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Abstract: Structural engineers are often required to draw two-dimensional engineering sketches for
quick structural analysis, either by hand calculation or using analysis software. However, calculation
by hand is slow and error-prone, and the manual conversion of a hand-drawn sketch into a virtual
model is tedious and time-consuming. This paper presents a complete and autonomous framework
for converting a hand-drawn engineering sketch into an analyzed structural model using a camera
and computer vision. In this framework, a computer vision object detection stage initially extracts
information about the raw features in the image of the beam diagram. Next, a computer vision
number-reading model transcribes any handwritten numerals appearing in the image. Then, feature
association models are applied to characterize the relationships among the detected features in order
to build a comprehensive structural model. Finally, the structural model generated is analyzed using
OpenSees. In the system presented, the object detection model achieves a mean average precision
of 99.1%, the number-reading model achieves an accuracy of 99.0%, and the models in the feature
association stage achieve accuracies ranging from 95.1% to 99.5%. Overall, the tool analyzes 45.0%
of images entirely correctly and the remaining 55.0% of images partially correctly. The proposed
framework holds promise for other types of structural sketches, such as trusses and frames. Moreover,
it can be a valuable tool for structural engineers that is capable of improving the efficiency, safety,
and sustainability of future construction projects.

Keywords: computer vision; deep learning; AI for structural engineering; structural analysis;
sketch to model

1. Introduction

In civil engineering, a structure is a system comprising interconnected elements sup-
porting applied loads. For the design of any functional public structure, trained and skilled
structural design engineers must create and analyze mathematical models of structures
to determine the extent to which these proposed systems fulfill the design objectives and
satisfy safety, aesthetic, economic, and environmental considerations [1]. Comprehensive
design of structures typically requires the use of complex three-dimensional models pro-
duced using commercial software, but employing two-dimensional heuristics of these
complex systems expedites the initial phases of the structural design process. Generating
diagrams representing the internal forces experienced by these simplified models is a
crucial step in the design process. These analyses enable engineers to quickly gain an
understanding of the system and provide a relatively expeditious method of evaluating the
validity and effectiveness of a potential solution without the resource-intensive analysis
that a more comprehensive model or structure would require. However, the process of
analyzing these models by manual hand calculation is laborious and error-prone, making
it a suboptimal strategy.
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Alternative solutions to mitigate these disadvantages exist, but each has its own
shortcomings. For instance, hand-drawn diagrams may be manually translated into a data
structure consisting of nodes and elements for input into a computer program for analysis,
but this process is often more time-consuming and error-prone than simply analyzing
the structures by hand. As a further example, existing commercial structural analysis
software [2] allows users to draft detailed structural models, but this process is just as slow
and tedious as manual analysis, particularly for simple structures. Furthermore, these
methods may not be user-friendly for on-site engineers, who may need to make quick
decisions and take immediate actions based on the results of the structural analyses.

Despite the widespread adoption of computer-aided design (CAD) and digital struc-
tural analysis tools, what is lacking in the industry is a simple and easy-to-use tool capable
of analyzing technical sketches using artificial intelligence (AI) and advanced machine-
learning-based computer vision (CV) techniques directly, without the need for intermediate
processing to prepare them for analysis. This paper presents a framework for a com-
plete, rapid, and accurate workflow from a handwritten sketch to an analyzed structural
model. To enhance the abstraction and convenience of the framework, all analysis must
be self-contained, based only on information present in the sketch and not on any exter-
nal/supplemental information from engineers. Additionally, to maximize robustness and
generalizability, the tool must be able to perform offline recognition without temporal infor-
mation relating to the order and speed of pen strokes. Such a tool would allow structural
engineers to simply take a photograph of a rough, hand-drawn sketch and receive accurate
comprehensive structural analysis results within seconds.

This paper presents a general AI-based framework to translate arbitrary handwritten
engineering sketches into analyzed structural models as well as an initial implementation
of a concrete system using this framework for beam diagrams. The remainder of this paper
is organized as follows:

• Section 2 delves deeper into the application of AI to civil and structural engineering;
• Section 3 outlines the general framework designed and the specific system implemented;
• Section 4 presents the empirical results of the system and the accompanying analysis;
• Section 5 summarizes the conclusions of the paper and provides direction for fu-

ture research.

2. Related Work

AI technologies have shown great advancements in recent years. While conventional
computer programs map inputs to outputs by applying a series of clearly defined rules
and operations outlined by a human programmer, AI technologies, especially machine
learning, allow computer programs to learn the rules and operations to map inputs to
outputs themselves simply by being exposed to many labeled input–output examples. The
basic artificial neural network (ANN) [3], also known as multi-layer perceptron (MLP),
is useful for simple classification tasks because of its natural ability to grasp patterns
present in sufficiently large datasets, but it is not powerful enough to undertake difficult CV
tasks. Object detection—the task of localizing and categorizing features in an image—and
handwritten text recognition (HTR)—the task of recognizing and reading handwritten
characters and digits in images to produce textual data—are particularly challenging. How-
ever, recent advancements in deep-learning-based AI technologies have made completing
these tasks possible with ever-increasing accuracy [4–6]. Systems utilizing convolutional
neural networks (CNNs) [7,8] have achieved state-of-the-art results across many subfields
of CV [9,10]. This is because CNNs largely overcome the inherent challenges of object
detection and HTR (such as the vastly different topologies from image to image and the
wide variance in penmanship from person to person). Thus, most modern object detection
models, including the You Only Look Once (YOLO) framework [11,12] employed in this
work, and many modern HTR systems, such as the SimpleHTR architecture [13] employed
herein, are implemented using CNNs. HTR systems usually apply a CNN alongside a
recurrent neural network (RNN) so that sequential data can be recognized and processed
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with their order preserved. Simultaneous improvements to computer hardware, partic-
ularly to the graphics processing unit (GPU), have made it feasible for these large-scale
deep-learning-based models to be trained and inferenced, even on consumer hardware.

In the realm of civil and structural engineering, the integration of AI technologies, par-
ticularly in CAD, structural analysis, and design, has undergone significant advancements
in recent years [14–17]. Rudimentary rule-based systems capturing technical knowledge
date back to the 1970s and 1980s [18,19] but are not powerful enough to solve this problem;
deep-learning-based AI techniques are required. The first major application of machine-
learning-based AI techniques to structural engineering came in the 1990s in the form of
pattern recognition and simple design [20]. Since then, advanced AI-based systems have
been applied to nearly all facets of structural engineering, from tunnel boring machines [21]
to construction site safety [22]. Some recent studies have applied AI directly to the actual
structural analysis process by using ANNs to predict and analyze the performance and
response of particular types of structures [23–26].

CV technologies are also widely used to extract relevant information from visual data
for structural analysis tasks. For instance, two-dimensional sketch-based finite element
analysis (2DSketchFEA) [27] is a unified system that integrates drawing and recognition
of common engineering symbols with geometric meshing, finite-element analysis, and
visualization. This system aimed to provide an easy and rapid tool for analysts to study
model behavioral phenomena. However, it was noted that the method did not rely on paper
sketches but required users to draw on a sketchpad that recognized primitive mechanics
components. Furthermore, the recognition step utilized an open-source shape recognizer
rather than advanced machine-learning-based CV techniques. Sketched-truss recognition
and analysis tool (STRAT) [28] was developed as a pen-based tool to expedite work in struc-
tural analysis within classrooms. It was based on classical methods of shape recognition
techniques using corner-finding algorithms to locate parsing points. This tool was specifi-
cally designed to aid students with learning standard truss analysis. Similarly, sketch-based
modeling and analysis of truss systems (SMATS) [29] presents a user interface that provides
an iterative environment for modeling the structural behavior of sketched truss systems in
real-time. This system applies gesture recognition to extract data for a structural analysis
program, with results visualized in the same user interface. This work aimed to bridge
the gap between architectural vision and engineering analysis, offering architects a natural
environment to present and appraise structural configurations of different truss systems
through sketching. Finite element analysis made easy (FEAsy) [30] is a tool that allows
users to transform, simulate, and analyze their finite element models quickly and easily
through freehand sketching. This tool was designed to be used in engineering education,
particularly for undergraduate students in mechanical and civil engineering. It served as
a learning tool for verifying answers to hand-worked problems and evaluating ideas in
the preliminary stages of design projects. However, the method was based on classical
least-squares optimization techniques and stroke resampling and recognition techniques.
In summary, while existing studies have explored AI applications across civil and structural
engineering, few have delved into utilizing deep learning and CV techniques for analyzing
handwritten technical diagrams.

This paper introduces a novel framework leveraging AI and CV to recognize, un-
derstand, and analyze handwritten structural sketches. The modularized nature of the
framework allows for easy extension to new features and scalability to new problems.
Moreover, the framework operates autonomously, solely relying on machine-learning
models to construct structural models without requiring supplemental user input.

3. Methodology
3.1. Overview

Understanding and interpreting complex structural systems is a difficult and daunting
task, even for professional structural engineers. In order for an AI computer program to
undertake such an endeavor, the problem must be decomposed into smaller and simpler
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sub-problems that can each be approached and solved separately by a single machine-
learning model. This multi-stage architecture follows software engineering best practices
by enabling each module to be specified, designed, built, trained, optimized, tested, and
maintained separately. Crucially, this approach allows for each module to be significantly
altered, or even fully replaced, without affecting the rest of the system (as long as the inter-
face between stages is kept consistent). Furthermore, this design enhances the extensibility
of the system such that additional functionality may be easily integrated in the future. The
problem at hand naturally lends itself to a four-stage sequence (Figure 1).

Figure 1. General architecture of the proposed complete framework.

• First, in the object detection stage, all raw features in the image, including structural
elements, support types, and applied loads, are classified and localized.

• Second, in the number-reading stage, all the detected handwritten numbers repre-
senting load magnitudes or element lengths in the image are read and converted into
numerical data.

• Third, in the feature association stage, the relationships among the raw image features,
such as whether a certain beam and support are attached or whether a given load
acts on the beam, are deduced in order to construct a valid structural model that is
accurately representative of the implied semantics of the sketched diagram.

• Fourth, this generated model undergoes automated structural analysis.

This divide-and-conquer approach of decomposing the recognition and analysis of
structural models into distinct steps allows for loosely coupled, reusable software modules
that may be easily adapted to analyze other types of structures such as trusses or frames in
the future.

This work presents an initial implementation of the proposed software framework, so
the system is subject to some restrictions. Certain assumptions are made concerning the
format of the handwritten diagram provided, which are outlined as follows:

• Applied forces must point straight right, left, upward, or downward. Point and
distributed loads drawn at an angle that is not along the x- or y-axis will be interpreted
as if they were drawn only in a single direction. To circumvent this limitation, an
angled load may be decomposed into two loads pointing in directions along the x-
and y-axes and acting at the same point.

• Distributed forces must be uniform. Non-uniformly distributed loads behaving accord-
ing to some other mathematical function will be interpreted as if they were uniform.

• Numbers must not be accompanied by units. Only digits can be read, so any letters
written will produce an erroneous transcription. Existing diagrams containing num-
bers with units will not be analyzed properly by the system. The structural analysis
software employed does not incorporate units, so any units deciphered would be
discarded regardless. However, all numbers are assumed to be expressed in terms of
the same system of units.

• Magnitudes must be assigned constant integer values. Variable, fractional, and decimal
forces and structural proportions will be read as integers.

• Structural proportions drawn in such a manner that each length arrow begins from the
same reference point must be drawn in reference to a point on the left for a horizontally
oriented beam or at the top for a vertically oriented beam of the diagram.

• The diagram must be consistent. For example, structural proportions must be con-
gruent, and an adequate number of length arrows must be supplied for the required
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number of elements. Any diagram that does not represent a valid structural model
will produce errors.

• The diagram must be free of extraneous scribbles. Such markings will be misinter-
preted as meaningful image features.

The developed software architecture is easily extensible such that resolving issues of
this nature and adding new functionality are relatively straightforward.

In what follows, we describe the approach taken to construct the system that was
specifically designed for structurally analyzing beam diagrams.

3.2. Object Detection

The first stage of the workflow is completed using YOLOv5 [11,12], a powerful CV
framework that achieves state-of-the-art results across many common CV tasks, including
image classification, object detection, instance segmentation, object tracking, and human
pose detection [31–33]. Unlike many contemporaneous alternatives, YOLO employs only
a single neural network in its object detection model (Figure 2). This makes it capable
of detecting and classifying objects simultaneously and also increases the training and
inference speed substantially [34]. These advanced methods exhibit good performance
even for images depicting complex scenes and contexts. While recognizing handwritten
diagrams is simpler than many other tasks YOLO is capable of completing, it does present
several key challenges that the model is able to overcome, including the wide variances in
penmanship, diagram format, lighting, sketch color, and background patterns from image
to image [11]. Furthermore, YOLO maintains high accuracy for overlapping and occluded
features [11], which are common in hand-sketched beam diagrams. For example, loads and
supports often intersect the beam, and magnitudes are often written immediately above
length or load arrows.

Figure 2. General architecture of the YOLO model [35]. Modified from [11].

To recognize the features that commonly appear in beam diagrams, the model is
trained on a fully custom-made dataset of 650 images depicting hand-drawn beam dia-
grams and other pertinent features (Figure 3). Specifically, the model is trained to recognize
beams themselves; fixed, roller, and pin support conditions; handwritten numbers; anno-
tated dimensions of beam elements; concentrated moments applied either clockwise or
counterclockwise; right-, left-, upward-, and downward-applied point forces; and right-,
left-, upward-, and downward-applied uniformly distributed forces. The separation of
loads pointing in different directions into different object classes allows the model to accu-
rately determine the direction of all applied loads. Following object detection best practices,
50 background images containing no objects of interest are included in the dataset in order
to reduce the number of false positives returned by the model. All 700 images in the dataset
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(i.e., the initial set of 650 as well as the 50 background images) are created and labeled
manually during the course of the project.

(a) Horizontal, loaded beam
with units.

(b) Horizontal, loaded beam
with overlapping lengths.

(c) Horizontal,
loaded beam.

(d) Horizontal, unloaded beam.

(e) Vertical, unloaded,
unsupported beam.

(f) Various arrows. (g) Background image.

Figure 3. Random samples of data used for the object detection model.

Data quality is paramount for training robust machine-learned models. To minimize
biases arising in the model due to limited training data sources, care is taken to ensure
high dataset quality. The diagrams are meticulously drawn to encompass many different
drawing styles and formats, maximizing model robustness. For example, diagrams are
drawn on blank, lined, and graph paper; diagrams are sketched using blue ink, black ink,
and pencil; beams are drawn both as lines and as boxes; arrows are sketched with and
without a filled-in arrowhead; structural supports are drawn as simplified shapes and in
detailed formats.

To further minimize adverse effects from the presence of any unintended patterns
present in the training dataset, each image is augmented in nine ways, producing a labeled
dataset of 7000 images. In the augmentation process, each image is rotated 90° clockwise; is
rotated 90° counterclockwise; is reflected horizontally; is reflected vertically; is reflected
both horizontally and vertically (both augmentations at once); is stretched by 50% hori-
zontally; is stretched by 50% vertically; is subject to random distortions, such as blurring,
brightness changes, and contrast changes; and is subject to color inversion (Figure 4). Image
rotations and reflections serve to eliminate many of the unintended topological patterns
that can appear by virtue of the manner in which diagrams tend to be drawn, making the
model more generalizable to different engineers’ diagrams. These types of alterations also
balance the counts of each direction of loads in the dataset, since reflections produce a
counterpart pointing in each direction for each load drawn. Stretching and distorting the
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images, meanwhile, exposes the model to diagrams mimicking those sketched by different
people. Color inversion, moreover, produces a light-colored diagram sketched on a black
background, enabling the model to support the digitally generated diagrams commonly
produced on tablets. Importantly, this augmentation procedure creates a sufficiently large
dataset—7000 images—to properly train the model (Table 1). While it is recommended that
YOLO training datasets contain as many as 1000 images and 10,000 instances per class for
detection [12], the simple nature of the problem at hand allows for strong performance
even with a smaller dataset. A small dataset for model validation containing 30 analogous,
but separate, images is also created. Applying the same augmentation procedure results in
a dataset containing 300 images, representing a 4.1%/95.9% validation–training split.

Table 1. Quantitative information about the dataset used for the object detection model.

Object Class Training Count Validation Count

Element Beam 6040 320

Support
Fix 4830 380
Pin 4330 250

Roller 3640 220

Point Force

Right 1067 55
Left 995 51
Up 976 77

Down 1452 137

Distributed Force

Right 442 36
Left 442 36
Up 372 38

Down 644 70

Couple Moment Clockwise 1888 114
Counterclockwise 2182 126

Other Length 5770 920
Number 12,110 1660

3.3. Number Reading

The second stage of the system is completed by SimpleHTR [13], which is a separate
number-reading CV model applied to all the numbers detected in the previous stage. The
YOLO model accurately detects and segments numbers and produces a minimal bounding
box for each handwritten number in the image. The coordinates of this box are used to
crop the input photograph, producing an image containing only the relevant number to be
read. Reading single handwritten digits is already challenging due to the variations in the
appearance of handwriting from one individual to another, but transcribing a sequence of
digits is an even more difficult task. Handwritten numbers often, but not always, contain
overlapping digits that are nearly impossible to segment, and the number of digits to detect
is unknown prior to execution. The architecture underlying the model consists of a CNN
followed by an RNN (Figure 5); the CNN allows patterns representing the digits to be
detected anywhere in the input image, and the RNN allows many digits to be detected
in succession.
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(a) Original image. (b) Reflected horizontally.

(c) Reflected vertically. (d) Reflected horizontally and
vertically.

(e) Randomly distorted. (f) Colors inverted.

(g) Rotated
clockwise by

90°.

(h) Rotated
counter-

clockwise by
90°.

(i) Stretched vertically by 50%.

(j) Stretched horizontally by 50%.

Figure 4. Visualization of the nine data augmentation techniques used on a random sample image.

To enable it to read variable-length handwritten numbers written by different people,
the model is trained on a large synthetic dataset designed to represent real-world examples.
The custom-made training dataset consists of 600,000 images based on the comprehensive
data available in the Modified National Institute of Standards and Technology (MNIST)
dataset [36]. The MNIST dataset contains 60,000 images for training and 10,000 images
for testing. This dataset consists of high-contrast, grayscale, 28 × 28 pixel images of single
handwritten digits written by approximately 250 high school students and United States



Sensors 2024, 24, 2923 9 of 22

government employees. This large, high-quality dataset is closely representative of real-
world handwritten numbers, making it an ideal data source for training and benchmarking
HTR models; models trained on it tend to be generalizable to real-world data.

Figure 5. General architecture of the SimpleHTR model. Modified from [13].

Significant MNIST dataset processing is required to allow transcription of multi-digit
numbers. To ensure single digits can still be read, all 60,000 original training images are
incorporated into the custom-made dataset as is. To generate plausible two-digit numbers,
each original image is concatenated with the next image in the dataset with a random
amount of overlap. This overlap is intended to represent various styles and densities
of handwriting (i.e., varying degrees of proximity between neighboring digits). This
process is then repeated, but in reverse, meaning that each pair of numbers is concatenated
in the opposite order. As a result, 120,000 images of random two-digit numbers are
produced. Three-digit numbers are generated in a similar manner—each image is randomly
concatenated with the next two and the previous two images in the dataset. These 120,000
three-digit number images, together with the 120,000 two-digit numbers and the 60,000
original images, make up the initial 300,000-image dataset (Figure 6).

(a) 2. (b) 7. (c) 3. (d) 4. (e) 6. (f) 1.

(g) 59. (h) 75. (i) 77.

(j) 07. (k) 00. (l) 10.

(m) 548. (n) 354. (o) 135.

(p) 113. (q) 511. (r) 751.

Figure 6. Random samples of data used for the number-reading model, with the correct number to
be read.

Following the construction of this MNIST-based dataset, each image is randomly
altered in various ways to produce an augmented copy of itself, bringing the total to
600,000 training images (Table 2). Specifically, each image is subject to random text bolding
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or thinning; random addition of both dark and light noise; and random small rotations,
shifts, and stretches (Figure 7). This augmentation is intended to introduce the kind of
data that may be encountered in real-world applications, where text thickness varies,
random noise is common, and images are not always level. The randomness involved in
the MNIST dataset and the dataset production process creates a diverse dataset, increasing
the generalizability of the model to different styles of handwriting. On the other hand,
this augmentation also results in some low-quality images being generated. For example,
certain digits may overlap too much, preventing even humans from correctly reading the
number, while others may not overlap enough, creating unnatural gaps between digits that
likewise make reading difficult. With a dataset this large, it is not feasible to thoroughly
manually inspect data quality, but random sampling indicates that the majority of images
are plausible. While this training dataset only includes one-, two-, and three-digit numbers,
the inherent abstraction of the RNN enables the model to read longer numbers that may
be encountered. A smaller dataset for model validation containing 30,000 analogous but
separate images is also created. This dataset is constructed in the same fashion based on the
10,000 testing images in the MNIST database, except that the numbers are not concatenated
in reverse-order and no augmentations are applied. This dataset represents a 4.8%/95.2%
validation–training split.

Table 2. Quantitative information about the dataset used for the number-reading model.

Type of Number Training Count Validation Count

Single-Digit 120,000 10,000
Two-Digit 240,000 10,000

Three-Digit 240,000 10,000

All 600,000 30,000

(a) 1. (b) 3. (c) 7. (d) 3. (e) 9. (f) 6.

(g) 40. (h) 01. (i) 12.

(j) 28. (k) 87. (l) 74.

(m) 571. (n) 157. (o) 115.

(p) 311. (q) 631. (r) 263.

Figure 7. Random samples of augmented data used for the number-reading model, with the correct
number to be read.
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3.4. Feature Association

The third stage of the system is completed by a series of custom-made MLPs [37].
These data-driven classifiers are used to ascertain the relationships among image features
as part of the algorithm in order to create a structural model. It should be noted that deep
learning allows for excellent performance on classification- and recognition-style tasks,
even on highly unstructured datasets (such as the one at hand, where the topology and
scale of each diagram varies greatly). The MLP model determines the rules for classification
itself, without being directly influenced by human biases, and its performance can be
improved simply by expanding the training dataset.

To analyze the various relationships among image features, six custom MLPs are
designed and implemented using TensorFlow [38]. These ANNs are used to determine
(1) whether a given beam and support are connected (“beam–support”), (2) whether
a given applied load acts on a beam (“beam–load”), (3) whether a given handwritten
number corresponds to some applied load (“load–number”), (4) whether a given length
arrow is associated with some element in the structural model representing a beam (“el-
ement–length”), (5) whether a given handwritten number corresponds to some length
arrow (“length–number”), and (6) whether the length arrows in the image are written in an
overlapping or in a separated format (“length–style”). All datasets for these models are
obtained by manually labeling all the relationships in the previously described 730-image
dataset of beam diagrams, maintaining the initial training–validation split.

The first five MLPs map eight input variables representing the four corner coordinates
of the bounding boxes of the relevant objects to one output variable. This output is a
numerical value between 0 and 1 representing the likelihood that the relevant condition
is true. To undertake this task, the model uses two hidden intermediate layers consisting
of 16 and 8 neurons, respectively (Figure 8). Thus, these models have 289 parameters.
Conversely, the “length–style” MLP takes 20 inputs corresponding to the four bounding
coordinates of any five lengths present in the image in any order, but it still produces one
analogous output indicating whether the lengths are overlapping or separated. This MLP
employs two hidden layers with 32 and 8 neurons, respectively, making it a 945-parameter
model.

To ensure all the MLPs are independent of the absolute image size, all coordinates
inputted are normalized to a fraction of the largest coordinate present along the given axis.
Each training example is subject to three different augmentations in order to minimize bias
within the training datasets. These augmentations are to reflect each input horizontally,
reflect each input vertically, and reflect each input both horizontally and vertically simul-
taneously. Moreover, to ensure that the length–style MLP is independent of the order in
which lengths are inputted into the model, each training example is reordered in every
possible permutation, even for those images with more than five lengths. While these
datasets are produced using only the 730-image dataset described above, they are large
enough to train the MLPs at hand. In general, the number of training examples in a dataset
should be at least 10 times the number of parameters in the model to be used [39]. Thus, for
the present case, the 289-parameter MLPs should be trained on at least 2890 examples, and
the 945-parameter MLP should be trained on at least 9450 examples. All six datasets created
far surpass this benchmark (Table 3), indicating that the MLPs can be properly trained on
this data. Furthermore, these datasets contain large splits for validation and thus are well
suited to meaningfully evaluate the MLPs; the validation–training split for the individual
datasets ranges from 5.8–94.2% to 19.1–80.9%, and the average split is 12.5–87.5%.
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Figure 8. General architecture of the beam–support, beam–load, load–number, element–length, and
length–number MLPs [35].

Table 3. Quantitative information about the dataset used for the feature association models.

Type of Model Training Count Positive Share Validation Count

Beam–Support 6064 72.8% 376
Beam–Load 3288 71.0% 320

Load–Number 12,348 21.1% 1724
Element–Length 7736 19.5% 1828
Length–Number 11,500 19.3% 2204

Length–Style 15,496 69.4% 2244

Average 9405 - 1449

These MLPs are applied in a structured algorithm to convert the raw data extracted
by the previous CV models into a format that can be further analyzed. More precisely, the
goal of the algorithm is to translate a list of raw information about detected objects into a
coherent beam data structure that encompasses all relevant information about the given
beam system and that that can be easily incorporated into structural analysis software.
Each structural model must contain exactly one beam, so each beam detected is considered
separately by the algorithm. The step-by-step execution of the algorithm (Figure 9) is
described below.

First, each support detected in the image must be tested to determine whether there is
a relationship to the beam at hand. The coordinates of the bounding boxes of the beam and
support being considered are passed into the beam–support MLP, and if the corresponding
output exceeds the defined threshold value, the beam and support are determined to be
related. In this context, it should be noted that a “relationship” means that the support
exerts reaction forces on the beam. If the given beam and support are deemed to be related,
relevant information about the support is incorporated into the beam’s data structure.

Second, in a similar fashion, each applied load detected in the image must be tested
to determine whether there is a relationship to the beam at hand. The coordinates of the
bounding boxes of the beam and load being considered are passed into the beam–load
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MLP, and if the corresponding output exceeds the defined threshold value, the beam and
support are deemed to be related. Here, a “relationship” means that the load acts on the
beam. If the given load and beam are deemed to be related, relevant information about the
applied load is incorporated into the beam’s data structure. However, unlike in the case
of supports, further investigation is required at this juncture: if a load is determined to be
acting on the beam, its associated magnitude must be ascertained.

Third, each handwritten number detected in the image is tested to determine whether
there is a relationship to the load that was just discovered to be acting on the beam. The
coordinates of the bounding boxes of the load and number being considered are passed
into the load–number MLP, and whichever number produces the highest output value
is deemed to be related to the load. In this case, a “relationship” means that the number
represents the magnitude of the load. The numerical value represented by this handwritten
number—this number having been read earlier—is incorporated into the information about
the load at hand in the beam’s data structure. How this magnitude is interpreted depends
on the given type of load: a point load, a distributed load, or a couple moment. The
beam data structure resulting from the completion of this step of the algorithm contains
information about the beam as well as its supports and loads, including where these objects
are located along the beam. At this juncture, the beam system can be interpreted as a
one-dimensional series of elements connecting structural nodes. Structural nodes occur at
the start and end of the beam as well as at each occurrence of a support or load. At this
point in the process, the location of each node along the beam is assumed to be at an edge
of the beam bounding box or at the center of the bounding box of the support or load acting
at the node.

Figure 9. General architecture of the algorithm to convert features into a structural model.

Fourth, each element contained in this rudimentary data structure and each length
arrow detected in the image must be tested to determine whether a relationship exists.
The coordinates of the structural element and of the bounding boxes of the length being
considered are passed into the element–length MLP, and whichever length produces the
highest output value that also exceeds the defined threshold value is deemed to be related
to the element. In this case, a “relationship” means that the element’s length is given by the
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length arrow. If no length value exceeds the minimum threshold for a particular element,
that element is discarded, as the nodes joined by the element are one and the same. The
data structure is compressed accordingly, allowing loads and supports to act at the same
node despite their bounding boxes having slightly different center locations. Just as in the
case of loads, though, further investigation is required at this juncture; if a given length
is determined to be associated with a given structural element, its associated magnitude
must be ascertained.

Fifth, each handwritten number detected in the image must be tested to determine
whether there is a relationship to the length that was just discovered to be associated with a
structural element. The coordinates of the bounding boxes of the length and number being
considered are passed into the length–number MLP, and whichever number produces the
highest output value is deemed to be related to the length. Similar to the load–number
case, a “relationship” means that the number represents the magnitude of the length. The
numerical value represented by this handwritten number—this number having been read
earlier—is incorporated into the information about the location of the nodes in the beam’s
data structure.

Sixth, the style of length arrows drawn must be tested. As many lengths as possible
are passed into the length–style MLP, and if the corresponding output exceeds the defined
threshold value, the lengths are deemed to have been drawn separately. This means that
each length arrow is drawn relative to the previous one and not to a common point. In this
case, all coordinates of nodes must be adjusted to account for the length of the previous
elements. This produces a coherent data structure consisting of a series of nodes, each with
corresponding supports and loads.

3.5. Structural Analysis

The fourth stage in the system is completed using OpenSees structural analysis soft-
ware [40]. The same algorithm employed in the previous step converts the image features
into a comprehensive beam data structure taking the form of a collection of nodes and
edges. These are the structural nodes upon which loads and supports act and the structural
elements of varying lengths that join them. These data are incorporated into OpenSees
(OpenSees nodes are instantiated, positioned, fixed, and loaded appropriately for each
beam node, and OpenSees elements are instantiated to join these nodes), producing an ana-
lyzable structural model. At this juncture, any desired structural analysis and visualization
supported by OpenSees is carried out. Specifically, the model structure, loads, and deforma-
tion are visualized, and the beam’s axial force, shear force, and bending moment diagrams
are plotted. This structural analysis provides useful information to structural engineers
concerning the efficiency and viability of potential designs in an easy-to-understand format.

4. Results
4.1. Object Detection

The YOLOv5s model architecture, which offers good model performance, low compu-
tational burden, and high speed, was selected for the system. A YOLOv5s model starting
with pre-trained model weights was trained for 35 epochs on the associated dataset of
7000 labeled images. When evaluated on the separate 300-image validation dataset using
a confidence threshold of 85.0% and an intersection-over-union threshold of 50.0%, the
model achieved a total precision of 98.6%, a total recall of 96.1%, and a total mean average
precision of 97.8% (Table 4). Although the model experienced some challenges in detecting
beams themselves and in detecting overlapping length arrows and numbers (Figure 10),
with just one other instance of error, all other objects were classified entirely correctly
among the non-augmented images in the validation dataset.
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Table 4. Results of trained YOLO object detection model on the validation dataset.

Object Class Validation Count Precision Recall mAP

Element Beam 320 94.6% 88.4% 93.2%

Support
Fix 380 100.0% 100.0% 99.5%
Pin 250 98.8% 97.2% 98.5%

Roller 220 94.8% 99.1% 99.2%

Point Force

Right 55 100.0% 94.5% 97.3%
Left 51 100.0% 88.2% 94.1%
Up 77 100.0% 90.9% 95.5%

Down 137 100.0% 99.3% 99.5%

Distributed Force

Right 36 100.0% 100.0% 99.5%
Left 36 100.0% 100.0% 99.5%
Up 38 100.0% 100.0% 99.5%

Down 70 100.0% 100.0% 99.5%

Couple Moment Clockwise 114 97.3% 96.5% 97.8%
Counterclockwise 126 95.3% 96.8% 98.2%

Other Length 920 97.8% 93.9% 96.8%
Number 1660 99.7% 93.0% 96.4%

All All 4490 98.6% 96.1% 97.8%

(a) Perfectly detected image. (b) Perfectly detected image.

(c) Perfectly detected image. (d) Perfectly detected image.

(e) Incorrectly detected image; both beams were not detected.

Figure 10. Selected samples of outputs generated by the YOLO object detection model.
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4.2. Number Reading

Three CNN layers were added to the baseline number-reading model architecture
(increasing the number of CNN layers to eight) alongside the original two RNN layers. The
model was trained from scratch for 20 epochs, resulting in a digit error rate of 0.5% and an
overall number accuracy of 99.0% on the separate 30,000-image validation dataset (Table 5).
Intuitively, the character error rate was found to be largely independent of the length of
the number being read. Although there was slightly better performance on isolated digits
compared to digits contained within a larger string, this was presumably attributable to
the excessively overlapping digits present in some of the multi-digit examples. Given that
all digits must be read perfectly in order for a number to be read correctly, it stands to
reason that longer numbers tend to have a slightly lower accuracy. However, since both the
training and validation datasets were generated by the same automated process and did
not contain any naturally written multi-digit numbers, the generalizability of the model to
real-world data needs to be further explored. The extensive data augmentation procedure
and the expansive nature of the original MNIST dataset work to mitigate these issues, but
the model’s real-world performance cannot be tested on a large scale at present due to the
lack of data.

Table 5. Results of trained number-reading model on the validation dataset.

Type of Number Validation Count Character Error Rate Word Accuracy

Single-Digit 10,000 0.4% 99.6%
Two-Digit 10,000 0.5% 99.0%

Three-Digit 10,000 0.5% 98.5%

All 30,000 0.5% 99.0%

4.3. Feature Association

The MLPs were designed, trained, and tested using TensorFlow [38]. The beam–support,
beam–load, load–number, element–length, and length–number MLPs were each trained
for 50 epochs, while the larger length–style MLP was trained for 30 epochs. These models
achieved accuracies ranging from 95.1% to 99.5% on the separate validation datasets using a
confidence threshold of 0.5 for binary classification (Table 6). Overall, the average accuracy
of these perceptrons was found to be 98.2% on the separate validation datasets, indicating
strong performance and no overfitting to the training data. Despite the elementary machine-
learning techniques utilized, these accurate results can be considered plausible.

Table 6. Results of trained MLPs on their respective validation datasets.

Type of Model Validation Count Precision Recall Accuracy

Beam–Support 376 98.3% 100.0% 98.9%
Beam–Load 320 99.2% 99.2% 98.8%

Load–Number 1724 98.0% 99.3% 99.5%
Element–Length 1828 96.4% 91.0% 97.6%
Length–Number 2204 95.8% 98.4% 99.0%

Length–Style 2244 99.1% 93.3% 95.1%

Average 1449 97.8% 96.9% 98.2%

In practice, the load–number, element–length, and length–number MLPs are used only
within the context of the feature conversion algorithm. This allows them to achieve better
performance, since this algorithm compares numerical probabilities and not classifications.
For example, if a labeled positive pair produces a model output less than the threshold
but greater than all other relevant pairs, it is interpreted as incorrect according to binary
classification but is actually correct in the context of the broader algorithm.
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4.4. Structural Analysis

This stage of the system is the only one that does not involve machine learning—it
merely applies static structural analysis rules. As such, there is no associated accuracy for
this stage. In other words, if the previous stages have generated a structural model that
accurately represents the handwritten diagram, the analysis produced by this stage will
be correct.

4.5. Overall System

To meaningfully analyze the end-to-end performance of the system built, a 20-image
testing dataset (separate from the larger and more comprehensive validation datasets for
each model) was crafted to cover a diverse range of valid diagrams. For example, diagrams
were drawn on blank, lined, and graph paper; diagrams were sketched using blue ink, black
ink, and pencil; beams were drawn both as lines and as boxes; arrows were sketched with
and without a filled-in arrowhead; structural supports were drawn in both simplified and
detailed formats. The system produced entirely correct structural analyses for nine images
in the dataset, representing an accuracy of 45.0% (Table 7). The rate at which individual
beam systems present in the images were analyzed correctly was slightly higher at 47.8%
(11 of the 23 beam systems).

Table 7. Results of complete system on testing dataset.

Model Stage Individual Testing Count Individual Accuracy Image Accuracy

Object Detection 329 P: 97.0%, R: 98.5% 85.0%
Number Reading 122 91.0% 50.0%

Feature Association - - 65.0%
Structural Analysis - - -

Overall 23 47.8% 45.0%

Manual inspection of the system results at each stage in image processing provides
further insights into the strengths and weaknesses of the given application. In the present
case, the YOLO object detection model performed perfectly for 80.0% of the images. More
specifically, of the 329 features present across the entire dataset, the model correctly detected
324 while only falsely detecting 10; this corresponds to a precision of 97.0% and a recall of
98.5%. The number-reading model, meanwhile, transcribed all numbers perfectly for just
50.0% of images, making this the weakest link in the workflow. For this model, 111 of the
122 numbers were read correctly, resulting in an accuracy of 91.0%. This was lower than
the accuracy achieved on the validation dataset, but this is to be expected since these were
real-world data (i.e., not MNIST-based). The feature association models worked together to
convert the detected features into the desired structural models for 65% of images. The only
errors encountered in this stage were some instances of erroneously connecting supports
and improperly mapping length arrows onto structural elements, and these errors typically
coincided with object detection issues. In this regard, it is common for errors arising in
a given stage to occur simultaneously (Figure 11). On the other hand, when all system
models perform correctly, correct structural analyses are produced (Figure 12).

There are inherent challenges to achieving high accuracy in the multi-stage, machine-
learned approach taken. In addition to each individual stage achieving high accuracy for
its respective task, all stages need to function correctly at once in order to produce an
overall correct result. Recognizing and analyzing a typical beam diagram usually involves
around 100 applications of a machine-learned model. Even if each model applied were
99.0% accurate,the likelihood of all 100 inferences being correct would be just 36.6%. In
the context of the case at hand, if even one error is made by any of the models in any of
the first three stages—for example, a support is not identified or a number is misread—the
entire structural analysis will be incorrect.
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Figure 11. Visualization of results of complete model on testing dataset. Note that one number was
read incorrectly in a correctly analyzed image, but that number represented the magnitude of a load
that was not acting on the beam.

However, determining whether or not the result produced by the system is correct
is straightforward since the system tends to fail in different places than a human would.
For instance, the most common source of error in the entire workflow is misreading a
number, but in such cases, a quick inspection of the structure and load visualizations
generated will reveal the incorrect dimension or load magnitude. Humans almost never
incorrectly read numbers, so this error would be easily caught by an attentive engineer.
Similarly, other common errors, such as incorrectly connecting a structural support to
the beam or incorrectly mapping the sketched lengths onto the right beam elements, can
be easily identified in the structural visualizations produced. Again, humans would be
unlikely to misinterpret the connections represented by the diagram or where length
arrows project. Conversely, even trained engineers commit arithmetical errors in hand
calculations, whereas when provided with a coherent structural model, the structural
analysis software will not commit errors. This means that if no obvious issues can be
identified in the visualizations created, the rest of the output is likely correct. Furthermore,
if the analysis undertaken by the system is identical to that undertaken by an engineer,
both are likely correct.

The system’s functional accuracy and predictable performance underscore its poten-
tial utility in practice. While no direct comparison can be made between the system’s
performance and that of trained structural engineers because of the lack of such an existing
dataset or metric, it stands to reason that the system would perform more poorly in terms
of raw accuracy. However, the system still has utility since it is intended merely as an
assistive tool for engineers. When applied by an attentive engineer, simple system errors
can be easily rectified and acceptable results can be achieved. The most notable benefit of
this system is the potential time savings; by freeing engineers from the need to perform
tedious calculations, the efficiency of the overall design process may be improved. A formal
and rigorous speed comparison is outside the scope of this paper; however, the presented
system typically analyzed each of the 20 images in the testing dataset in about 30 s, while
one of the authors, a trained structural engineer, took an average of 7 min and 43 s to
manually analyze each sketch. Because of the limitation that the system requires a degree
of legibility and diagram simplicity, it is not a replacement for skilled structural engineers.
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(a) Raw image.

(b) Structure visualization. (c) Load visualization.

(d) Deformation visualization. (e) Axial force diagram.

(f) Shear force diagram. (g) Bending moment diagram.

Figure 12. Selected sample of outputs generated by the complete system.

5. Conclusions and Future Work

Overall, the system developed achieves encouraging results, and the framework de-
signed holds promise for other hand-drawn sketch recognition and analysis problems. With
future optimization and implementation of continually emerging AI technologies, the re-
sults of systems implementing this versatile framework will only continue to improve. The
flexible and extensible nature of the framework presented makes it easily scalable to new
data sources and adaptable to new application domains. The system shows the potential to
be a valuable tool to assist engineers with quick structural analysis, expediting their design
iterations and streamlining the overall workflow. It can be expected to be particularly
useful for on-site engineers, who rely heavily on rough, handwritten sketches to make
rapid choices. The tool may also have utility in educating new civil and structural engineers
by helping them to better understand the overall structural analysis process. Because the
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system generally fails in different situations than humans do, it also provides students with
a useful method to quickly verify their own analyses on arbitrary practice problems.

Further improvements to this system can be made in several respects. Obtaining
large and diverse datasets containing diagrams sketched by many different people will
improve system robustness, making the models utilized more generalizable to diverse and
low-quality inputs. Additionally, the system may be extended to overcome its current
shortcomings as detailed above. Notable functionalities to be investigated in future work
include the capability for applied loads to point in any arbitrary direction; the capability
of distributed loads to be non-uniform (i.e., following some non-constant mathematical
function); the capability for handwritten numbers to be accompanied by their units; the
capability of applied loads and structural proportions to hold decimal, fractional, and even
variable magnitudes; and the capability for extraneous scribble marks to be ignored. Other
extensions to current system functionality may also be considered, such as the capability to
manually alter the structural models generated to quickly resolve small errors. Moreover,
given the modularity of the design, improved versions of each individual component of
the framework can be incorporated in future work as they emerge.

Future work may also involve extending the proposed framework to other structural
systems, such as truss and frame structures. In this regard, the modular nature of the frame-
work will make creating these new systems straightforward. The proposed design also
allows for certain software modules in the system, including the number-reading model and
certain MLPs (e.g., the load–number and length–number models) to be reused. Moreover,
it allows for other software modules, such as the object detection model and certain MLPs,
including the beam–support and the element–length models, to be effortlessly adapted to
analogous tasks by simply adding new training data. Additionally, this general framework
has the potential for interdisciplinary applications to other engineering problems. By sim-
ply obtaining the requisite training data and retraining each machine-learned model, this
framework can be applied to new domains. For example, systems may be developed to
recognize and analyze hand-sketched free body diagrams in mechanical engineering or to
recognize and analyze handwritten circuit diagrams in electrical engineering.
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