi,],g[%] h(xj)> (11)

where x; denotes the feature vector of the i-th point to be segmented, with i € [1, N] and N
being the total number of points. f(x;, X) represents the segmentation result for point x;,
and X = {x1,x,...,xN} is the entire point cloud. The functions g(-) and /(-) are nonlinear
mappings implemented by multilayer perceptrons (MLPs).

In this work, we employ a deep-learning-based method for preliminary segmentation,
namely, PairwiseNet, which was proposed in [30] and demonstrates stronger feature
extraction capabilities than those of PointNet. Its formulation is given by

fxi, X) = g< agg h(x;, xj— xi))/ (12)

jE[LN]

where agg denotes the aggregation operation, which can be implemented as either max
pooling or average pooling.

As shown in Figure 7, PairwiseNet employs a “Pairwise” operation to establish point-
wise correlations in the point cloud, subsequently aggregating features through shared-
weight MLPs and pooling operations. Further implementation specifics can be found
in [30].

PairwiseNet PairwiseNet
_ D,_\ Pairwise Backbone
<

~ _.®__> % MLP{64,64}

z E 2 | — MLP{10,2}
o = T > é. 5 ——
_ 2 3| Sered| | 2 z shaed
o S z z =

i-®T2

z = ® Repeat @Subtract

@ Concat paxid
Pool

Figure 7. Architecture of PairwiseNet for preliminary point cloud segmentation.

The design rationale of PairwiseNet in [30] is that each ghost point typically origi-
nates from a real target (i.e., has a source); thus, pairwise operations are introduced to
model such relationships. Considering the randomness and sparsity of radar point clouds,
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PairwiseNet in [30] adopts multi-frame accumulation and temporal encoding to further
enhance segmentation performance. Although PairwiseNet is capable of leveraging multi-
frame information, it is not well suited for processing long-term dynamic point clouds
directly. This limitation stems from its pooling-based feature aggregation mechanism,
which lacks the ability to effectively capture temporal dependencies and struggles to extract
time-varying features.

This work retains the pairwise design rationale but differs in scope; while the authors
of [30] apply it at the point level, we extend it to the trajectory level. Specifically, our
method first extracts rich trajectory features and then applies PairwiseNet across trajectories
(details are provided in the next section). The trajectory-based method proposed in this
paper is specifically designed to enhance temporal feature extraction capabilities, thereby
complementing the weaknesses of PairwiseNet in this regard.

In addition to being used for measurement covariance estimation to reduce tracking
errors, the segmentation results from PairwiseNet are also employed for feature enhance-
ment. As illustrated in Figure 7, the point-wise features from the head layer of PairwiseNet,
along with the predicted probability Py, are concatenated with the original point features.
Consequently, the number of features per point increases from 6 to 17.

3.3. Trajectory Feature Aggregation

Based on the method described in Section 3.1, we obtain trajectory-aligned data with
the shape (M, T, P,C), where C = 17. This data modality is structurally complex; the
M-dimension corresponds to different trajectories, exhibiting permutation invariance and
sparsity; the T-dimension represents time, which contains local temporal correlations and
a degree of translational invariance; the P-dimension corresponds to point cloud samples
per frame, which is also unordered and sparse.

To extract meaningful representations from this structure, we propose a trajectory
feature aggregation network that applies different aggregation strategies tailored to the
characteristics of each dimension.

As shown in Figure 8, we first apply feature aggregation along the point cloud di-
mension P. Inspired by PointNet, we adopt a shared-weight MLP followed by a pooling
layer, which is well suited for handling unordered point cloud data. This step is crucial
because the subsequent CNN requires structured inputs and cannot directly operate on
sparse, unordered point sets. After pooling, the feature dimension is reduced to (M, T, 32),
where each trajectory at each time step is represented by a 32-dimensional feature vector.

PairwiseNet
Max/Avg Backbone
MLP{32,32} Pool
MLP{64,64}

Pairwise

(M,T,P,32)
(M,64)

(M,T,32)

Figure 8. Trajectory feature aggregation pipeline.

Next, along the temporal dimension T, we apply a downsampling convolutional
neural network (CNN) to exploit the translational invariance and extract local temporal fea-
tures. The detailed architecture is listed in Table 1. To reduce the number of parameters and
computational cost, each convolutional layer is implemented using depthwise-separable
convolution (DSC) [36]. After passing through three DSC layers, the output is flattened
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into a feature vector. As a result, we obtain a feature tensor of shape (M, 64), where each
trajectory is encoded into a compact 64-dimensional representation.

Table 1. Architecture of the temporal CNN using depthwise-separable convolutions.

Stage Operation Kernel Stride InputShape Output Shape
1 Transpose - - (M, 30,32) (M, 32,30)

2 DSC 1: Depthwise Conv + ReLU 4 2 (M, 32,30) (M,32,14)

3 DSC 1: Pointwise Conv + ReLU 1 1 (M, 32,14) (M,32,14)

4 DSC 2: Depthwise Conv + ReLU 4 2 (M, 32,14) (M, 32,6)

5 DSC 2: Pointwise Conv + ReLU 1 1 (M,32,6) (M,32,6)

6 DSC 3: Depthwise Conv + ReLU 4 2 (M,32,6) (M,32,2)

7 DSC 3: Pointwise Conv + ReLU 1 1 (M,32,2) (M,32,2)

8 Reshape - - (M, 32,2) (M, 64)

3.4. Inter-Trajectory Feature Extraction

To incorporate the global context along the trajectory dimension M, we again utilize
the PairwiseNet backbone. As illustrated in Figure 8, the input tensor of the shape (M, 64)
is pairwise-combined to form a tensor of the shape (M, M, 128), representing all trajectory
pairs. This pairwise structure is identical to that in Figure 7, consisting of two repetitions,
one subtraction, and one concatenation operation. The resulting tensor is then passed
through a shared-weight MLP followed by a pooling layer, resulting in a final output of the
shape (M, 64).

3.5. Trajectory Feature Broadcasting

Each detection is associated with a specific trajectory, and each trajectory may contain
multiple detections. To utilize trajectory-level features for segmentation, we broadcast the
feature vector of each trajectory to all of its associated detections.

In real-time processing scenarios, we are often only interested in the current frame.
Therefore, we select the current time step from the temporal dimension T, resulting in
detection data of the shape (M, P,17). At this stage, the historically informed trajectory
features obtained in the previous section—summarizing each trajectory over T frames and
shaped as (M, 64)—are broadcast (or repeated) to match the shape (M, P, 64) and concate-
nated with the current frame’s detection features to obtain data of the shape (M, P,81). In
this way, each detection is augmented with the feature of its corresponding trajectory.

Since the M and P dimensions may include zero-padded empty trajectories and empty
points, we remove all invalid entries and retain only valid detections, resulting in a final
feature tensor of the shape (N, 81), where N corresponds to the original number of points
in the frame. The effect of this broadcasting operation is illustrated in Figure 9.

Finally, these enriched point features are fed into a shared-weight MLP classification
head to generate the segmentation output of the shape (N, 2).

The mechanism of broadcasting aggregated trajectory features back to the individual
points within that trajectory enables each point to incorporate not only its instantaneous
features but also the spatiotemporal context derived from the entire trajectory. As a struc-
tured and efficient form of spatiotemporal information in multi-target systems, trajectories
exhibit strong clustering capability for real targets. This context enhances segmentation
performance beyond what instantaneous features or pre-segmentation alone can achieve.
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Figure 9. Trajectory-to-detection feature broadcasting.

4. Experiments and Evaluation
4.1. Dataset

The experiments in this paper were conducted on the indoor radar ghost dataset
proposed in [30]. The dataset was collected using a 24 GHz 2T4R mmWave radar (ICLegend
Micro, China) equipped with an eight-channel equivalent uniform linear array. It operates
with a 250 MHz bandwidth, corresponding to a range resolution of 60 cm.

The dataset contains 63 scenes and a total of 80,355 radar frames. The scenarios cover a
variety of indoor environments, including halls, corridors, meeting rooms, and office areas,
as illustrated in Figure 10. The radar platform is placed on the floor, tables, or cabinets,
with mounting heights ranging from 40 cm to 150 cm to introduce diversity in installation
locations. Each scene contains 0 to 5 people, who are allowed to move freely. Radar
point clouds are annotated using an Azure Kinect DK (Microsoft Corporation, Redmond,
WA, USA) depth camera. In total, the dataset contains 461,383 valid annotated points,
among which 296,247 are real targets, and the remaining are ghost points.

Elevator Entrance

Corridor 2

'~ Corridor 1
Figure 10. Representative scenes from the indoor radar ghost dataset.

4.2. Evaluation Metrics

For point cloud segmentation tasks, we adopt multiple evaluation metrics to assess
model performance. The primary metric is point-wise classification accuracy, defined as the
ratio of correctly classified points to the total number of points. Additionally, the precision,
recall, and F1-score of the real target category are also used as metrics.

In practical applications, the costs associated with false positives and false negatives
often differ significantly. This imbalance necessitates careful selection of thresholds to
achieve an optimal trade-off between these two types of errors. For system performance
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evaluation, we use receiver operating characteristic (ROC) curve analysis, which visually
illustrates the relationship between true positive detection rates and false alarm rates across
different decision thresholds. The area under the ROC curve (AUROC) serves as a reliable
indicator of overall performance. Additionally, average precision (AP) is also employed as
a metric, which is the area under the precision-recall curve.

4.3. Experimental Setup

For the preliminary point cloud segmentation, we directly reuse the pretrained weights
of PairwiseNet provided in [30], without retraining. Based on the segmentation results and
the tracking method described in Section 3.1, we generate the trajectory data for each frame
in the entire dataset, resulting in a tensor of the shape (B,y, M, T, P, C), where B,y denotes
the total number of frames. These data are used to train the trajectory-based point cloud
segmentation network, which includes trajectory feature aggregation and broadcasting
modules and is referred to as TrajNet in this paper.

The loss function used during training is the cross-entropy (CE) loss, defined as

1 Neff
Lce(y,9) = N Y [yilog(9:) + (1 —y;) log(1 — 9;)] (13)

i=1

where y; is the ground-truth label (0 or 1) of the i-th point, §; is the predicted probability of
being a real target, and N, is the number of valid points in the point cloud. Placeholder
points (zero-padded entries) are excluded from the loss and all evaluation metrics.

We use the Adam optimizer during training, with exponential decay rates of 0.9 and
0.999 for the first- and second-order moment estimates, respectively. The learning rate is
set to 0.003, and the batch size is 64.

The 63 scenes in the dataset are split into 45 for training, 11 for validation, and 7 for
testing, which is consistent with the split in [30]. This ensures that the test set consists of
entirely new scenes that are not seen during training. The training set is used for gradient
descent updates, while the validation set is used for early stopping to prevent overfitting.
The AUROC is calculated on the validation set after each epoch. If the AUROC score
stops improving and starts to decline, training is terminated early, and the best-performing
model parameters are saved. The maximum number of training epochs is set to 50.

4.4. Trajectory Visualization

To verify the effectiveness of the tracking method described in Section 3.1 and to
provide intuitive visualization of the trajectory data in the shape (M, T, P,C), this sec-
tion presents several examples of point cloud trajectories obtained through our method,
as shown in Figure 11. These visualizations directly correspond to the input of the trajectory
feature aggregation network (Figure 8), where each subfigure contains up to M trajectories
(represented by curves of different colors), each trajectory consists of up to T X P points
connected in the order of detection over time, and each point carries C features (though
only spatial coordinates are visualized here).

In Scene 1, a meeting room enclosed by three walls with a high presence of ghosts, one
person walks around the environment. The algorithm successfully tracks the trajectory of
the real person and also tracks the trajectories of ghosts located behind walls. In Scene 2,
where a long wall is present and four people move around the area, the algorithm is able to
track all four individuals. Even when two of them pass closely by each other, with their
point clouds nearly overlapping, the tracker can still distinguish their respective trajectories.
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Figure 11. Trajectory evolution over time. The frame number is indicated in the top-left corner of each
subfigure and increases from left to right. Dashed lines represent major reflective surfaces (i.e., walls).
Curves of different colors represent different trajectories, and the points along each curve are the
detections associated with that trajectory. Dense clusters of small black points indicate ground-truth
human positions obtained through the Kinect, serving as a reference for tracking accuracy.

All of the above trajectory results are obtained using the point cloud pre-segmentation
method described in Section 3.2. As a comparison, we also evaluate the tracking results
without using pre-segmentation (i.e., with fixed measurement noise covariance). In general,
both approaches achieve reasonable tracking performance. However, tracking without
pre-segmentation tends to result in more frequent trajectory confusion, especially in nar-
row environments.

To highlight the difference, we select a narrow corridor (Scene 3) where ghost points
frequently appear near real targets and may capture trajectories, as shown in Figure 12b,d.
In contrast, the trajectories generated using point cloud pre-segmentation (Figure 12a,c)
demonstrate better stability.

4.5. Quantitative Results

The performance of the proposed TrajNet on the test set is summarized in Table 2. It
achieves an accuracy of 93.5%, with an AP of 0.992 and an AUROC of 0.982, using only
24.9k parameters. Apart from adopting depthwise-separable convolution, no additional
optimization for parameter efficiency has been applied, indicating that the model size could
potentially be reduced further.

For comparison, we also report the test performance of several baseline models,
including PointNet, DGCNN, PCT, and PairwiseNet, as detailed in [30]. Among all models,
TrajNet achieves the best performance among non-map-based methods and is second
only to PairwiseNet(R-Map), which leverages environment mapping. This mapping-based
approach is less robust in dynamic environments. Once the radar position changes, the map
must be regenerated. In contrast, the proposed TrajNet is map-free. Additionally, we plot
the ROC curves of all models in Figure 13.
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Figure 12. Comparison of trajectories obtained with and without point cloud pre-segmentation.
The visualizations follow the same format as in Figure 11.

Table 2. Performance comparison between TrajNet and other models.

Model Acc Prec. Recall F1 AP AUROC Params
(%) (%) (%) (%) (%) (%)
MLP{64,16,2} 80.6 845 885 864 93.1 85.7 1.5k
PointNet [35] 845 90.8 86.6 88.7 96.4 91.8 29.7k
PointNet++ [37] 913 950 924 937 987 97.0 38.7k
DGCNN [38] 91.1 95.1 920 93,5 98.6 96.7 227.7k
PCT [39] 88.4 939 89.1 915 978 94.9 629.9k
PairwiseNet [30] 91.8 96.8 91.3 94.0 99.0 97.5 6.2k
PairwiseNet (R-Map) [30] 96.0 96.8 975 971 99.7 99.2 16.4k
PairwiseNet (T = 30) 923 970 91.8 943 99.1 97.8 6.2k
TrajNet 935 958 949 953 99.2 98.2 24 .9k
TrajNet (w/o pre-seg)  92.0 950 935 943 983 96.4 23.8k
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Figure 13. ROC curves of TrajNet and other models. (a) Overall ROC curves. (b) Zoomed-in view of
the ROC curves near the top-left corner.

To ensure a fair comparison, we also increase the number of accumulated frames in
PairwiseNet from the default 8 to 30, matching the FIFO depth of TrajNet. This variant,
denoted as PairwiseNet (T = 30), shows slight performance improvement but still under-
performs compared to TrajNet, indicating the latter’s advantage in modeling long-term
temporal sequences.

Finally, we also include the performance of TrajNet(w /o pre-seg), which corresponds
to the model without point cloud pre-segmentation (i.e., the fourth row in Table 3). Com-
pared to the full TrajNet model, it exhibits a noticeable performance drop, underscoring
the importance of pre-segmentation. This observation will be discussed in detail in the

next section.

Table 3. Performance of TrajNet with different component ablation configurations. A checkmark (v)
indicates that the corresponding component is enabled.

Pre-Seg.  Pre-Seg. Trajectory Pairwise Ag::gm-
No. for for Aggrega- Inter- Acc  AUROC
Tracking  Features tion Trajectory I{lter-
Trajectory
1 v v v v 93.5% 98.2%
2 v v v 93.3% 98.1%
3 v v v 92.1% 96.5%
4 v v 92.0% 96.4%
5 v 91.8% 97.5%
6 v v v 93.3% 98.1%
7 v v v v 93.4% 98.1%

4.6. Ablation Study
4.6.1. Component Ablation

To further evaluate the contribution of each component in TrajNet, we conduct a series
of ablation experiments, and the results are shown in Table 3. Row 1 represents the default
TrajNet model.

Since the point cloud pre-segmentation serves two purposes—assisting tracking by
reducing trajectory confusion and enhancing feature representation—we perform ablations
for each purpose separately, corresponding to Rows 2 and 3, respectively. Row 4 removes
both uses, i.e., completely discards the pre-segmentation.
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Row 5 presents the opposite configuration of Row 4—pre-segmentation is retained,
but the trajectory-based refinement (i.e., second-stage segmentation) is removed. Based on
the first five rows, we conclude that the pre-segmentation and the second-stage segmen-
tation capture complementary information. The main benefit of pre-segmentation arises
from the feature-level integration. Based on the architectural differences between the two
stages, we speculate that pre-segmentation is better at capturing spatial features, while the
trajectory-based refinement (TrajNet stages) excels at leveraging local temporal dynamics,
making it more effective in suppressing ghost targets with inconsistent temporal behavior
compared to real trajectories.

In addition, we ablate the inter-trajectory feature extraction module described in
Section 3.4, as shown in Row 6. A slight performance drop is observed. Furthermore, we
replace the pairwise module with an attention mechanism (Row 7), which yields slightly
inferior performance compared to the pairwise design.

4.6.2. Input Feature Ablation

We further conduct ablation experiments on the six input features of the original
radar point cloud, as summarized in Table 4. Row 1 corresponds to the default TrajNet
configuration, where all six features are used.

From the results, we observe that the least important feature is the signal power P,
followed by the radial velocity v. The most critical features are the spatial coordinates x
and y, which contribute more than the range r and the angle sin .

These results also demonstrate the robustness of the proposed method; even when
the input modality undergoes significant changes—for example, when only the x and y
coordinates are retained—the model still achieves reasonably high performance.

Table 4. Performance of TrajNet with different combinations of input features. A checkmark (v")
indicates that the corresponding feature is included in the input.

No. Acc

93.5%
93.3%
92.7%
92.4%
90.9%
90.3%

89.3%
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4.7. Point Cloud Segmentation Results

To more intuitively demonstrate the effectiveness of ghost suppression, we present the
segmentation results of two point cloud sequence segments, as shown in Figure 14. Each
sequence spans approximately 5 s and corresponds to Scene 1 and Scene 2 in Figure 11.

In Scene 1, there is only one person, with relatively few real targets and a large number
of ghosts. In this scenario, PointNet exhibits multiple false positives and PairwiseNet
produces one false positive, while TrajNet achieves completely clean segmentation with no
false detections.

Scene 2 is more challenging, involving four individuals. In this case, PointNet suffers
from numerous missed detections; both person 3 and person 4 are poorly recognized,
and one false positive is also observed. PairwiseNet is able to detect person 3 but struggles
to identify person 4. In contrast, TrajNet shows improved recognition of person 4, with only
a small number of missed detections.
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Figure 14. Point cloud segmentation results (green: true targets, red: ghosts). Blue circles highlight
key differences among the segmentation outputs of the various networks. Dashed black lines indicate
the primary reflective surfaces (i.e., walls). In the ground-truth plots, yellow arrows mark the actual
movement trajectories of individuals, and the numbers on the arrows denote their IDs.

5. Conclusions

This paper proposes a trajectory-based ghost suppression method for mmWave radar.
The approach consists of key steps that include point cloud pre-segmentation, inter-frame
trajectory tracking, trajectory feature extraction, and broadcasting, effectively integrating
spatiotemporal information with point-level features.

The experimental results demonstrate that our method outperforms existing point
cloud segmentation approaches, achieving 93.5% accuracy and 98.2% AUROC on the test
set. Ablation studies further validate the importance of each component, particularly high-
lighting that the combination of pre-segmentation and trajectory-based processing captures
complementary information that contributes significantly to the overall performance.

Despite efforts to reduce trajectory confusion, the proposed method can still suffer
from incorrect associations during tracking. Future work may explore improvements in
multi-target tracking robustness. In addition, the current method uses CNN-based tem-
poral feature extraction (chosen for its training stability, parallelizability, and convergence
properties) along the trajectory dimension, which requires the explicit storage of a temporal
window for each trajectory using a FIFO queue. A promising direction for future research
is to replace this design with recurrent neural networks (RNNs), such as assigning a long
short-term memory (LSTM) to each trajectory with shared parameters. This could eliminate
the need for maintaining historical point storage and reduce redundant computation from
sliding windows, enabling more efficient streaming processing.
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