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Abstract: Underwater acoustic sensor networks have a wide range of applications in both civil and
military fields, but the complex and changing underwater environment makes them vulnerable to
multiple security threats. Trust mechanisms are effective ways to enhance network security and
reliability. In order to improve the accuracy of trust evaluation and the detection rate of abnormal
nodes, this paper proposes an adaptive trust evaluation model based on fuzzy logic. This model
adopts a variable weight fuzzy comprehensive evaluation algorithm to dynamically adjust the weights
of three direct trust indicators to ensure the accuracy of direct trust evaluation. Then, it uses fuzzy
closeness to eliminate unreliable recommendation trust and adjusts the weight of recommendation
trust through deviation to improve the accuracy of indirect trust. The simulation results show that
the model can effectively improve the accuracy of trust evaluation and the detection rate of abnormal
nodes. Especially when the link quality is unstable, the success rate of detecting abnormal nodes in
this model is improved by more than 10% compared with the existing trust model.

Keywords: underwater acoustic sensor networks; adaptive trust model; fuzzy comprehensive
evaluation; fuzzy closeness; anomaly detection

1. Introduction

In recent years, the application scope of underwater acoustic sensor networks (UASNs)
has continuously expanded, ranging from marine scientific research to underwater resource
detection and further to military reconnaissance and communication, demonstrating signif-
icant potential and value [1]. These networks leverage the characteristics of underwater
sound wave propagation, constructing a widely covered and interconnected sensing sys-
tem. However, with increasing applications, UASNs face various challenges [2], including
the complexity of the underwater environment, noise interference, and signal attenuation,
significantly impacting network stability and reliability [3]. Therefore, overcoming these
challenges and enhancing the performance of underwater acoustic sensor networks is of
profound significance for advancing underwater communication and detection technologies.

Currently, conventional security technologies such as identity authentication and
security encryption can effectively resist external intruder attacks. However, once attackers
successfully infiltrate the system, these technologies often struggle to cope [4]. In recent
years, trust mechanisms have shown outstanding performance in detecting internal attacks.
Trust, as a social concept, essentially reflects the subjective trust level in specific entity
behavior, involving a complex cognitive process. In UASNs, each node evaluates its
trustworthiness based on the past behavior of other nodes. By constructing a trust model,
we can effectively identify and eliminate abnormal nodes in the network, thereby enhancing
the overall security performance of the network [5].

In UASNs, due to the sparse distribution and frequent movement of sensor nodes,
most nodes cannot communicate directly [6]. Additionally, malicious nodes in the network
may launch attacks against other nodes while releasing benign signals to assessment nodes,
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disrupting trust evaluations. Therefore, relying solely on direct trust to determine node
trustworthiness is insufficient. To avoid over-reliance on the subjective judgment of assess-
ment nodes in trust calculations, the introduction of third-party node recommendation
information is considered [7]. However, a core issue lies in the difficulty of ensuring the
quality of recommendation information. Due to the instability of link quality, even minor
biases in recommended trust may result in severe biases in the assessment of overall node
performance [8]. This increases the difficulty and uncertainty of trust evaluation, requiring
the exploration of more reliable and effective methods to address these challenges.

Despite significant progress made in enhancing the security of UASNs through trust
models proposed in previous research and the adoption of effective filtering strategies to
deal with unreliable recommendations, several challenges remain unresolved. Currently,
many trust models often employ a simplistic threshold-based approach to filter seemingly
unreliable recommendations. However, this method lacks effective means to deter mali-
cious nodes, allowing them to disseminate misleading information within the network.
Moreover, these models typically use a simple weighted average method to compute the
final recommendation trust value for nodes, which may not accurately reflect the trust-
worthiness of the nodes. Furthermore, node trust values are not static but dynamically
adjust over time and with changes in the network environment. This dynamic variation
not only reflects the real-time nature of node behavior but also enhances the flexibility of
trust evaluation.

To filter out anomalous nodes in the network and enhance its security and reliability,
this paper proposes an adaptive trust evaluation model (ATEM) that dynamically assesses
the trustworthiness of nodes. The study’s main contributions are as follows:

(1) Considering the harsh underwater communication environment, it is necessary to
evaluate the link quality between nodes first during trust assessment. Based on this
evaluation, it is determined whether trust assessment should be conducted in the
current cycle, reducing the impact of link quality on the accuracy of trust evaluation.

(2) An adaptive fuzzy comprehensive evaluation algorithm based on variable weighting
is proposed to comprehensively consider the multidimensional trust indicators of
the target node. By dynamically adjusting the weights of each trust indicator, this
algorithm highlights deficiencies in certain trust factors of the target node, thereby
enhancing the accuracy of the trust evaluation model.

(3) Fuzzy closeness theory is employed to calculate indirect trust, filtering out recom-
mended nodes with significant deviation from the center. Through this process, nodes
with a large deviation are removed, and weights are allocated based on the degree of
deviation, thereby improving the reliability of indirect trust.

The remaining sections of this work are structured as follows. Section 2 summarizes
relevant work on trust models. Section 3 describes the network concept and operating
mechanism of the ATEM trust model. In Section 4, we conducted a simulation to assess the
ATEM’s performance. Section 5 presents a summary of the article.

2. Related Work

In recent years, researchers have continuously proposed various trust models suitable
for UASNs based on previous studies. However, due to the complexity of the underwater
environment, existing trust models still face various challenges. In this section, we briefly
review the existing trust models from three specific aspects: link quality assessment, direct
trust calculation, and recommendation trust filtering.

The instability of link quality often leads to a decline in the interaction effect between
sensor nodes, making it necessary to consider the impact of link quality on trust evaluation.
Su et al. designed a novel trust model that specifically addresses the issue of underwater
communication link instability. By introducing a link quality assessment method, they
accurately measured its impact on trust calculations. Compared to traditional models,
this trust model more comprehensively considers the impact of poor communication link
quality on the trust values of sensor nodes, especially the negative effects on the trust



Sensors 2024, 24, 2880 3 of 16

values of normal nodes [9]. Han et al. proposed an attack-resistant trust model based on
multidimensional trust metrics. During trust calculations, this model comprehensively
considers various indicators of link trust, such as link quality and link capacity. It also delves
into the analysis of the unreliability of communication channels and the mobility of the
underwater environment. Through these considerations, the model significantly improves
the accuracy of trust evaluation [10]. Su et al. presented a unique trust management
mechanism that introduces a trust redemption process to address the issue of normal nodes
being misclassified as malicious nodes. This process considers the historical performance
of nodes and environmental factors, thereby reducing the likelihood of misjudging normal
nodes [11].

In direct trust calculation, existing trust models comprehensively consider various
trust metrics for evaluation based on practical application requirements. However, the
weights of trust metrics in most trust models often rely on subjective experience and are
set as fixed values, lacking objectivity and accuracy. Jiang et al. proposed an efficient
distributed trust model suitable for wireless sensor networks. When calculating direct trust,
this model considers communication trust, energy trust, and data trust and subjectively
sets the weights of these three trust metrics. Then, the direct trust value is obtained
through weighted summation [12]. Wu et al. presented a trust model based on link quality
indicators. When calculating direct trust, it considers communication trust, energy trust,
and data trust and discusses the weights of these three trust metrics in different situations,
improving the accuracy of direct trust [13]. Ye et al. introduced an efficient dynamic trust
evaluation model for wireless sensor networks. This model achieves accurate and efficient
trust evaluation by dynamically adjusting the weights of direct trust and indirect trust, as
well as updating mechanism parameters. To achieve accurate trust evaluation, the model
considers multiple trust metrics, including communication trust, data trust, and energy
trust, and incorporates penalty factors and adjustment functions to calculate direct trust.
Additionally, a sliding window update mechanism based on the induced ordered weighted
averaging operator is proposed, which can dynamically adjust parameters and the number
of interaction history windows according to the actual needs of the network, enabling
dynamic updates of direct trust values [14].

In order to more accurately evaluate the trust of nodes, recommendation trust is often
introduced for comprehensive evaluation. This inevitably leads to the hidden danger of
false recommendation trust. This misleading and false information may seriously inter-
fere with the evaluation of the trust value. Zhang et al. proposed a recommendation
management trust mechanism based on collaborative filtering and variable weight fuzzy
algorithms. This mechanism combines communication, data, and energy trust to calculate
node trust values and obtains overall recommendation trust values through a collaborative
filtering algorithm. It can effectively filter unreliable recommendations and improve the
recognition rate and stability of the trust model [8]. Du et al. presented a defective recom-
mendation filtering scheme. The core of this scheme lies in the preliminary screening of
recommendation information using the median of cluster head nodes, followed by updat-
ing the recommendation trust values of nodes through a collaborative filtering algorithm.
This approach effectively avoids errors that may be introduced due to the improper setting
of empirical thresholds and successfully filters out some false recommendation values,
thereby improving the accuracy of recommendation trust [6]. Anwar et al. adopted the
Bayesian estimation method for calculating recommendation trust values. This method can
fully utilize existing evidence information and accurately estimate recommendation trust
values based on event probabilities. However, the Bayesian estimation method relies on the
setting of prior probabilities, which means that relevant probability values need to be stored
in a database when calculating new probabilities. Although this data storage mechanism
helps to improve calculation accuracy, it also inevitably increases storage space usage [15].
Sun et al. introduced a recommendation information filtering method that focuses on using
divergence detection degrees to deeply analyze the reliability of recommendation values.
By comparing the differences between recommendation values and detection degrees,
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they can effectively identify and filter out recommendation information that may involve
unfair recommendations or collusion attacks. When the difference between the recom-
mendation value and the detection degree exceeds a certain threshold, the system rejects
the recommendation value, ensuring the accuracy and reliability of the recommendation
data [16]. Pang et al. proposed an optimization method that combines a fuzzy trust model
with an artificial bee colony algorithm for calculating indirect trust. Through a precise
detection mechanism, once a recommender node with dishonest behavior is identified,
these unreliable nodes are immediately added to a blacklist. However, it is worth noting
that the model has limitations in distinguishing between erroneous recommendations
and dishonest recommendations [7]. Alnasser presented a novel approach for calculating
recommendation trust values, with the core lying in an adaptive weighting mechanism [17].
This weighting mechanism dynamically adjusts based on the number of positive and nega-
tive recommendations, aiming to more accurately reflect the reliability and effectiveness
of recommendation information. Adewuyi et al. introduced an innovative trust function
designed to quantify the degree of acceptance of recommendations and allocate weights
accordingly to obtain the final recommendation trust value [18].

Based on the aforementioned trust models and addressing various existing issues,
this paper proposes an adaptive trust evaluation model for detecting anomalous nodes
in underwater acoustic sensor networks. This model enables the effective filtering of
unreliable recommendation information and identification of anomalous nodes through a
more scientific evaluation of node behavior and recommendation quality. Compared with
traditional trust assessment methods, this model has a higher recognition rate and stability,
especially in the face of typical attack scenarios, where it can show a better performance.

3. Network Model and Link Quality Assessment

In this section, the network model and link quality assessment are described. First, it
describes the network model, then introduces the structure of the trust evaluation model,
and finally details the process of link quality evaluation.

3.1. Network Model

This paper focuses on UASNs uniformly distributed in three-dimensional space,
where the sensor nodes possess identical capabilities. Each sensor node has a unique ID for
identification purposes. Communication between nodes is only possible when they enter
each other’s communication range, and for non-directly adjacent nodes, they rely on the
forwarding function of other nodes to exchange data information, assuming that sensor
nodes can accurately determine their underwater coordinates and, through interaction
with surrounding nodes, acquire information about the remaining energy status of adjacent
nodes. Additionally, they have storage capabilities to dynamically update the neighbor list
for maintaining the stability of network connections.

Figure 1 depicts the workflow of the ATEM, which includes the five main steps
listed below: (1) link quality assessment; (2) direct trust computation; (3) indirect trust
computation; (4) composite trust computation; and (5) trust update.

In this paper’s suggested trust architecture, the evaluating node will check the con-
nection quality status with the target node at the start of each time cycle. If the connection
quality does not fulfill the criterion, the trust evaluation for the current cycle will be halted,
and the evaluating node will wait until the next cycle to reassess. Once the link quality
matches the requirements, node A will generate three trust indicators and use the fuzzy
comprehensive assessment procedure to compute the direct trust value. If the direct trust
value does not fulfill the criterion, node A will obtain recommendation information for
node B from all of their close nearby nodes. ATEM will then filter based on the closeness
of target node B’s direct trust values to each recommending node and assign weights
depending on the departure of the suggested trust values from the central value, resulting
in the final indirect trust value. Finally, using a balancing weight factor, ATEM will balance
the weights of direct and indirect trust to obtain the composite trust value for target node B.
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Figure 1. The structure of ATEM. 

In this paper’s suggested trust architecture, the evaluating node will check the 

connection quality status with the target node at the start of each time cycle. If the 

connection quality does not fulfill the criterion, the trust evaluation for the current cycle 

will be halted, and the evaluating node will wait until the next cycle to reassess. Once the 

link quality matches the requirements, node A will generate three trust indicators and use 

the fuzzy comprehensive assessment procedure to compute the direct trust value. If the 

direct trust value does not fulfill the criterion, node A will obtain recommendation 

information for node B from all of their close nearby nodes. ATEM will then filter based 

on the closeness of target node B’s direct trust values to each recommending node and 

assign weights depending on the departure of the suggested trust values from the central 

value, resulting in the final indirect trust value. Finally, using a balancing weight factor, 

ATEM will balance the weights of direct and indirect trust to obtain the composite trust 

value for target node B. 

3.2. Link Quality Assessment 

In view of the inherent characteristics of the underwater environment, such as 

significant delay, limited bandwidth, signal attenuation phenomena, and the instability of 

sound speed and channel communication quality fluctuating with the environment, it is 

generally challenging to maintain consistent connection quality. Poor network quality 

frequently reduces the interaction impact between sensor nodes, resulting in frequent data 

packet loss and retransmissions. This not only increases excessive energy consumption, 

but it also has a detrimental influence on the standard trust evaluation between nodes.  

The underwater environment presents unique characteristics compared to terrestrial 

or aerial environments, such as higher signal attenuation rates and increased obstacles 

and interference to signal transmission. Due to these characteristics, traditional metrics of 

link quality such as RSSI and LQI may be less reliable in underwater environments. 

However, the packet reception ratio (PRR) is a metric that directly reflects the successful 

transmission of data packets over a communication link, unaffected by signal attenuation 

or interference. Therefore, using the PRR for evaluating link quality in underwater 

environments can provide more reliable results. However, merely deriving the packet 

reception ratio (PRR) through a straightforward calculation of the ratio between the 

number of correctly received packets and the total transmitted packets may not effectively 

discern the quality of the link. Conversely, we lean towards placing trust in links that have 

recently demonstrated a higher volume of successful data receptions, as we perceive these 

links to exhibit a superior performance. Therefore, we can assign different weights to each 

successfully received data packet in the link to more accurately differentiate link quality. 

For a given sequence of data packet reception status records, denoted as ( )s i  , where 

successful and unsuccessful reception statuses are represented by 1 and 0, respectively, 

Figure 1. The structure of ATEM.

3.2. Link Quality Assessment

In view of the inherent characteristics of the underwater environment, such as signifi-
cant delay, limited bandwidth, signal attenuation phenomena, and the instability of sound
speed and channel communication quality fluctuating with the environment, it is generally
challenging to maintain consistent connection quality. Poor network quality frequently
reduces the interaction impact between sensor nodes, resulting in frequent data packet loss
and retransmissions. This not only increases excessive energy consumption, but it also has
a detrimental influence on the standard trust evaluation between nodes.

The underwater environment presents unique characteristics compared to terrestrial
or aerial environments, such as higher signal attenuation rates and increased obstacles and
interference to signal transmission. Due to these characteristics, traditional metrics of link
quality such as RSSI and LQI may be less reliable in underwater environments. However,
the packet reception ratio (PRR) is a metric that directly reflects the successful transmission
of data packets over a communication link, unaffected by signal attenuation or interference.
Therefore, using the PRR for evaluating link quality in underwater environments can
provide more reliable results. However, merely deriving the packet reception ratio (PRR)
through a straightforward calculation of the ratio between the number of correctly received
packets and the total transmitted packets may not effectively discern the quality of the
link. Conversely, we lean towards placing trust in links that have recently demonstrated
a higher volume of successful data receptions, as we perceive these links to exhibit a
superior performance. Therefore, we can assign different weights to each successfully
received data packet in the link to more accurately differentiate link quality. For a given
sequence of data packet reception status records, denoted as s(i), where successful and
unsuccessful reception statuses are represented by 1 and 0, respectively, greater weight
should be assigned to records closer to the current time. Thus, by normalization, we
can obtain the weight value for each data packet reception status record in the link as
w(i) = 2i

n(n+1) , where i refers to the index in the list of packet reception status records, and
n is the total number of reception status records. Then, the link status can be calculated by
the following formula:

L = ∑n
i w(i)× s(i) (1)

When L is less than the threshold ε, it means that the current link status is unstable;
otherwise, the link quality is considered to be good.

4. Trust Calculation

This section mainly explores trust computation, encompassing four core components:
direct trust, indirect trust, comprehensive trust, and trust update. In the calculation of
direct trust, we first compute the trust values for three direct trust indicators separately.
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Subsequently, we adopt a variable weight fuzzy comprehensive evaluation algorithm to
dynamically adjust the weights of each indicator, and finally fuse them to obtain the direct
trust value. In terms of indirect trust calculation, we eliminate recommendation trusts with
large deviations through fuzzy closeness, and then dynamically assign weights to each
recommendation trust based on the deviation, ultimately fusing them to derive the indirect
trust value. Furthermore, we obtain the comprehensive trust value by integrating direct
and indirect trusts. Lastly, we achieve dynamic trust updates by combining trust values
from historical and current cycles.

4.1. Direct Trust
4.1.1. Trust Indicators Generation

There are various forms of internal attacks in UASNs, and to defend against different
types of attacks, the selection of trust indicators should reflect these attack behaviors. While
the more trust indicators selected, the more accurate the calculated trust value will be,
the limited energy and computing capabilities of underwater wireless sensors prevent
the consideration of all factors. Thus, there exists a balance between the selection of trust
factors and the capabilities of the sensors themselves. Considering both attack behaviors
and the accuracy of trust values, this paper selects the following three trust indicators.

(1) Communication Trust

The communication behavior of nodes, especially the success and failure of communi-
cation during the time period T, has a direct impact on their communication trust within
that period. In UASNs, the instability of communication channels is a significant charac-
teristic, often affected by various factors such as environmental interference. This reliance
solely on previous communication conditions to detect node communication behavior
introduces considerable uncertainty. To address the impact of this uncertainty on trust
assessment, we can employ subjective logic theory to compute the communication trust of
nodes, with the following formula:

Tcom =
2b + u

2
(2)

where b = s
s+ f+1 , u = 1

s+ f+1 . s and f indicate the number of successful and failed
communications, respectively.

(2) Data Trust

The transmission of data between adjacent regions exhibits spatiotemporal correlation,
allowing neighboring nodes to receive similar data information. Consequently, tampered
data by malicious nodes will exhibit noticeable disparities from normal data. Assuming the
perceived data by adjacent nodes follow a normal distribution, where the mean effectively
represents the majority of data points, the mean value serves as a crucial metric for assessing
data similarity and reliability. Thus, data trust can be represented as follows:

Tdata = 2(0.5 −
∫ xd

µ
f (x)dx) (3)

where xd represents the data from the target node, and µ refers to the mean value of
this data set. As the gap between xd and µ increases, the reliability of the data decreases
accordingly.

(3) Energy Trust

In UASNs, due to limited energy, it naturally becomes a key indicator for measur-
ing node reliability and performance. In a normal network environment, node energy
consumption remains stable. However, when malicious nodes launch attacks, their node
energy consumption tends to exhibit abnormal fluctuations. To appropriately measure the
energy trustworthiness of nodes, we compute it using the target’s remaining energy. If the
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target node’s remaining energy is insufficient, it may be unable to complete its assigned
responsibilities, and its energy trustworthiness value will be set to 0. Thus, the approach
for calculating energy trust is the following:

Teng =

{
Eres
Eini

; Eres ≥ δ

0; else
(4)

where Eini and Eres represent the initial energy and remaining energy of the target node,
respectively.

4.1.2. Direct Trust Calculation

The purpose of this work is to reliably determine the direct trust value of nodes using
a data fusion approach that incorporates several trust variables. Currently, weighted-
averages-based trust models frequently rely on subjective experience to calculate weights,
resulting in a lack of impartiality and precision. This study presents a variable-weight
fuzzy comprehensive assessment method to improve trust evaluation accuracy and fairness.
The basic principle behind this approach is that when the value of a trust factor is low,
suggesting a possible negative influence on network performance, we raise its weight.
This allows the fused direct trust value to better represent the node’s real performance
in the network, especially when malicious nodes are present. The potential harm they
do will be emphasized, making the final trust value more accurate and dependable. The
implementation stages for this technique are as follows:

(1) Establish trust factor set and direct trust evaluation set

First, the trust factor set T =
{

Tcom, Tdata, Teng
}

is established through the three trust
factors selected above, and then we define three fuzzy evaluation sets U = {u1, u2, u3},
where ui(i = 1, 2, 3), which respectively represent “complete distrust”, “slightly trust”, and
“highly trust”, reflecting the level of trust between nodes.

(2) Build membership matrix

We use membership functions to convert the values of each trust indicator into the
corresponding membership degrees of the evaluation subsets. In this paper, we employ
trapezoidal membership functions to obtain the membership matrix. Each row of the
membership matrix E reflects the degree of membership of the corresponding direct trust
factor to each evaluation subset, as shown below:

E =

e11 e12 e13
e21 e22 e23
e31 e32 e33

 (5)

where eij represents the affiliation relationship between the trust dimension factor Ti and
the fuzzy evaluation subset ui.

(3) Confirm weights

For a given set of trust indicators T = {T1, T2, T3}, the corresponding base weights
wmi(i = 1, 2, 3) can be obtained using the analytic hierarchy process (AHP), representing
the weights when all trust indicators are at their optimal levels, satisfying ∑3

i=1 wmi = 1.
Assuming trust indicator Ti is at its worst while all other trust indicators are at their best,
the weight w0i(i = 1, 2, 3) can be calculated using the following equation:

w0i =
wmi

min wmj + max wmj
(1 ≤ j ≤ 3) (6)

We can introduce a non-increasing function γi(Ti) ∈ [0, 1], where the maximum value
of Ti within its range can be represented as γi(0) = γ0i, and the minimum value can be
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represented as γi(1) = γmi. Therefore, the weight wi(i = 1, 2, 3) corresponding to Ti can be
calculated using the following formula:

wi =
γi

∑3
j=1 γj

(7)

From the above equation, it can be observed that wi can be used as a variable weight
and a non-increasing function about Ti. ∑3

i=1 wiTi is a non-decreasing function of Ti.

(4) Fuzzy Comprehensive Evaluation Result

By utilizing the previously calculated trust weight vector W and the membership
matrix E, we can compute the result vector of fuzzy synthesis evaluation according to the
following formula:

D = W ◦ E (8)

where ◦ represents the fuzzy synthesis operator, and in this paper, we employ a weighted
averaging operator. Subsequently, we utilize the centroid method to defuzzify the evalua-
tion result vector, obtaining the direct trust value within this cycle.

4.2. Indirect Trust

The relationship of indirect trust is illustrated in Figure 2, where node i serves as the
evaluation node, node j as the target node, and nodes k and l as common neighbors of
nodes i and j, respectively. When assessing the indirect trust of a target node, the fuzzy
proximity theory is applied to address potential false recommendation information. This
method evaluates the proximity of each neighboring node’s direct trust value to the target
node and allocates weights reasonably based on the deviation between the recommended
trust value and the central value. Consequently, the final indirect trust value is obtained.
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The evaluation process begins by screening the recommended trust values of common
neighboring nodes, followed by weight allocation according to the deviation of these nodes’
recommended trust values. Ultimately, the indirect trust value can be obtained using the
following calculation formula:

ITij(t) = ∑
k∈S f

wk × RTk
ij(t) (9)

where S f represents the node set after filtering the common neighbor nodes, wk represents
the weight of any node in the neighbor node set, and RTk

ij(t) denotes the recommended
trust value of neighbor node k to target node j at time t. Through this method, we can
more accurately quantify the indirect trust level of the target node, thereby providing more
accurate data support for overall trust evaluation.
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Since trust possesses the property of transitivity in the network, when node k serves as
a common neighbor, its recommended trust value RTk

ij(t) for target node j can be calculated
using the following formula:

RTk
ij(t) = DTik(t)× DTkj(t) (10)

In the same period T and the same monitoring area, since the external environment of
the nodes is the same, the values of the same trust factor collected by different neighbor
nodes k for the target node j should be similar and tend to a certain value. If false recom-
mendations exist in the network, their recommendation information will noticeably deviate
from that of neighboring nodes. Therefore, based on the above analysis, the concept of
closeness in fuzzy mathematics can be employed to calculate the degree of proximity of
each common neighboring node to the target node’s direct trust value within the same
period T.

In the same period T, we define the proximity ρkl of common neighboring nodes k
and l to the target node j’s direct trust value as:

ρkl =
min

{
DTkj(t), DTl j(t)

}
max

{
DTkj(t), DTl j(t)

} (11)

Assuming there are q neighboring nodes between the evaluating node and the target
node, the proximity matrix M of common neighboring nodes to the target node can be
obtained as follows:

M =


1 ρ12 · · · ρ1q

ρ21 1 · · · ρ2q
...

...
. . .

...
ρq1 ρq2 · · · 1

 (12)

The sum of each row element in matrix M, represented as
q
∑

l=1
ρkl , signifies the trust

proximity of a common neighboring node k with other neighboring nodes. Since it is
necessary to remove the proximity of neighboring nodes to themselves, the average trust
closeness ρk between the common neighbor node k and other surrounding neighbor nodes
is defined as follows:

ρk =

q−1
∑

l=1,l ̸=k
ρkl

q − 1
(13)

The above expression reflects the trust closeness of neighboring node k to target node j
compared to other neighboring nodes. If ρk is relatively large, it indicates that neighboring
node k is close in trust value to the surrounding neighboring nodes regarding target node j,
implying that this neighboring node has higher credibility. Conversely, if ρk is relatively
small, it indicates that neighboring node k deviates from the trust values of the surrounding
neighboring nodes regarding target node j, suggesting that the credibility of this node is
low, and it may provide false recommendation trust values to the evaluating node.

To ensure the accuracy of recommended trust, it is possible to filter out potentially
malicious recommendations by comparing the deviation between the recommended trust
and the central value. We define the deviation degree dk between the average trust closeness
of a common neighbor node and other surrounding neighbor nodes and the total trust
closeness as follows:

dk = |ρk − ρ0| (14)
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where ρ0 represents the sum of the trust proximities of all common neighboring nodes. Its
calculation formula is given below:

ρ0 =
q

∑
k=1

q−1

∑
l=1,l ̸=k

ρkl (15)

If the value of dk is larger, it reflects that the trust closeness of common neighbor node
k to target node j deviates from the central value. Then, the recommended trust of neighbor
node k is likely to be a malicious false recommendation, and its recommended trust value
should be discarded. Therefore, in order to filter out malicious false recommendation
trust, the deviation threshold value θ is defined to filter out the recommendation trust with
deviation dk > θ. For neighbor nodes with dk ≤ θ, stored in the set S f , the trust value of
malicious false recommendations can be filtered.

However, the method of filtering out malicious false recommendation trust values by
setting the deviation threshold θ and obtaining the reliable recommendation trust node
set S f will not eliminate all malicious recommendation trust. Since the deviation reflects
the extent to which the recommended trust value of neighboring nodes deviates from the
central value, for a more accurate assessment of the target node’s indirect trust, we can
allocate different weights to each node in the neighbor node set S f based on their deviation.
The larger the deviation dk, the greater the probability that neighbor node k provides false
recommendations. Therefore, in data fusion, its weight should be smaller. We define the
total deviation degree D(t) of node recommendation trust in the set S f as follows:

D(t) = ∑
k∈S f

dk(t) (16)

The numerical relationship rk(t) between the total offset degree D(t) of node recom-
mendation trust in the set S f and any offset degree dk(t) is as follows:

rk(t) =
D(t)
dk(t)

(17)

Then, the weight wk of any node k in the neighbor node set S f can be calculated
through normalization:

wk =
rk(t)

∑
k∈S f

rk(t)
(18)

The final indirect trust ITij(t) is calculated as follows:

ITij(t) = ∑
k∈S f

wk × RTk
ij(t) =

∑
k∈S f

rk(t)× DTik(t)× DTkj(t)

∑
k∈S f

rk(t)
(19)

4.3. Comprehensive Trust

To solve the issue of constantly shifting weights for direct and indirect trust in the
computation of comprehensive trust values, a balance weight factor is proposed. The
computation of comprehensive trust values is often represented as shown below:

Tij(t) = φDTij(t) + (1 − φ)ITij(t) (20)

where φ is the balance weight factor, satisfying φ ∈ [0, 1], and the value of φ denotes the
weight of direct and suggested trust in the entire trust computation process from node i to
target node j. Fixed experience values are commonly employed in literature to integrate
trust. Due to the dynamic mobility of undersea nodes, which might join or leave the
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network at any moment, we include a balancing weight factor function, designated as φ, to
guarantee that the trust evaluation model appropriately represents the actual situation.

φ = f (n) =
1
2
+

1
π

arctan
(

10 × n − Nth
N

)
(21)

where φ dynamically changes with the variation in interaction count n, thus dynamically
adjusting the weights. And N represents the maximum possible interaction count between
nodes, and Nth is a specific threshold. When the interaction count n exceeds the threshold
Nth, it implies that there is sufficient interaction between the evaluating node and the
target node. Therefore, we can rely more on direct trust and appropriately increase the
weight of direct trust. Conversely, when the interaction count n is minimal, the target node
is relatively unfamiliar compared to the evaluation result. The direct trust value cannot
accurately reflect the true reliability of the target node. Hence, the evaluating node can rely
more on indirect trust to assess the credibility of the target node.

4.4. Trust Update

Given that malevolent nodes might pose as genuine entities to boost their trustworthi-
ness, node trust levels must be updated on a frequent basis. This method enables a more
rapid reflection of the network’s current state, assuring the correctness of trust evaluation
and successfully identifying and isolating potential malicious nodes in order to preserve
network security and stability. Given the temporal sensitivity of trust, we present a sliding
time window approach that uses trust values from several time cycles as historical trust
factors to update trust values dynamically. This approach ensures that we fully consider
the historical behavior of nodes when evaluating trust, thereby achieving more reliable
trust assessment.

Tij(t) = µTc
ij(t) + (1 − µ)Tij(t − 1) (22)

where Tc
ij(t) represents the comprehensive trust value of the current period, and Tij(t − 1)

represents the comprehensive trust value of the previous historical period. For trust value,
µ represents the adaptive weight factor.

5. Simulation Results and Performance Analysis

In this section, we established a simulation environment using MATLAB R2020b to
conduct experimental simulations on ATEM and performed comparative analysis on its
performance. In the experimental setup, 100 nodes were randomly deployed within a
1000 m × 1000 m × 1000 m area, following the MCM model for mobility [19]. The com-
munication range of each node was set to 400 m. First, our main goal was to investigate
how the trust model’s performance is affected by the variable-weight fuzzy comprehensive
evaluation technique. Experimental verification indicated the algorithm’s great useful-
ness in improving trust evaluation accuracy and dynamic flexibility. We then validated
the usefulness and accuracy of the suggestion filtering method using fuzzy set progress
theory. The experimental findings show that this technique may successfully filter out false
suggestion information, increasing the overall reliability of trust evaluation. Finally, we
evaluated the proposed ATEM against two existing trust models, ARTMM and LTrust. The
comparative experimental findings support the benefits of ATEM in trust evaluation for
UASNs. The specific simulation parameters are shown in Table 1.
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Table 1. Simulation parameters.

Parameters Value

Network size 1000 m × 1000 m × 1000 m
Number of nodes 100

Node initial energy 1000 J
Communication radius 400 m

Node deployment method Random

5.1. Performance of ATEM
5.1.1. Variable Weight and Constant Weight

We compared the variable-weight fuzzy comprehensive evaluation technique to the
constant-weight fuzzy comprehensive evaluation methodology to see how effective it was
in increasing the trust model’s performance. In this simulated experiment, rogue nodes
were randomly placed over the network to conduct data-tampering attacks. We then
investigated and contrasted the effects of the two approaches on nodes’ direct trust ratings
in the same environment.

Due to the data tampering attacks launched by malicious nodes, their data trust values
tend to be relatively low. Therefore, in the variable-weight fuzzy synthesis evaluation
algorithm, data trust indicators are assigned higher weights to highlight their impact on
trust evaluation results. However, in the constant-weight algorithm, the weight of each
trust indicator is set to a fixed value based on experience. This may lead to a situation where
the final direct trust value remains high when other trust indicator values are high, failing
to intuitively reflect the impact of defective trust indicators on trust evaluation results. As
shown in Figure 3, when using the variable-weight algorithm, the trust of anomalous nodes
rapidly decreases, demonstrating the algorithm’s rapid response to abnormal behavior.
However, in the constant-weight algorithm, the presence of other trust indicators weakens
the impact of defective trust indicators on trust evaluation results, resulting in a slow
decline in trust values. Nevertheless, both algorithms perform well in reflecting the trust
values of normal nodes. This result validates the effectiveness of the variable-weight
algorithm in improving the performance of the trust model.
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assessment between normal and malicious nodes, jeopardizing network security. In this
simulated experiment, we presume that hostile nodes simply supply bogus trust values
and do not carry out other forms of attacks. We gradually increase the proportion of
malicious nodes from 5% to 45% to observe their impact on the network trust mechanism.
To comprehensively evaluate the effectiveness of the proposed anomaly node detection
model, we compare the recommended trust values under three different scenarios. Firstly,
we set an expected value, indicating the recommended trust value that target nodes should
receive when there are no unreliable recommendation nodes in the network. Secondly,
we apply the proposed recommendation filtering mechanism and calculate the filtered
recommended trust values. Finally, we also consider a simple and direct method, averaging
all recommended trust values without employing any filtering mechanism.

Figure 4 indicates that when the proportion of malicious nodes grows, the indirect
trust ratings of regular nodes fall considerably under bad-mouth assaults. It is worth
mentioning, however, that the proposed suggestion filtering strategy has only a little
impact on indirect trust ratings. This is because, without a filtering mechanism, each
node’s proposal value is treated equally, and all recommendation information in the
network is accepted unconditionally. As the proportion of malicious nodes rises, so does
the amount of incorrect information in the suggestion sequence. This has a significant
impact on indirect trust scores. In contrast, the proposed filtering strategy is crucial
for determining the appropriate trust levels. Using fuzzy closeness theory, this system
successfully finds and filters out untrustworthy suggestion information, assuring the
correctness and dependability of indirect trust ratings. This result clearly demonstrates the
effectiveness of the proposed anomalous node detection strategy in countering bad-mouth
assaults.
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5.2. Comparison to Other Works

In this simulated experiment, we compared it to two other trust models: ARTMM and
LTrust. We identified the destination node as normal and ran simulations in which the
connection quality varied between poor and excellent.

Figure 5 indicates that low connection quality has a major influence on both the
ARTMM and LTrust trust models. The proposed ATEM trust model, on the other hand,
eliminates the effect of previous poor link quality on subsequent trust value evaluations by
refusing to update trust values during times of low link quality. As a result, in complex
underwater environments, ATEM can provide more accurate and consistent node trust
values.
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To provide a more complete picture of ATEM’s performance, we ran a detection
success rate test with a high malicious node rate of 30%. Under the influence of poor link
quality, typical node trust values may fall below 0.5, and trust values from previous cycles
may have an impact on the current cycle’s trust values. As the cumulative effect of low
connection quality builds up, trust ratings continue to fall, potentially leading to more
normal nodes being misclassified as malicious. However, as seen in Figure 6, the ATEM
trust model successfully mitigates the fall in trust values of normal nodes by pausing trust
value updates during periods of low connection quality. This reduces the possible influence
on future trust value evaluations, considerably minimizing the chance of misidentifying
normal nodes as malicious ones. As a result, in the ATEM trust model, there is a big
disparity between the trust ratings of most normal nodes and malicious nodes, which leads
to a significant increase in the success rate of harmful node identification. This finding
indicates the ATEM trust model’s improved performance and stability in complicated
network contexts.

Sensors 2024, 24, 2880 15 of 16 
 

 

To provide a more complete picture of ATEM’s performance, we ran a detection suc-
cess rate test with a high malicious node rate of 30%. Under the influence of poor link 
quality, typical node trust values may fall below 0.5, and trust values from previous cycles 
may have an impact on the current cycle’s trust values. As the cumulative effect of low 
connection quality builds up, trust ratings continue to fall, potentially leading to more 
normal nodes being misclassified as malicious. However, as seen in Figure 6, the ATEM 
trust model successfully mitigates the fall in trust values of normal nodes by pausing trust 
value updates during periods of low connection quality. This reduces the possible influ-
ence on future trust value evaluations, considerably minimizing the chance of misidenti-
fying normal nodes as malicious ones. As a result, in the ATEM trust model, there is a big 
disparity between the trust ratings of most normal nodes and malicious nodes, which 
leads to a significant increase in the success rate of harmful node identification. This find-
ing indicates the ATEM trust model’s improved performance and stability in complicated 
network contexts. 

 
Figure 6. The proportion of malicious detections that are successful. 

6. Conclusions 
This paper addresses two major challenges in UASNs: dynamic adjustment of trust 

indicator weights and filtering of recommended nodes. It proposes an adaptive trust eval-
uation model for detecting anomalous nodes in underwater acoustic sensor networks. The 
model aims to accurately calculate node trust values and effectively identify abnormal 
nodes in the network. In constructing the model, we comprehensively consider three cat-
egories of trust indicators and utilize a variable-weight fuzzy comprehensive evaluation 
algorithm for data fusion. By dynamically adjusting the weights of trust indicators, the 
model highlights the impact of defective trust indicators on trust evaluation, thereby im-
proving the accuracy of direct trust evaluation. Subsequently, in the recommendation fil-
tering strategy, the model based on fuzzy closeness theory effectively filters out recom-
mended nodes with significant deviation and optimizes the calculation of indirect trust 
values based on deviation, reducing the influence of malicious recommended nodes on 
trust evaluation. Simulation results demonstrate that the model accurately identifies ab-
normal nodes, significantly enhancing the detection rate of the trust model. 

In future research, we plan to further optimize the trust evaluation model, improve 
the link quality assessment method to more accurately reflect the actual link status, and 
consider the impact of environmental noise on underwater acoustic communication to 
further enhance network security and reliability. 

Figure 6. The proportion of malicious detections that are successful.



Sensors 2024, 24, 2880 15 of 16

6. Conclusions

This paper addresses two major challenges in UASNs: dynamic adjustment of trust
indicator weights and filtering of recommended nodes. It proposes an adaptive trust
evaluation model for detecting anomalous nodes in underwater acoustic sensor networks.
The model aims to accurately calculate node trust values and effectively identify abnormal
nodes in the network. In constructing the model, we comprehensively consider three
categories of trust indicators and utilize a variable-weight fuzzy comprehensive evalua-
tion algorithm for data fusion. By dynamically adjusting the weights of trust indicators,
the model highlights the impact of defective trust indicators on trust evaluation, thereby
improving the accuracy of direct trust evaluation. Subsequently, in the recommendation
filtering strategy, the model based on fuzzy closeness theory effectively filters out recom-
mended nodes with significant deviation and optimizes the calculation of indirect trust
values based on deviation, reducing the influence of malicious recommended nodes on trust
evaluation. Simulation results demonstrate that the model accurately identifies abnormal
nodes, significantly enhancing the detection rate of the trust model.

In future research, we plan to further optimize the trust evaluation model, improve
the link quality assessment method to more accurately reflect the actual link status, and
consider the impact of environmental noise on underwater acoustic communication to
further enhance network security and reliability.
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