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Abstract: This article presents the results of experimental studies on the influence of the
geometry of high-voltage plasma actuator electrodes on the change in flow in the boundary
layer and their influence on the change in the lift coefficient. The plasma actuator used in
the described experimental studies has a completely different structure. The experimental
model of the plasma actuator uses a large mesh ground electrode and different geometries
of the high-voltage electrodes, namely copper solid electrodes and mesh electrodes (the
use of mesh electrodes, large GND and HV is a new solution). The plasma actuator was
placed directly on the surface of the wing model with the SD 7003 profile. The wing model
with the plasma actuator was placed in the wind tunnel. All experimental tests carried
out were carried out for various configurations. The DBD plasma actuator was powered
by a high-voltage power supply with a voltage range from Vp = 7.5–15 kV. The use of a
high-voltage mesh electrode allowed for an increase in the lift coefficient (CL) for the angle
of attack α = 5 degrees and the air flow velocity in the range from V = 5 m/s to 20 m/s,
while the use of copper electrodes HV with the plasma actuator turned off and on, were
very small (close to zero). The experimental studies were conducted for Reynolds numbers
in the range of Re = 87,985–351,939.

Keywords: plasma actuator; flow control; wing airfoil; wind tunnel; mesh electrodes; DBD

1. Introduction
A crucial aspect in aircraft design is ensuring high levels of safety for both passengers

and the aircraft itself, being the reason why experimental tests are conducted on various
components including landing gear [1–4], wings and their structures [5], turbine blades [6],
and other elements [7]. Plasma actuators represent a relatively new technological solution
aimed at enhancing flight safety. Many experimental studies worldwide focus on improving
the efficiency of DBD plasma actuators, as their implementation contributes to increasing
lift and enhancing safety. Plasma actuators allow the control of the boundary layer by DBD
discharges [8,9]. The design of the DBD (Dielectric Barrier Discharge) plasma actuator
is simple, as it does not involve moving parts like rods, valves, cylinders, or gears. The
use of plasma actuators in aviation does not complicate wing design. The typical plasma
actuator configuration used in research consists of solid electrodes (HV and GND) in the
form of two flat copper strips separated by a dielectric in an asymmetric electrode setup.
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The dielectric serves as protection against spark discharges, which can lead to localized
temperature spikes [10,11]. The first electrode, grounded (GND), is fully covered by the
dielectric, while the second high-voltage (HV) electrode is exposed to the airflow.

The primary mechanism through which the DBD plasma actuator influences airflow is
the generation of an “ion wind”, as discussed in numerous studies [9,10]. The operation of
DBD plasma actuators relies on air ionization, which alters the potential of gas molecules
and results in elastic collisions between migrating charged molecules and neutral gas
molecules, increasing their energy and creating an “electric wind” near the surface of
the airfoil [12–15]. Most research focuses on altering the shape of solid high-voltage
copper electrodes to rectangular, oval, sawtooth, or corrugated forms. Modifying the
shape of the HV electrode increases the discharge area of the plasma actuator (asymmetric
configuration with two copper electrodes, Figure 1a) [16,17], producing a stronger “ion
wind”, which improves airflow circulation in the boundary layer. Numerous experimental
studies involving plasma actuators use power supply frequencies ranging from several
hundred Hz to several kHz [18–21]. The range of applied voltages during experimental
tests depends on the dielectric used [22–25] and is usually from a few to several dozen kV.
It should be noted that the discharge frequency has a significant impact on the performance
and power of the discharges. The efficiency of a 50 Hz system cannot be compared with
that of a 2 kHz system, as the changes are not linear. The authors selected 50 Hz based on
the studies of S. Okazaki [26], which confirmed the possibility of achieving homogeneous
discharges at this frequency. Homogeneous discharges prevent local temperature increases
and a decrease in system efficiency.

The manuscript describes a new plasma actuator design intended to control airflow
in the boundary layer. Tests were conducted on a wing model with an SD 7003 airfoil for
angles of attack between α = 5 and 15 degrees and air velocities from V = 5 to 20 m/s. The
new plasma actuator design features a large, grounded mesh electrode covering 70% of
the upper surface of the wing model (the use of large copper electrodes GND and HV is
a new solution). The upper surface of the wing is completely covered with four layers of
dielectric, separating the two electrodes. A high-voltage electrode was placed directly on
the dielectric surface. Two HV electrode geometries were used in the experimental studies:
the first series of tests used a solid oblique copper HV electrode, while the second series
utilized an HV mesh electrode.

The expected effect of using oblique copper electrodes during experimental research
is the enhancement of the vortex formation effect by combining the oblique arrangement of
the electrodes similarly to the VG vortex generators setting and the plasma actuator effect.

• Another research goal was to verify the expected high efficiency of the plasma actu-
ator by using a large GND mesh electrode, which allows discharges to form at both
edges of the copper HV electrode, and in the second case, directly through the HV
mesh electrode.

• The efficiency of the plasma actuator powered at a frequency of 50 Hz was evaluated
during the experiments.

• It was also checked whether the frequency of 50 Hz is optimal for powering the tested
plasma actuator.

• The primary objective of the wind tunnel tests was to assess the effectiveness of the
new plasma actuator design and determine the optimal geometry for the HV electrode
in the DBD system.

• The experimental tests also served to verify the assumptions related to the oblique
arrangement of the copper electrodes.



Sensors 2025, 25, 105 3 of 14

Sensors 2025, 25, x FOR PEER REVIEW 3 of 14 
 

 

• The experimental tests also served to verify the assumptions related to the oblique 
arrangement of the copper electrodes. 

 

Figure 1. Configuration of electrodes in plasma actuators: (a) classic asymmetric system with two 
copper electrodes, (b) configuration with two mesh electrodes, (c) configuration with grounded 
mesh electrode and solid copper HV electrode. 

The choice of comparing oblique HV electrodes and mesh electrodes was driven by 
the need to determine the impact of an oblique electrode configuration at a 15-degree angle 
(as in vortex generators) on the operation of the plasma actuator, and to compare it with a 
configuration utilizing a mesh HV electrode. There are no known reports in the literature of 
such experiments being conducted, as the configuration with the mesh GND electrode is a 
novel design. In the case of the copper HV electrode and the mesh GND electrode, dis-
charges occur at both edges of the copper electrode, which was not possible in the classical 
configuration using an asymmetric arrangement of copper HV and GND electrodes. 

The use of plasma actuators significantly reduces turbulence. This reduction in 
turbulence can lead to substantial energy savings required for movement [13–15]. Exten-
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Figure 1. Configuration of electrodes in plasma actuators: (a) classic asymmetric system with two
copper electrodes, (b) configuration with two mesh electrodes, (c) configuration with grounded mesh
electrode and solid copper HV electrode.

The choice of comparing oblique HV electrodes and mesh electrodes was driven by
the need to determine the impact of an oblique electrode configuration at a 15-degree
angle (as in vortex generators) on the operation of the plasma actuator, and to compare
it with a configuration utilizing a mesh HV electrode. There are no known reports in
the literature of such experiments being conducted, as the configuration with the mesh
GND electrode is a novel design. In the case of the copper HV electrode and the mesh
GND electrode, discharges occur at both edges of the copper electrode, which was not
possible in the classical configuration using an asymmetric arrangement of copper HV and
GND electrodes.

The use of plasma actuators significantly reduces turbulence. This reduction in tur-
bulence can lead to substantial energy savings required for movement [13–15]. Extensive
research is being conducted on the application of plasma actuators on aircraft wing surfaces
and in vehicles such as trucks to reduce turbulence and fuel consumption [26–29].

2. Materials and Methods
All experimental tests were conducted for various configurations of the angle of

attack, ranging from α = 5 to 15 degrees, when changing every 5 degrees, and for air
velocities between V = 5 and 20 m/s. It is important to note that the critical angle of
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attack for the tested SD 7003 airfoil profile is α = 11 degrees. Experimental tests with a
plasma actuator were carried out at the State School of Higher Education in Chełm, in the
Institute of Technical Sciences and Aviation. During the experiments, tests were conducted
at an angle of attack α = 15 degrees higher than this critical angle. At angles exceeding
α = 11 degrees, the SD 7003 airfoil loses all lift, resulting in stall. To enhance measurement
accuracy, 10 measurements were taken for each configuration of attack angle and air
velocity, both with the plasma actuator activated and deactivated. This approach allowed
for a measurement uncertainty as low as 0.013 at an angle of attack of 15 degrees.

The tests were conducted in a wind tunnel (AeroLab tunnel) capable of regulating
airspeed within the range of V = 4.5 to 65 m/s. The equipment installed in the tunnel
enabled the measurement of forces acting on the wing during the experiments. During
the experimental tests, the plasma actuator was powered by an autotransformer and a
transformer increasing the voltage 230/10,000 V 50 Hz. Voltage and current discharges
were recorded using a Keysight DSO-X 2012A oscilloscope (200 MHz, 2 GS/s) equipped
with a Tektronix P6015A high-voltage probe and a Tektronix P2220 current probe with
1×/10× options.

The wing model with SD7003 profiles, 250 mm wide and 250 mm long, is made of
modeling plywood and balsa covered with fiberglass, as illustrated in Figure 2a. Two
different electrode geometry configurations were tested during the experiments. In the first
configuration, both the grounded electrode (GND) and the high-voltage (HV) electrode
were made from AISI 304 stainless steel mesh (total mesh electrode thickness 0.1 mm). In the
second configuration, only the GND electrode was made of mesh, while the HV electrode
was a copper strip. In both configurations, the GND mesh electrode was positioned on the
upper surface of the wing profile. The grounded mesh electrode was insulated with four
layers of Kapton foil to prevent spark discharges, as shown in Figure 2b.
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Figure 2. Construction and profile view of the SD7003 wing model and the wing model; (a) with a
grounded electrode without dielectric, (b) covered with Kapton dielectric.

A high-voltage mesh electrode with dimensions of 200 × 10 mm (mesh size
0.05 × 0.05 mm) was positioned 15 mm from the leading edge of the wing. This configu-
ration enables the installation of a “large grounded electrode” and allows for the flexible
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movement of the upper high-voltage electrode along the HV connector, as illustrated in
Figure 3a,b. In contrast to the commonly used plasma actuator with an asymmetrical
electrode system, where the movement of the high-voltage electrode is not possible, this
design offers greater flexibility in electrode positioning.
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The design of the DBD system is relatively straightforward. It consists of two flat
electrodes that are separated by a dielectric layer. The dielectric in DBD systems serves the
important function of preventing localized temperature increases [9,10]. The most common
configuration for a DBD plasma actuator is an asymmetrical electrode system, as shown in
Figure 1a. This setup features two flat, parallel copper foil electrodes, separated by a thin
dielectric layer, which are placed directly on the surface of the wing. In the operation of a
plasma actuator with an asymmetrical electrode configuration, discharges occur only at
one edge of the copper high-voltage (HV) electrode.

To perform the experimental studies described in this paper, two configurations were
developed. In the first configuration, a mesh GND electrode and a copper tape HV elec-
trode were used, while in the second configuration, both the GND and HV electrodes
were mesh electrodes. Figure 1b illustrates the configuration and operation of the tested
plasma actuator system using two mesh electrodes, while Figure 1c presents the system
in a configuration featuring a grounded mesh electrode paired with a solid copper elec-
trode. Unlike the solid electrodes typically used in plasma actuators, mesh electrodes
are permeable to air and provide a larger discharge area. Experimental tests performed
by the authors on plasma reactors operating at atmospheric pressure demonstrate that
uniform, streamer-free discharges are achievable in DBD reactors with the use of mesh
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electrodes [7,24]. These properties of the mesh electrodes led the authors of this manuscript
to apply them to the construction of a plasma actuator influencing the air flow in boundary
layer of the aeronautical profile.

The measurement system setup connected to the wing model is depicted in Figure 4.
The Phantom V2511 fast camera was used to record the tunnel images during the experi-
mental tests.
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The high-voltage copper electrode consists of 8 electrodes placed at angle
α = 15 degrees connected together at one end, 15 mm from the leading edge, as shown in
Figure 2a. The length of a single copper electrode is le = 70 mm, with a width of 3 mm.

3. Results
The experimental tests in both configurations were conducted under identical con-

ditions. During experimental tests, the discharge power varied between P = 1.1 W and
2.3 W, with a supply voltage ranging from Vp = 7.5 kV to 15 kV. The power supply system
for the plasma actuator operated at a frequency of 50 Hz. Several factors influenced the
discharge power in the DBD system, including the frequency of the supply system, the
type and thickness of the dielectric [10,30–32], the distance between electrodes, electrode
geometry [22], and the type of gas used during the tests. The use of the AeroLab wind
tunnel, equipped with measuring instruments, enabled the recording of forces acting on
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the wing throughout the experimental tests. A Keysight oscilloscope with equipment was
used to measure DBD voltages and discharge currents, while the recorded Lissajous figure
oscillograms facilitated the calculation of discharge power. During the wind tunnel tests,
the forces acting on the wing model were recorded.

Results for the DBD plasma actuator configuration with two mesh electrodes (GND
and HV): The first series of tests focused on a plasma actuator equipped with a large mesh
GND electrode and a high-voltage mesh electrode. Table 1 presents the forces acting on the
wing model for this two-mesh electrode plasma actuator configuration at an angle of attack
of α = 5 degrees, comparing results with the plasma actuator turned on and off.

Table 1. Configuration with two mesh electrodes, angle of attack α = 5 degrees.

V (m/s) Normal Force (N) Axial Force (N)

Plasma Actuator

OFF ON OFF ON
5 0.40 0.48 0.03 0.09

10 3.33 3.40 0.16 0.18
15 6.57 6.65 0.33 0.36
20 7.40 7.61 0.34 0.40

One of the primary factors affecting changes in lift is the angle of attack. The changes
in the lift coefficient (CL) for an air flow velocity of V = 5 m/s and angles of attack ranging
from α = 5 to 15 degrees are depicted in Figure 5. The effectiveness of the newly configured
plasma actuator is supported by high-speed camera images, as shown in Figures 6 and 7.
Another factor influencing the lift force is the increase in air flow velocity. As the velocity
increases from V = 5 to 20 m/s for an angle of attack of α = 5 degrees, the lift coefficient
decreases, as illustrated in Figure 5. The difference between the lift coefficient (CL) with the
plasma actuator on and off diminishes as air flow velocity increases. The plasma actuator
using two mesh electrodes demonstrates higher efficiency, which is further confirmed by
the wind tunnel images shown in Figures 6 and 7.

Numerous experimental studies have confirmed a decline in the efficiency of DBD
systems as gas flow velocity increases, resulting in a decrease in ozone concentration (e.g.,
in ozone generators) [33–35]. Plasma actuators are DBD systems and when the gas flow
velocity increases, their efficiency decreases [36–39]; increasing the frequency of the power
supply system allows the partial remedying of this phenomenon.

The Result Obtained for Plasma Actuator with Mesh Electrode GND and Oblique Copper
Electrodes HV

Another series of experiments was conducted using a configuration with a large mesh
ground (GND) electrode and high-voltage (HV) copper tape electrodes. The DBD plasma
actuator shown in Figure 1c is a different design compared to the typical asymmetrical
electrode geometry shown in Figure 1a, consisting of one grounded mesh electrode located
on 70% of the upper wing surface and high-voltage copper electrodes. This configuration
allows discharges to form along both edges of the copper HV electrode, increasing discharge
efficiency. The total length of the copper electrodes is 760 mm. The use of copper electrodes
does not allow the obtaining of discharges through of the electrodes surfaces like a mesh
electrode. This setup represents a novel electrode geometry that combines copper electrodes
with a mesh electrode. Table 2 provides data on the forces acting on the wing model at an
angle of attack α = 5 degrees, with the plasma actuator turned on and off, in the oblique
copper electrode HV configuration.
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were used as for the plasma actuator with two mesh electrodes (Figure 5). Changes in the
lift coefficient depending on the air flow velocity are shown in Figure 8. The changes in
CL for α = 5 degrees and air flow velocity in the range V = 5 to 20 m/s, with the plasma
actuator turned on and off, are minimal (close to zero).

Table 2. Configuration with oblique copper electrode HV, angle of attack α = 5 degrees.

V (m/s) Normal Force (N) Axial Force (N)

Plasma Actuator

OFF ON OFF ON
5 0.17 0.17 0.02 0.02

10 0.85 0.88 0.07 0.08
15 6.18 6.19 0.33 0.33
20 7.29 7.33 0.56 0.56
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Figure 8. Changes in the lift coefficient (a) for angles of attack α = 5 degrees and air flow velocity in
the range from V = 5 m/s to 20 m/s, with plasma actuator turned on and off, and (b) for air flow
velocity V = 5 m/s for angles of attack in the range of α = 5–15 degrees, with plasma actuator turned
on and off, with mesh electrode GND and oblique copper electrode HV.

In order to objectively compare the influence of the electrode geometry on the change
in the lift force, a comparison was made of the influence of the angles of attack on the
change in the lift coefficient (CL). Similarly to the analysis conducted for the plasma actuator
with two mesh electrodes, this comparison was also performed for the copper electrode
configuration. Figure 9 illustrates changes in the lift coefficient (CL) for air flow velocity
V = 5 m/s and angles of attack ranging from α = 5 to 15 degrees for the plasma actuator
with a copper HV electrode.

Data analysis and the graph in Figure 8 show only a small increase in the lift coefficient
(CL), approximately 3%, at α = 15 degrees and air flow velocity V = 5 m/s when the plasma
actuator is activated. The low efficiency of the plasma actuator results from the oblique
geometry of the copper electrodes. Each of the eight electrodes generate a vortex on the
two edges of each electrode. The oblique geometry of the electrodes causes the overlapping
of subsequent vortexes arising on neighboring copper electrodes (generated vortices have
mutually interlocked). This solution did not increase the lift force, as indicated by the
shape and value changes in the lift coefficient shown in Figure 8, and it also increased drag.
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Changes in the drag coefficient (CD) as a function of air flow velocity for two angles of
attack, α = 5 degrees and α = 10 degrees, with the plasma actuator on and off, are presented
in Figure 9.

Sensors 2025, 25, x FOR PEER REVIEW 11 of 14 
 

 

electrode configuration. Figure 9 illustrates changes in the lift coefficient (CL) for air flow 
velocity V = 5 m/s and angles of attack ranging from α = 5 to 15 degrees for the plasma 
actuator with a copper HV electrode. 

Data analysis and the graph in Figure 8 show only a small increase in the lift coeffi-
cient (CL), approximately 3%, at α = 15 degrees and air flow velocity V = 5 m/s when the 
plasma actuator is activated. The low efficiency of the plasma actuator results from the 
oblique geometry of the copper electrodes. Each of the eight electrodes generate a vortex 
on the two edges of each electrode. The oblique geometry of the electrodes causes the 
overlapping of subsequent vortexes arising on neighboring copper electrodes (generated 
vortices have mutually interlocked). This solution did not increase the lift force, as indi-
cated by the shape and value changes in the lift coefficient shown in Figure 8, and it also 
increased drag. Changes in the drag coefficient (CD) as a function of air flow velocity for 
two angles of attack, α = 5 degrees and α = 10 degrees, with the plasma actuator on and 
off, are presented in Figure 9. 

 

Figure 9. Changes in the drag coefficient CD depending on the air flow velocity for angle of attack α 
= 5, for configurations with plasma actuator turned off and on, with mesh electrode GND and 
oblique copper electrode HV. 

The analysis of the results obtained for the plasma actuator with oblique copper 
electrodes HV shows the increase in the drag coefficient, with a slight increase in the lift 
coefficient. The highest drag coefficient (CD) was observed for air flow velocities between 
V = 5 and 10 m/s at α = 5 degrees. With the decrease in the efficiency of the plasma actu-
ator for angle of attack higher than 5 degrees and air flow velocity of more than V = 5 m/s, 
the generated drag decreased as the vortex generation intensity of the plasma actuator is 
reduced. Previous experimental studies have shown that the efficiency of plasma actua-
tors decreases as the angle of attack and air flow velocity increase. This reduction in effi-
ciency for the oblique HV copper electrode configuration is evident from the rise in drag. 
As the air flow velocity increases, the efficiency of the plasma actuator with the copper 
electrodes decreases, which can be seen after the decrease in the drag coefficient (CD) in 
Figure 9. The generated vortexes from individual oblique copper electrodes influenced 
each other by generating flow disturbances. An increase in disturbances increases the 
drag. 

4. Conclusions 
Experimental studies conducted in a wind tunnel on a plasma actuator in two con-

figurations demonstrated changes in the lift coefficient due to the application of DBD 
discharges. The plasma actuator in the first configuration with a “large” mesh electrode 
(GND) and a high-voltage mesh electrode (HV), and in the configuration with a single 

0.0

0.1

0.2

5 10 15 20

C
D

5 degrees OFF

5 degrees ON

Velocity, [m/s]

Figure 9. Changes in the drag coefficient CD depending on the air flow velocity for angle of attack
α = 5, for configurations with plasma actuator turned off and on, with mesh electrode GND and
oblique copper electrode HV.

The analysis of the results obtained for the plasma actuator with oblique copper
electrodes HV shows the increase in the drag coefficient, with a slight increase in the lift
coefficient. The highest drag coefficient (CD) was observed for air flow velocities between
V = 5 and 10 m/s at α = 5 degrees. With the decrease in the efficiency of the plasma actuator
for angle of attack higher than 5 degrees and air flow velocity of more than V = 5 m/s,
the generated drag decreased as the vortex generation intensity of the plasma actuator is
reduced. Previous experimental studies have shown that the efficiency of plasma actuators
decreases as the angle of attack and air flow velocity increase. This reduction in efficiency
for the oblique HV copper electrode configuration is evident from the rise in drag. As the
air flow velocity increases, the efficiency of the plasma actuator with the copper electrodes
decreases, which can be seen after the decrease in the drag coefficient (CD) in Figure 9. The
generated vortexes from individual oblique copper electrodes influenced each other by
generating flow disturbances. An increase in disturbances increases the drag.

4. Conclusions
Experimental studies conducted in a wind tunnel on a plasma actuator in two con-

figurations demonstrated changes in the lift coefficient due to the application of DBD
discharges. The plasma actuator in the first configuration with a “large” mesh electrode
(GND) and a high-voltage mesh electrode (HV), and in the configuration with a single
“large” mesh electrode and an oblique solid copper electrode, are novel solutions not previ-
ously described in the literature. The wing model with the plasma actuator was subjected
to wind tunnel tests at angles of attack ranging from α = 5 to 15 degrees and at four air
flow velocities between V = 5 and 20 m/s. This allowed for the assessment of how these
factors affect the plasma actuator’s efficiency. The results indicated that individual factors
influence the actuator’s efficiency, particularly air flow velocity and angles of attack, which
have a key role in forming the “ionic wind” and increasing lift force. Changes in the lift
coefficient and the increase in turbulent flow as the angle of attack increases are illustrated
in Figures 6 and 7, caused by the separation point moving towards the leading edge.

The influence of air flow velocity on the lift coefficient is depicted in Figures 5 and 8.
The decrease in the lift coefficient with the increase in air flow velocity is the result of the
low frequency of 50 Hz of the power supply system operation, which affects the efficiency
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and power of the plasma actuator. Based on the experimental results, it was concluded that
the 50 Hz power supply frequency is too low for optimal operation of the plasma actuator
in both the two mesh electrodes configuration and the copper electrodes configuration.
The higher lift coefficient obtained for the plasma actuator with two mesh electrodes was
achieved thanks to the use of a high-voltage mesh electrode. The use of a high-voltage
mesh electrode allows for discharges to be obtained at both edges of the electrode and
directly through the surface of the mesh electrode. The dual effect of the discharge being
concentrated at the edge and directly through the surface of the mesh electrode allows
for the generation of a stronger “ion wind”. The use of a large mesh electrode GND also
allowed increased efficiency of the plasma actuator in the configuration with the HV copper
electrode by obtaining discharges at both edges of the HV electrode (in this configuration it
is not possible to obtain discharges directly through the electrode surface). The assumptions
concerning the increase in the efficiency of the plasma actuator by the oblique mounting of
the copper electrode, similarly to the VG vortex generators, did not generate the expected
results, which is confirmed by the obtained results of experimental tests, presented in
Figures 8 and 9. Research carried out with copper electrodes showed that an important
factor affecting the operation of the plasma actuator is the optimal arrangement of copper
electrodes on the surface of the wing. The result obtained for the oblique copper electrodes
showed an increase in drag with the plasma actuator switched on, this phenomenon is
related to the overlap of vortexes and the generation of disturbances increasing the drag. It
is necessary to optimize the plasma actuator system to maximize efficiency.
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