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Abstract: This paper presents a system in which mobile manipulators and transport agents
cooperate to solve a multi-agent pickup and delivery (MAPD) problem. The primary
objective is to allocate appropriate tasks to heterogeneous robots by considering their
capabilities and states. Unlike previous studies that focused on homogeneous teams or
assigned distinct roles to heterogeneous robots, this work emphasizes synergy through co-
operative task execution. A key feature of the proposed system is that mobile manipulators
behave differently depending on whether they are paired with a transport agent. Addi-
tionally, rather than generating a full trajectory from start to end, the system plans partial
trajectories, allowing dynamic re-pairing of transport agents through an auction algorithm.
After re-pairing, new starting nodes are defined, and the following trajectory is updated
accordingly. The proposed system is validated through simulations, and its effectiveness is
demonstrated by comparing it against a baseline system without dynamic pairing.

Keywords: heterogeneous multi-agent pickup and delivery; cooperating robots; multi-robot
task allocation

1. Introduction
In recent years, multi-robot systems are utilized in various fields, such as logistics [1,2],

rescue [3,4], medical care [5,6], and agriculture [7,8]. For these domains, which require the
coordination of multiple robots, solving MAPD problems is an important part of the process.
Current research in MAPD focuses on developing efficient algorithms for task allocation
and path planning to optimize efficiency [9,10]. These studies aim to minimize travel
distance, task completion time, and resource consumption while ensuring a collision-free
trajectory for multiple agents [11–13].

However, most existing approaches assume homogeneous robot teams [7,14] or as-
signing heterogeneous robots to distinct tasks [15–18]. Although some studies address
heterogeneous robots performing the same task, they rarely focus on performing assigned
tasks cooperatively [3,5,19].

In this context, we propose a multi-robot system that performs tidying-up tasks by
integrating two heterogeneous robot types: mobile manipulators and transport agents. The
system is designed to support synergistic collaboration between these robots.

Figure 1 shows the capabilities of mobile manipulators and transport agents. In this
system, a mobile manipulator can pick up an object and deliver it to the destination or hand
it to a transport agent. In contrast, a transport agent cannot pick up objects themselves
but can receive them from manipulators. However, unlike mobile manipulators, they can
deliver multiple objects to the destination in a single trip.
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Figure 1. Capabilities of the mobile manipulator (a,b) and the transport agent (c,d): (a) picking up
an object; (b) delivering an object at the destination; (c) receiving an object from a paired mobile
manipulator; (d) delivering multiple objects to the destination.

Unlike previous approaches that assign independent tasks to each robot type, this sys-
tem enables pairing these two types to form collaborative units and create complementary
capabilities by integrating trajectory optimization and auction-based task allocation.

In generating an optimized trajectory, the objective function consists of traveling and
object-handling time without considering the process of finding new partners. The planning
conditions are different depending on whether a transport agent is paired (carrying multiple
objects) or unpaired (carrying only one object). Additionally, the system generates a partial
trajectory corresponding to the number of objects to deliver in a single expectation.

After matching a new pairing partner and generating the sequence trajectory, new
starting nodes are defined at the positions where robots are expected to be located after a
certain amount of time. From these nodes, a new trajectory is generated.

1.1. Related Work

Several works have been proposed to solve the MAPD problem. Authors in [14] present
the MAPD approach that robots can run in a peer-to-peer fashion. By distributing computa-
tion to multiple robots using primal decomposition [20–22], this method enables a reduction
in computations without a central node. However, this work assumes the use of homo-
geneous robots. Additionally, duplicate access to delivery points is not considered in the
optimization, and all robots should start their task at the same starting point. Furthermore,
they conducted only abbreviated experiments, without pick-and-place, using mobile robots
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without manipulators. Authors in [23] show a game-theoric multi-robot task allocation
framework for multi-robot trash collection in dynamically changing environments. In this
work, robots choose their working area based on a decision-making algorithm consisting of
a payoff (reward) mechanism, Poisson clock, and task revision protocol. Another MAPD
framework introduced in [7] shows a practical example of using a multi-objective discrete
artificial bee colony (MODABC) algorithm in orchards. However, both [7,23] favor the use
of homogeneous robots in solving MAPD problems.

Meanwhile, other studies deal with multi-robot systems with heterogeneous robots.
Authors in [3] show task allocation with heterogenous robots by considering their capabil-
ities and states in a rescue scenario, and they prove its validity by applying it to Capture
the Flag game. Authors in [5] present task allocation and path planning of heterogeneous
robots in medical scenarios. This work introduces Intensive Inter-task Relationship Tree
Search (IIRTS) to perform fast task allocation and enable real-time implementation. How-
ever, they only present the methods to place heterogeneous robots in appropriate places
and do not present how to perform the tasks at the arrival point.

Research in [15–18] deals with a topic similar to this work that solves the MAPD
problem with mobile manipulators and transport agents. Although they solve this problem
in various ways (e.g., weighted block sequence graph, constructive heuristics, and recurrent
open shop scheduling), these works have limitations in restricting the movement range of
mobile manipulators to near storage units. For this reason, these robots only take out items
from storage at designated points. Furthermore, as this work assumes that all robots are
operated in a structured factory setting with a grid path, applying them in non-structured
environments is challenging.

1.2. Contributions

In order to implement the MAPD using only optimization, the timing and location
of pairings should be considered in the optimization condition. However, as this method
requires an extremely high amount of computation, it is impossible to use in practice. To
address this issue, we introduce a multi-robot control system that combines optimization
and auction algorithms. This work provides the following contributions.

1. We propose a novel MAPD system that enables cooperative task execution between
mobile manipulators and transport agents in the same space.

2. The system integrates trajectory optimization and an auction-based task allocation
mechanism to adjust the pairing of robots dynamically.

3. Unlike previous full-trajectory approaches, our method uses a horizon-based partial
trajectory planning strategy that enables dynamic pairing and re-optimization during
execution with reduced computational costs.

4. The system applies different planning conditions to mobile manipulators depending
on whether they are currently paired with a transport agent or are operating indepen-
dently. On the other hand, many previous works assume robots have fixed roles or
behave in the same way.

5. The proposed system is validated through realistic simulations, demonstrating the
algorithm’s effectiveness.

2. System Overview
The overall system structure, shown in Figure 2, is composed of four main components:

the initializer, trajectory planner, pairing planner, and predictor.
At the beginning of an operation, the initializer processes the current states

of the environment—such as robot positions and object distributions derived from
GPS sensors—and derives the initial states necessary for trajectory planning. These are
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passed to the trajectory planner, which generates a robot’s optimal path up to a predefined
planning horizon without considering pairing updates.

Figure 2. Overview of system structure: yellow arrows, green arrows, and blue arrows present the
state flows starting from the environment, initializer, and predictor, respectively.

Next, the pairing planner uses an auction-based algorithm to determine new pairing
partners for mobile manipulators and transport agents. It evaluates pairing options based
on cost and availability and generates a trajectory that reflects these new pairings. These
are then merged with the initial pre-auction trajectory to form the post-auction trajectory,
which is passed to the predictor.

The predictor analyzes the post-auction trajectory and estimates predictive nodes,
which are used by the initializer in the next planning cycle. It also contributes to determin-
ing the target behaviors of the robots by combining trajectory information with the current
environmental context.

Finally, using the combined trajectory and current state information, the system derives
the target actions for each robot.

3. Pre-Auction Trajectory Planning
We formulate the problem using the notations defined in Table 1 to generate optimal

trajectories up to a predefined planning horizon without considering pairing updates.
An example of such a trajectory is illustrated in Figure 3, which includes three types

of nodes: s for starting positions, j for object locations, and k for delivery destinations. In
this example, mobile manipulators i1 and i3, which start at s1 and s3, are initially paired
with transport agents, while i2, starting at s2, is not.

Table 1. Definitions of the notations.

Parameters

I = {i1, i2, .., in} Set of mobile manipulator i.
Ip ⊆ I Set of mobile manipulators paired with transport agent.
J = {j1, j2, .., jm} Set of object node j.
w ∈ [0, 1] Completion time weight.
wτ ∈ [0, 1] Separated transport agent cost weight.
k Destination node.
H ∈ N Object number horizon.
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Table 1. Cont.

Constraints

linit
i ∈ Z≥0

Initial loaded object of the paired transport agent of the mobile
manipulator i.

Lmax ∈ N Maximum carrying capacity of a transport agent.
cinit

i ∈ R≥0 Initial cost of the mobile manipulator i.
csj

i ∈ R≥0 The cost when traveling (si, j) and handling j.

cjk ∈ R≥0
The cost when traveling (j, k) and placing the object j at its
destination node k.

ckj ∈ R≥0 The cost when traveling (k, j) and handling j.
cjj′ ∈ R≥0 The cost when traveling (j, j′) and handling j′.

Decision variables

xsj
i ∈ {0, 1} 1 if i travels (si, j) and picks up j, 0 otherwise.

xjkj′

i ∈ {0, 1}
1 if i travels (j, k), places the j at its destination node k, travels
(k, j′), and picks up j′, 0 otherwise.

xjj′

i ∈ {0, 1} 1 if i travels (j, j′) and picks up j′, 0 otherwise.

xkjj′

i ∈ {0, 1}
1 if i separates its paired transport and the transport agent travels
to k, the destination node of j, and travels (j, j′) and picks up j′,
0 otherwise.

xjk
i ∈ {0, 1}

1 if i travels (j, k) at last and places the j at its destination node k,
0 otherwise.

oj
i ∈ R≥0 The order of picking up j among the tasks of i.

Ci ∈ R≥0 The total cost of i.

Figure 3. Pre-auction trajectory with H = 8: blue arrows, purple arrows, and red arrows represent the
trajectory of mobile manipulators i1, i2, and i3, respectively, and yellow and green arrows represent
the trajectory of transport agents separated from i1 and i3, respectively.

The destination node k1 is assigned to the objects from j1 to j3, k2 to the objects from j4
to j6, and k3 to those from j7 to j9.

3.1. Initializer

Before computing the optimized trajectory, it is necessary to initialize the state of each
mobile manipulator i. Algorithm 1 outlines this process, where the initial cost cinit

i , starting
node si, paired transport agent τi, and initially loaded objects linit

i are determined.
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Algorithm 1 Initializer.

1: for i ∈ I do
2: if predictive nodes exist then
3: cinit

i ← GETINITIALCOST(spred
i , Πprev

i )

4: si ← GETLASTNODEINPREDICTION(spred
i , Πprev

i )

5: τi ← GETPAIREDTRANSPORTAGENT(τ
pred
i , Πprev

i )

6: linit
i ← lpred

i
7: else
8: cinit

i , si, τi, linit
i ← 0, pnow

i , τnow
i , lnow

i
9: end for

If predictive states are available, cinit
i is computed based on the predictive node spred

i in
the previous trajectory Πprev

i ; si is defined as the last accessing node during the prediction

period; τi is considered paired with i if τ
pred
i arrives at the pairing node within the prediction

range; and linit
i is set to its predictive value lpred

i . (This process is explained in more detail
in Section 4.2).

In contrast, if predictive states are unavailable, cinit
i is set to zero; si is assigned to the

data received at the current position from an embedded GPS pnow
i ; and τi and linit

i are also
set to their current states τnow

i and lnow
i , respectively.

3.2. Trajectory Planner

After determining the initial states, the following objective function and constraints
are defined to generate the trajectory.

3.2.1. Objective Function

min
i∈I, j∈J

{w max
i∈I

Ci + (1− w)∑
i∈I

Ci} (1)

Equation (1) describes the objective function used to minimize the completion time
and the total cost of all robots. These two components can be balanced using the weight
parameter w. A higher value of w emphasizes minimizing the maximum completion time,
while a lower value prioritizes the reduction of the total cost.

3.2.2. Traveling Constraints

xjakjb
i = 0, xja jb

i = 0, xkja jb
i = 0, where ja = jb, ∀i ∈ I (2)

xjakjb
i xjbkja

i = 0, xja jb
i xjb ja

i = 0, xkja jb
i xkjb ja

i = 0, ∀i ∈ I (3)

xja jb
¬ip

= 0, xkja jb
¬ip

= 0, ∀ip ∈ Ip (4)

xja jb
ip

= 0, ∀ip ∈ Ip, where k ja ̸= k jb (5)

xsja
ip

xjakjb
ip

= 0, ∑
ja ,jb∈J

xkja jb
ip
≤ 1, ∀ip ∈ Ip (6)

Equations (2) and (3) show that the mobile manipulators cannot stop at a specific node
and cannot return to the previously visited node.

Equations (4) and (5) describe the conditions when a mobile manipulator travels
directly between object nodes. Equation (4) describes that performing such direct travels
is restricted for the mobile manipulators not paired with the transport agents. However,
even if paired, as described in Equation (5), object nodes ja and jb should have the same
destination node in performing direct travels without separation.



Sensors 2025, 25, 3269 7 of 18

Equation (6) describes the conditions for the mobile manipulators paired with trans-
port agents: they cannot travel to an object node via a destination node immediately after
its first movement. Additionally, separating tasks can only be performed once for the
paired mobile manipulators.

3.2.3. Manipulation Constraints

∑
j∈J

xsj
i ≤ 1, ∀i ∈ I (7)

∑
i∈I

xjk
i ≤ 1, ∀j ∈ J (8)

xsj
i = xsj

i ∑
j′∈J

xj′k
i , ∀i ∈ I, ∀j ∈ J (9)

{∑
i∈I

xsja
i + ∑

i∈I
∑
jb∈J

(xjb ja
i + xkjb ja

i + xjbkja
i )} ≤ 1, ∀ja ∈ J (10)

∑
ja∈J
{∑

i∈I
xsja

i + ∑
i∈I

∑
jb∈J

(xjb ja
i + xkjb ja

i + xjbkja
i )} = H (11)

Equations (7)–(9) describe that if a mobile manipulator starts a task, it can only execute
one starting task xsj

i and one final task xjk
i . However, these constraints alone may result in

multiple robots performing the same task. This issue is addressed by Equation (10), which
prevents such overlaps by enforcing exclusivity in task execution. Moreover, Equation (10)
is extended to Equation (11) by summing over all object nodes, thereby defining the horizon
that the number of objects handled in a single planning. In Equation (11), the horizon is
determined based on available computing power.

3.2.4. Connecting Constraints

xsja
i = xsja

i {∑
jb∈J

(xkja jb
i + xja jb

i + xjakjb
i ) + xjak

i }, ∀ja ∈ J, ∀i ∈ I (12)

xjak
i = xjak

i {∑
jb∈J

(xkjb ja
i + xjb ja

i + xjbkja
i ) + xsja

i }, ∀ja ∈ J, ∀i ∈ I (13)

xjakjb
i = xjakjb

i {xsja
i + ∑

jc∈J
(xkjc ja

i + xjckja
i )}, ∀ja ∈ J, ∀i ∈ I (14)

xjbkja
i = xjbkja

i {xjak
i + ∑

jc∈J
xjakjc

i }, ∀ja ∈ J, ∀i ∈ I (15)

xja jb
i = xja jb

i {x
sja
i + ∑

jc∈J
xjc ja

i }, ∀ja ∈ J, ∀i ∈ I (16)

xjb ja
i = xjb ja

i {x
jak
i + ∑

jc∈J
(xja jc

i + xkja jc
i )}, ∀ja ∈ J, ∀i ∈ I (17)

xkja jb
i = xkja jb

i {xsja
i + ∑

jc∈J
xjc ja

i }, ∀ja ∈ J, ∀i ∈ I (18)

xkjb ja
i = xkjb ja

i {xjak
i + ∑

jc∈J
xjakjc

i }, ∀ja ∈ J, ∀i ∈ I (19)

Equations (12)–(19) define the connecting constraint that connected edges should
share the same node. These constraints enforce the continuity of movement by requiring
the connections between nodes to align with respective task assignments. Additionally,
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Equation (19) specifies that if the mobile manipulators separate from their paired transport
agents, they are no longer allowed to move directly between object nodes.

3.2.5. Ordering and Capacity Constraints

ojb
i = oja

i + 1− n(J)(1− xja jb
i − xjakjb

i ), ∀ja ∈ J, ∀i ∈ I (20)

∑
ja∈J

∑
jb∈J

xja jb
i < (Lmax − linit

i ), ∀i ∈ I (21)

Equation (20) defines the ordering constraints to prevent the generation of infinite
loops in the trajectory (e.g., xjakjb

i = 1, xjbkjc
i = 1, and xjckja

i = 1), by assigning an execution
order using the Miller–Tucker–Zemlin (MTZ) formulation [24].

Additionally, since the number of loaded objects increases by one whenever the robot
travels directly between two object locations, the number of such direct travels for i is
bounded by its maximum carrying capacity and the number of initially loaded objects, as
expressed in Equation (21).

3.2.6. Total Cost

Ci = cinit
i + ∑

j∈J
csj

i xsj
i + ∑

j∈J
cjkxjk

i + ∑
ja ,jb∈J

(cjak + ckjb)xjakjb
i +

∑
ja ,jb∈J

cja jb xja jb
i + ∑

ja ,jb∈J
(wτcjak + cja jb)xkja jb

i , ∀i ∈ I (22)

Equation (22) represents the deriving total cost of i. When xkja jb
i is performed, the cost

of the separated transport agent is adjusted by weight wτ .

4. Post-Auction Trajectory Planning
After generating the pre-auction trajectory, each transport agent selects a new pairing

partner and node and regenerates its trajectory accordingly.

4.1. Auction-Based Pairing Planner

Algorithm 2 shows the overall process. After initializing the best pairing candidate set
Pbest to an empty state, the set of pairing candidates P is generated from the pre-auction
trajectory Πpre. Each candidate comprises a transport agent separated from its original
partner, a target mobile manipulator, and a pairing index indicating a node on the target
manipulator’s trajectory.

Algorithm 2 Pairing planner.

1: Pbest ← ∅, P← GETPAIRINGCANDIDATE(Πpre)
2: while P ̸= ∅ do
3: pbest, Jdone

best ← SELECTBESTPAIR(P, Pbest, Πpre, J, H)
4: P← EXCLUDESELECTEDAGENTS(P, pbest.i, pbest.τ)
5: J ← J − Jdone

best , H ← H − n(Jdone
best ),

6: Pbest ← Pbest + pbest
7: end while
8: Cinit, Snew ← GETINITIALSTATEAFTERPAIRING(Pbest)
9: Πnew ← TRJPLANNER(Pbest, Cinit, Snew, H, J)

10: Πpost ← REPLACETRJ(Πpre, Snew, Πnew)

The algorithm iteratively selects the best available candidate until all separated trans-
port agents in P are paired with new mobile manipulators. Once the best candidate pbest is
identified, the robots included in pbest and the objects handled at SELECTBESTPAIR Jdone

best
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are excluded from further consideration. The process is then repeated with the remaining
pairings to determine the next optimal pairing state.

After all pairings are finalized, the new pairing trajectory Πnew is generated from
new starting nodes Snew. By replacing the pre-auction trajectory after Snew to Πnew, the
post-auction trajectory Πpost is generated.

4.1.1. Pairing Candidates

Algorithm 3 demonstrates the procedure for generating pairing candidates. For each
transport agent τ and mobile manipulator i, the algorithm evaluates every node πn

i along i’s
trajectory Πi. If i is initially unpaired, the evaluation begins from the first node; otherwise,
it starts from the separation index nsep.

Algorithm 3 GETPAIRINGCANDIDATE

1: P← ∅
2: for τ ∈ T, i ∈ I do
3: Pi,τ ← ∅
4: for n = 0, 1, ..., NΠi − 1 do
5: if i ∈ ¬Ip or n ≥ nsep then

6: t
πn

i
τ ← tpre-sep

τ + t
jsep,ksep
τ + thandle + t

ksep,πn
i

τ

7: if t
πn

i
τ ≤ t

πn
i

i + tA then

8: Pi,τ ← Pi,τ + (τ, i, n, t
πn

i
τ )

9: end if
10: end if
11: end for
12: P← P + FILTERFASTESTMEETINGPAIRS(Pi,τ , N)
13: end for
14: return P

At each node, a pairing with τ is considered feasible if the total estimated time for the
transport agent to arrive—including the pre-separation time tpre-sep

τ , travel time from the

separation point to the destination node t
jsep,ksep
τ , object handling time thandle, and travel

time from the destination node to the n-th node on the trajectory t
ksep,πn

i
τ —does not exceed

the sum of the arrival/handling time of the target mobile manipulator at the n-th node t
πn

i
i ,

and the allowable waiting time tA.
Among all feasible candidates in Pi,τ , the top N candidates with the earliest meeting

times t
πn

i
τ are selected using FILTERFASTESTMEETINGPAIRS, and the corresponding values

(τ, i, n) are added to the global candidate set P.

4.1.2. Selecting the Best Pair with Auction

To determine the optimal pairs, each candidate is evaluated using the process described
in Algorithm 4.

In each evaluation, i in the subject candidate p is assumed to be paired with a transport
agent at the n-th node on its pre-auction trajectory Πpre

p.i . Additionally, the previously
selected candidates Pbest are also assumed to be paired at their respective pairing nodes.
Moreover, Cinit

eval and Seval represent the initial cost and starting positions of all agents, and
Jp.idone represents the set of objects already handled by p.i before the n-th node, and they
are derived using GETINITIALSTATES.

Figure 4 shows an example of how the initial states are set when evaluating the subject
candidate p1. In this example, the mobile manipulator i1 is paired with a transport agent at
node j2. Other relevant robots, such as i2 and i3, are also considered in the evaluation: i2
is a non-subject mobile manipulator, and i3 is a previously selected mobile manipulator
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that is paired with a transport agent at node j5. When i1 arrives at j2, each of these robots is
positioned at its respective coincident node, which is marked with a red line in the figure.

Figure 4. Evaluation of the subject candidate: Initial cost trajectories are depicted with blue arrows,
while evaluation trajectories are represented with purple arrows.

Algorithm 4 SELECTBESTPAIR

1: Ceval ← ∅
2: for p ∈ P do
3: SETPAIRINGS(p.i, p.n, Pbest, Πpre

p.i )

4: Cinit
eval, Seval, Jdone

p.i ← GETINITIALSTATES(p, Pbest, Πpre)

5: Jeval ← J − Jdone
p.i , Heval ← H − n(Jdone

p.i )

6: Πp ← TRJPLANNER(p, Pbest, Cinit
eval, Seval, Heval, Jeval)

7: Ceval ← Ceval + Πp.c
8: end for
9: pbest, Jdone

best ← GETMINCOSTPAIR(Ceval)

10: return pbest, Jdone
best

In this scenario, j1 is the object handled by the subject candidate, and j2 becomes the
starting node for i1. For each non-subject agent, the starting node is defined as the first
node on its trajectory after passing the coincident point. However, if the agent belongs to a
previously selected candidate, its pairing node is used as its starting point.

Based on these updated starting nodes, the initial cost of each candidate is calculated
as the sum of travel and handling times from their original starting node to the updated
one, presented with blue arrows.

After defining the initial states, the candidate trajectory Πp is generated using
TRJPLANNER (Section 3.2), assuming that non-subject mobile manipulators not in the
previously selected set are unpaired. The resulting cost Πp.c is then computed from Πp

and stored in the evaluation set Ceval.
This evaluation process is repeated for all candidates. Among them, the candidate

with the lowest cost is selected as the best pair pbest, and its handled object set Jdone
best is

excluded from consideration in the subsequent sequence auctions.

4.1.3. Post-Auction Trajectory

The mobile manipulators included in Pbest are designated as paired at their respective
pairing nodes. Conversely, those not included in Pbest are designated as unpaired, starting
from their separating node if they were initially paired or from their original starting node
if they were initially unpaired.
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At these new starting nodes Snew, the cost from each robot’s original starting node to
its new starting node is set as the initial cost Cinit. Additionally, the object nodes between
these starting nodes are omitted when planning the new trajectory.

With these initial states, the trajectory Πnew is generated using TRJPLANNER, and the
post-auction trajectory Πpost is obtained by replacing the segment after Snew in Πpre with Πnew.

4.2. Predictor

After generating the post-auction trajectory, we can create a new trajectory from the
points concerning the specific time that has passed in reference to the previous starting
points. As shown in Figure 5, the starting nodes move through the trajectory for the
predefined prediction time, which is indicated with a dotted arrow, and the predictive
starting node is set as spred

i . From these nodes, a new trajectory is generated.

Figure 5. Post-auction trajectory generated from new starting nodes.

As performed in Section 4.1.2, each mobile manipulator designates its last accessing
node during the prediction time as its predictive initial accessing nodes, and the sum of the
traveling time and handling time from each predictive starting node to the initial accessing
node is defined as the initial cost cinit

i . For instance, in Figure 5, j2, k1, and j7 are assigned

as the new starting nodes for i1, i2, and i3, respectively, and the costs from each spred
i to its

corresponding starting node are set as cinit
i .

If the initial accessing node for i is an object node j, then xsj
i is set to 1. In addition,

object nodes handled by each paired robot within the prediction range are added to its
initially loaded objects linit

i in the new trajectory. As shown in Figure 5, j1 and j3 are added

to the loaded objects of i1 and i2, respectively, and xsj2
i1

and xsj7
i3

are set to 1.

5. Experiments
The experiments were conducted using Webots [25], an open-source robotic simulator

integrated with ROS2 [26].
To generate navigation trajectories, we employed the A* [27] algorithm to compute

travel paths and estimate the costs between waypoints, including object positions, destina-
tions, and robot locations. Based on the computed costs, the Gurobi Optimizer [28] was
used to generate optimized trajectories as described in Section 3.2, where the weight pa-
rameter w was set to 0.7. In addition, ORCA (Optimal Reciprocal Collision Avoidance) [29]
was applied during navigation to prevent collisions between robots.
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The experiments are designed to evaluate the proposed system from two perspectives—its
scalability in different task settings, and the impact of the auction-based pairing algorithm on
overall performance.

In evaluating its scalability, the experiments were conducted in two environments:
a simplified environment and a kindergarten-themed environment—both shown in Figure 6.
The simplified environment consists of cube-shaped objects and three destinations without
obstacles. In contrast, the kindergarten-themed environment includes objects commonly
found in kindergartens, four destinations, and various obstacles.

(a)

(b)

Figure 6. Simulation environment used in the experiments: (a) simplified environment;
(b) kindergarten-themed environment.

Meanwhile, to evaluate the effectiveness of the auction-based pairing algorithm, we
compared the proposed system to a baseline configuration that does not include this
mechanism. In the baseline system, each mobile manipulator operates independently with
fixed storage, and no dynamic role reassignment with transport agents occurs.

Both experiments were conducted under varying numbers of objects Nj and transport
agents Nτ , assuming Lmax = 2 for all transport agents.

For a visual representation of the experiments, all corresponding video recordings can be
accessed at the following link: (https://youtube.com/playlist?list=PLB1pUAsYGpRHK9
mhHIeu827JLSoLhcznD&si=97sXqhfHEqkMkMc0, accessed on 20 May 2025).

https://youtube.com/playlist?list=PLB1pUAsYGpRHK9mhHIeu827JLSoLhcznD&si=97sXqhfHEqkMkMc0
https://youtube.com/playlist?list=PLB1pUAsYGpRHK9mhHIeu827JLSoLhcznD&si=97sXqhfHEqkMkMc0
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5.1. Scalability Evaluation
5.1.1. Experimental Scenarios

To evaluate the scalability of the proposed system, we test its performance under two
different environments:

• Simplified Environment: A minimal environment shown in Figure 6a, where three
mobile manipulators and a varying number of transport agents collaborate to tidy
up the workspace by placing cube-shaped objects into the destination zones of
matching colors.

• Kindergarten-Themed Environment: A realistic environment shown in Figure 6b,
which consists of four distinct areas: a playroom, a corridor, a classroom, and a
teacher’s room. In this environment, five mobile manipulators and a varying number
of transport agents work together to tidy up four different types of objects—balls, toys,
teaching aids, and stationery—by delivering them to their designated locations. To
ensure consistent handling and loading behaviors, all objects were standardized to
have a weight of 50 g and were encapsulated in a cubic bounding box with a side
length of 0.07 m.

5.1.2. Performance Comparison

We measured task completion time in both environments while increasing Nj and Nτ .
The results, summarized in Figure 7 and Table 2, show that the proposed system scales
well in both structured and complex environments.

(a) (b)

Figure 7. Changes in task completion time depend on the number of transport agents and objects:
(a) simplified environment; (b) kindergarten-themed environment.

In the simplified environment, the system shows relatively minor gains when Nj is
small. For example, at Nj = 9, increasing Nτ from 2 to 3 results in only a 1-second increase,
suggesting possible coordination overhead. However, as the number of objects increases to
Nj = 15, the benefit becomes more evident, with up to 44 s of reduction when increasing
Nτ from 2 to 3.

In the kindergarten-themed environment, which introduces additional complexity,
such as obstacles and spatial constraints, similar trends are observed. For Nj = 12, in-
creasing the number of transport agents from one to two reduces the completion time
significantly by 36 s. A further increase to three units continues to reduce the time to 98 s.
However, increasing Nτ from 3 to 4 does not yield any improvement, and adding a fifth
transport agent increases the completion time by 5 s, possibly due to the coordination
overhead in a low-demand scenario.

For larger workloads, Nj = 20 and Nj = 24, the performance improves more consis-
tently as the number of transport agents increases, following a similar trend observed in the
simplified environment. For Nj = 20, task completion time drops from 229 s with one unit
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to 155 s with five units, with the average decrease being 18.5 s per unit. A similar pattern
is observed at Nj = 24, where time reduces from 272 to 182 s as the number of transport
agents increases, with the average decrease being 22.5 s per unit.

These results demonstrate that the proposed system scales effectively in both simplified
and realistic settings, and that the degree of performance improvement becomes more
substantial as the task complexity and workload increase.

Table 2. Detailed task completion times by the number of transport agents and objects.

Nτ

Simplified Environment Kindergarten-Themed Environment

Nj = 9 Nj = 12 Nj = 15 Nj = 12 Nj = 16 Nj = 20 Nj = 24

1 129 213 s 278 s 155 s 211 s 229 s 272 s
2 124 s 193 s 240 s 119 s 179 s 210 s 253 s
3 125 s 167 s 196 s 98 s 177 s 187 s 225 s
4 – 98 s 132 s 170 s 201 s
5 – 103 s 119 s 155 s 182 s

5.2. Effectiveness of Auction-Based Pairing
5.2.1. Experimental Scenarios

To evaluate the effectiveness of the auction-based pairing algorithm, we define two
experimental scenarios:

• With auction-based pairing: Robots use the proposed dynamic pairing strategy,
where transport agents and mobile manipulators are paired through an auction-based
algorithm. Pairings can change dynamically based on task status and robot availability.

• Without auction-based pairing: Robots operate without the auction-based pairing
mechanism. Instead of dynamic pairing, each mobile manipulator, assumed to be
paired with a transport agent, is equipped with a container that has the same Lmax as a
transport agent and performs the task without any pairing mechanism. The trajectory
planner employed in this work is based on the approach proposed in [14].

Both scenarios are tested under identical environment settings, including object place-
ments and robot configurations. Task completion time is measured and compared to
analyze the effectiveness of the auction-based pairing strategy.

5.2.2. Performance Comparison

To assess the effectiveness of the proposed auction-based pairing strategy, we compare
its performance against a baseline configuration in which each mobile manipulator is
equipped with a fixed container and no dynamic pairing is allowed. Both systems are
evaluated in the kindergarten-themed environment.

As shown in Figure 8 and Table 3, the auction-based system achieves better perfor-
mance in most settings, particularly when the number of transport agents increases.

For example, at Nj = 12, the completion time decreases from 156 s to 103 s as Nτ

increases from 1 to 5 without an auction-based pairing; with the proposed method, the time
drops from 155 s to 98 s over the same range.

At Nj = 16, the difference becomes even more pronounced. The baseline shows a
reduction of 32 s (from 191 s to 159 s), while the auction-based method achieves a 92 s
reduction (from 211 s to 119 s), demonstrating more effective resource utilization under
moderate task loads.

Even in higher workloads, the auction-based method consistently maintains a more
significant margin of improvement. When Nj = 24, the completion time drops from 274 s
to 218 s without an auction-based pairing and from 272 s to 182 s with an auction-based
pairing, yielding a 36 s advantage.
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These results indicate that the proposed auction-based pairing enables better adapta-
tion to varying task distributions. By allowing dynamic reallocation of roles between mobile
manipulators and transport agents, the system achieves consistently shorter completion
times across different conditions.

Table 3. Detailed task completion times by the number of transport agents and objects.

Nτ

Without Auction-Based Pairing With Auction-Based Pairing

Nj = 12 Nj = 16 Nj = 20 Nj = 24 Nj = 12 Nj = 16 Nj = 20 Nj = 24

1 156 s 191 s 229 s 274 s 155 s 211 s 229 s 272 s
2 150 s 185 s 212 s 262 s 119 s 179 s 210 s 253 s
3 137 s 180 s 205 s 246 s 98 s 177 s 187 s 225 s
4 138 s 170 s 191 s 234 s 98 s 132 s 170 s 201 s
5 136 s 159 s 176 s 218 s 103 s 119 s 155 s 182 s

Figure 8. Visual comparison of task completion times according to the number of transport agents
and objects.

6. Discussion
This study proposes an MAPD system that enables efficient collaboration between

mobile manipulators and transport agents. Unlike conventional approaches that treat
heterogeneous agents separately, our system integrates trajectory optimization with auction-
based dynamic pairing to support flexible role adjustment and synergy.

Experimental results validate the approach, showing that the proposed method im-
proves task completion time, especially in high-demand situations. These improvements
highlight the value of strategic dynamic pairing and partial trajectory planning in optimiz-
ing heterogeneous multi-robot collaboration.
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However, the current system assumes that all transport agents have identical capabili-
ties and ignores energy limitations. These assumptions simplify the problem but may limit
applicability in real-world deployments. Future improvements will focus on addressing
these constraints by incorporating robot heterogeneity and energy-aware task allocation.

7. Conclusions
This work presented an MAPD framework that enables heterogeneous multi-robot

collaboration through dynamic pairing and partial trajectory planning. By integrating an
auction-based planner with trajectory optimization, the system achieves improved task effi-
ciency and flexibility. Experimental validation in both simplified and realistic environments
confirmed the effectiveness of the proposed method under various workloads.

For future work, we plan to extend the system to consider energy-aware
scheduling [30–32], which is essential for real-world robot operation, by incorporating
battery levels and standby agents in charging stations, allowing for dynamic deployment
based on resource availability and demand. Furthermore, the current system assumes
uniform robot capabilities. Our future research will explore heterogeneous agents with
varying speeds and capacities to enhance generalizability.
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