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Abstract: Sensor faults are one of the most common faults that cause performance degradation or
functional loss in permanent magnet traction drive systems (PMTDSs). To quickly diagnose faulty
sensors, this paper proposes a real-time joint diagnosis method for multi-sensor faults based on
structural analysis. Firstly, based on limited monitoring signals on board, a structured model of
the system was established using the structural analysis method. The isolation and detectability of
faulty sensors were analyzed using the Dulmage–Mendelsohn decomposition method. Secondly,
the minimum collision set method was used to calculate the minimum overdetermined equation
set, transforming the higher-order system model into multiple related subsystem models, thereby
reducing modeling complexity and facilitating system implementation. Next, residual vectors
were constructed based on multiple subsystem models, and fault detection and isolation strategies
were designed using the correlation between each subsystem model and the relevant sensors. The
validation results of the physical testing platform based on online fault data recordings showed that
the proposed method could achieve rapid fault detection and the localization of multi-sensor faults
in PMTDS and had a good application value.

Keywords: permanent magnet traction drive system; multi-sensors fault; limited monitoring signal;
structural model; joint diagnosis

1. Introduction

The traction drive system (TDS) is the only power source of rail transit vehicles, and
its energy consumption accounts for about 40~50% of the total energy consumption of
rail transit [1]. Permanent magnet traction drive systems (PMTDSs) have become the
key development direction of next-generation rail transit traction drive systems [2], due
to their advantages of low loss and high efficiency [1]. However, the PMTDS is a high-
order complex system with the multi-dimensional coupling of machine electricity–heat
magnetism. Hence, it has also become the main source of faults, with increasing service
times [3].

As shown in Figure 1, to realize the high-performance closed-loop control of the
permanent magnet traction motor, three kinds of sensors are installed in PMTDS to measure
the U- and V-phase currents, the intermediate DC voltage, and the rotor position signal of
the motor [4]. Sensors in the traction drive system are susceptible to faults due to mechanical
vibration, hot and humid conditions, and strong electromagnetic interferences [5]. Sensor
faults can easily lead to control performance degradation and other derivative faults if not
detected promptly. Therefore, the study of real-time diagnostic methods of the relevant
sensors in PMTDSs has an important engineering application value for improving the
reliability and safety of trains.
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Figure 1. Schematic diagram of the main circuit of a typical PMTDS. 

Fruitful research results have been achieved for the sensor fault diagnosis of PMTDSs 
[6]. According to the type of diagnostic objects, these methods can be divided into two 
categories: single-sensor fault diagnosis and joint fault diagnosis of multiple types of sen-
sors. Regarding single-sensor faults, current sensor faults are diagnosed using different 
methods, including current estimation [7], a phase-locked loop-based current reconstruc-
tion technique [8], an adaptive observer [9], and a sliding-mode observer [10]. In terms of 
motor speed or position sensors, diagnostic methods have been proposed based on q-axis 
current fault characteristics’ analysis [11], look-up table [12], Kalman filter [13], and the 
speed estimation model [14]. 

Compared to single-type sensor fault diagnosis, multi-sensor joint fault diagnosis is 
relatively less researched, because a more complex multivariate estimation model is re-
quired [15]. Multiple independent observers-based methods [1,16], the signal processing-
based method [17], and the data-driven method [18] have been proposed to achieve the 
joint diagnosis of intermediate DC voltages, motor currents, and speed sensor faults. 
However, the above methods have the disadvantages of their computational burden, reli-
ance on the analytic redundancy of three-phase currents, and poor generalization ability, 
which are not implementation-friendly. The recently proposed convolutional vector fu-
sion network [19], the semi-supervised matrixed graph-embedding machine [20], and the 
non-parallel bounded-support matrix machine [21] suffer from the interpretability issue. 
In this paper, the model-based multi-sensor fault joint diagnosis of PMTDSs is investi-
gated to improve its engineering level further. 

Structural analysis is a model-based method [22] that decomposes a complex system 
into several subsystems. Following this step, the diagnosis of the related faults in a system 
by mining the set of analytically redundant relations in the system is carried out [23,24]. 
Zhang J. et al. studied the joint diagnosis problem for eight sensor faults in the permanent 
magnet drive system of electric vehicles, including inverter output three-phase voltage, 
motor output three-phase current, a motor position sensor, and a vehicle speed sensor [23]. 
Ebrahimi S. H. et al. realized the joint diagnosis of the position sensor and the motor [24]. 
The diagnosis of 10 sensor signals was investigated, including inverter input DC voltage, 
inverter output three-phase voltage, motor three-phase current, motor speed, motor posi-
tion, and load torque, based on the inverter output three-phase voltage, the motor output 
three-phase current, and the motor position sensor signals in a permanent magnet drive 
system [25]. The above multi-sensor joint diagnosis methods based on structural analysis 
[23–25] have added many redundant sensors (e.g., hardware redundancy among three-
phase voltage sensors, redundancy between motor speed and position sensors, etc.) to 
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Fruitful research results have been achieved for the sensor fault diagnosis of PMTDSs [6].
According to the type of diagnostic objects, these methods can be divided into two categories:
single-sensor fault diagnosis and joint fault diagnosis of multiple types of sensors. Regarding
single-sensor faults, current sensor faults are diagnosed using different methods, including
current estimation [7], a phase-locked loop-based current reconstruction technique [8], an
adaptive observer [9], and a sliding-mode observer [10]. In terms of motor speed or position
sensors, diagnostic methods have been proposed based on q-axis current fault characteristics’
analysis [11], look-up table [12], Kalman filter [13], and the speed estimation model [14].

Compared to single-type sensor fault diagnosis, multi-sensor joint fault diagnosis
is relatively less researched, because a more complex multivariate estimation model is
required [15]. Multiple independent observers-based methods [1,16], the signal processing-
based method [17], and the data-driven method [18] have been proposed to achieve the
joint diagnosis of intermediate DC voltages, motor currents, and speed sensor faults.
However, the above methods have the disadvantages of their computational burden,
reliance on the analytic redundancy of three-phase currents, and poor generalization ability,
which are not implementation-friendly. The recently proposed convolutional vector fusion
network [19], the semi-supervised matrixed graph-embedding machine [20], and the non-
parallel bounded-support matrix machine [21] suffer from the interpretability issue. In this
paper, the model-based multi-sensor fault joint diagnosis of PMTDSs is investigated to
improve its engineering level further.

Structural analysis is a model-based method [22] that decomposes a complex system
into several subsystems. Following this step, the diagnosis of the related faults in a
system by mining the set of analytically redundant relations in the system is carried
out [23,24]. Zhang J. et al. studied the joint diagnosis problem for eight sensor faults in the
permanent magnet drive system of electric vehicles, including inverter output three-phase
voltage, motor output three-phase current, a motor position sensor, and a vehicle speed
sensor [23]. Ebrahimi S. H. et al. realized the joint diagnosis of the position sensor and the
motor [24]. The diagnosis of 10 sensor signals was investigated, including inverter input DC
voltage, inverter output three-phase voltage, motor three-phase current, motor speed, motor
position, and load torque, based on the inverter output three-phase voltage, the motor
output three-phase current, and the motor position sensor signals in a permanent magnet
drive system [25]. The above multi-sensor joint diagnosis methods based on structural
analysis [23–25] have added many redundant sensors (e.g., hardware redundancy among
three-phase voltage sensors, redundancy between motor speed and position sensors, etc.)
to simplify the redundancy relationship of sequence residual analysis. In contrast, such
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redundant sensors have not been arranged in the actual system considering the cost and
reliability factors. Therefore, the above diagnostic methods have some limitations in
real-time fault diagnosis tasks.

This paper investigates the real-time multi-sensor joint fault diagnosis of PMTDSs
based on the structural analysis method by making full use of the intermediate DC voltage,
the motor currents of phases A and B, and the rotor position information collected from the
closed-loop control of the PMTDS. The main contributions are as follows:

1. A real-time joint diagnosis method for the faults of the intermediate DC voltage sensor,
the A- and B-phase current sensors, and the position sensor in PMTDSs is proposed;

2. The detectability and isolability of each sensor fault with limited sampling signals
are presented, and residuals are generated by the analytic redundancy relationship.
Different combinations of residuals are used to realize the fast and effective isolation
of all the sensors.

3. A diagnostic algorithm test verification method based on data recording to reproduce
real fault scenarios is proposed, and a relevant test platform is built to verify the
effectiveness of the proposed diagnostic method.

2. Basis for the Decomposable Diagnosis of Sensor Faults in a System
2.1. Mathematical and Structured Modeling of PMTDSs

The main circuit of a typical PMTDS for locomotives and rolling stock is shown in
Figure 1, and it mainly consists of three parts: the traction transformer, the traction converter
(including the charging circuit, the four-quadrant rectifier, the intermediate DC link, the
traction inverter, etc.), and the PM traction motor. To realize the real-time closed-loop
control of the permanent magnet traction motor, the related sensors are defined as shown
in Table 1.

Table 1. Permanent magnet traction transmission system-related sensors.

Sensor Code Definition

VH1 Intermediate DC voltage sensor
LH1 Motor A-phase current sensor
LH2 Motor B-phase current sensor
PS Position sensor

According to the circuit principle, the mathematical model of the permanent magnet
traction drive system can be obtained as shown in Equation (1), where e1–e21 represent
subequations, and the meaning of each variable is shown in Table 2.

Table 2. Meanings of variables.

Symbol Meaning

Udc Intermediate DC voltage
id d-axis current of the motor
iq q-axis current of the motor
θe Motor rotor angular position
ωe Motor rotor angular speed
ud Inverter output d-axis voltage
uq Inverter output q-axis voltage
uα The inverter outputs the α-axis voltage
uβ The inverter outputs the β-axis voltage
ua The inverter outputs the A-phase voltage
ub The inverter outputs the B-phase voltage
uc The inverter outputs the C-phase voltage
iα Motor α-axis current
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Table 2. Cont.

Symbol Meaning

iβ Motor β-axis current
did Differential of d-axis current of motor
diq Differential of q-axis current of motor
dθe Differential angle position of motor rotor

Sa, Sb, Sc Inverter pulse control signal
yUdc Sampling value of the intermediate DC voltage sensor
yIa Motor phase-A current sensor sampling value
yIb Motor phase-B current sensor sampling value
yθn Motor rotor position sensor sampling value
fUdc The intermediate DC voltage sensor fault
fIa The A-phase current sensor of the motor fault
fIb The B-phase current sensor of the motor fault
fθn The motor rotor position sensor fault
Rs Stator resistance
Ld Motor d-axis inductance
Lq Motor q-axis inductance
ψf Rotor permanent magnet linkage
np Number of motor poles

e1 : did = 1
Ld
(ud − Rsid + ωeLqiq)

e2 : diq = 1
Lq
(uq − Rsiq − ωeLdid − ωeψ f )

e3 : dθe = ωe
e4 : ud = uα cos θe + uβ sin θe
e5 : uq = −uα sin θe + uβ cos θe
e6 : uα = 2

3 (ua − 0.5ub − 0.5uc)

e7 : uβ = 1√
3
(ub − uc)

e8 : ua =
Udc

3 (2Sa − Sb − Sc)

e9 : ub = Udc
3 (2Sb − Sa − Sc)

e10 : uc =
Udc

3 (2Sc − Sa − Sb)
e11 : id = iα cos θe + iβ sin θe
e12 : iq = −iα sin θe + iβ cos θe
e13 : iα = ia
e14 : iβ = 1√

3
ia +

2√
3

ib

e15 : yUdc = Udc + fUdc
e16 : yIa = ia + f Ia
e17 : yIb = ib + f Ib
e18 : yθn = 1

np
θe + fθn

e19 : did = d
dt id

e20 : diq = d
dt iq

e21 : dθe =
d
dt θe

(1)

The structured model can describe the relationship of the variables in the system’s
mathematical model through the association matrix’s structure and clearly express the
relationship between the equations and the variables, such as in Figure 2, which shows the
structured model of the traction system. The structured model divides the variables into
three categories as follows:

unknown variable: {Udc, id, iq, θe, ωe, ud, uq, uα, uβ, ua, ub, uc, iα, iβ, θn}
failure variable: {fUdc, fIa, fIb, fθn}
known variable: {yUdc, yIa, yIb, yθn, Sa, Sb, Sc}
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In Figure 2, D denotes the differential variable relationship, and I denotes the integral
variable relationship. Subequations e15~e18 describe the relationship between the sensor
measurements of the known variables’ intermediate DC voltage, the stator phase-A and -B
currents, and the rotor’s position and the corresponding fault quantities and true values of
each measurement.

2.2. Detectability and Isolation of Sensor Faults in System

The structural analysis method is concerned with the structurally overdetermined
part. The fact that the number of equations in a structural model is greater than the
number of unknown variables implies that it is structurally analytically redundant, and
this redundancy information can be utilized to generate residual values for fault diagnosis.

A Dulmage–Mendelsohn (DM) decomposition [21] of the structured model of PMTDS
(1) was performed, which was used for deriving the redundancy relationship of the system’s
structural model. The canonical decomposition of its overdetermined part is shown in
Figure 3, from which it can be seen that all the defined faults appear in the overdetermined
part. Therefore, all the sensor faults of the system listed in Table 2 are detectable.
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Fault isolability consists of recognizing and isolating a fault from other faults when
the new fault occurs. From the literature [21], in a system model, a fault can be isolated
from the other faults if the fault satisfies the relationship in Equation (2).

e fi
∈ (M/{e f j

})+ (2)

where e fi
and e f j

are the subequations containing the faults, and M/{e f j
}+ is the overdeter-

mined part of the structure after eliminating the equations. According to the definition of
fault isolability, the fault isolation matrix can be obtained as shown in Figure 4. The faults
fUdc, fIa, fIb, and fθn are only correlated with themselves, indicating that the faults of the DC
bus voltage sensor, the two-phase current sensors of A and B, and the rotor position sensor
are isolatable.
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2.3. Calculation of Minimum Set of Super-Deterministic Equations

In order to generate sequence residuals for fault diagnosis, it was first necessary to
determine the structural minimum set of overdetermined equations, MSOs, i.e., the smallest
number of equations for which maximum isolability can be achieved. The MSOs are subsets
of the set of equations with analytic redundancy. In this paper, based on all the MSOs of the
structured model, the minimum touch set approach [26] was used to obtain four structural
minimal super-determined sets of equations, MSOs, as shown in Table 3.

Table 3. Minimum set of overdetermined equations.

Equations Set Including Equations

MSO1 e1~e13, e15~e16, e18~e21
MSO2 e1~e14, e16~e21
MSO3 e1~e17, e19~e21
MSO4 e1~e15, e17~e21

According to the structural analysis method, the above structural minimum set of
super-deterministic equations MSOs could be used to generate four independent residuals,
and the joint use of these MSOs isolated all the faults mentioned above, as shown in Table 4.

Table 4. Attributes of the selected MSO sets.

Equations fUdc fIa fIb fθn

MSO1 X X X
MSO2 X X X
MSO3 X X X
MSO4 X X X
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In Table 4, the symbol “X” indicates that the fault is detectable, and a blank space
indicates that the fault is not detectable. For example, the over-determined set of equations
MSO1 was able to detect three faults ( fUdc, f Ia, and fθn) but not the other faults.

3. Design of Multi-Sensor Fault Joint Diagnosis Algorithm
3.1. Sequence Residual Design
3.1.1. Residual R1 and R4

As it can be seen from Table 4, the two overdetermined equation sets MSO1 and MSO4
both contained an intermediate voltage sensor, a position sensor signal, and a phase current
sensor signal. Therefore, we could estimate a phase current by establishing a current
observer and establish the corresponding residual error using the current estimation error.

According to the state equation of a permanent magnet synchronous motor in the
rotating coordinate system of the d- and q-axis rotor, a state observer was designed to
estimate the state and the output [27], and the observation errors of the A-phase current
and B-phase current were used to constitute the correction, respectively. The observer state
space equation corresponding to the residual R1 and R4 can be expressed as follows:{ dx̂1

dt = Ax̂1 + Bu + Bdl + K1(yIa − ŷ1)
ŷ1 = C1x1

(3)

{ dx̂2
dt = Ax̂2 + Bu + Bdl + K2(yIb − ŷ2)

ŷ2 = C2x2
(4)

where

A =

[
−Rs/Ld ωeLq/Ld

−ωeLd/Lq −Rs/Lq

]
, B =

[
1/Ld 0

0 1/Lq

]
,

Bd =

[
−ψ f /Lq

0

]
, x =

[
id
iq

]
, u =

[
ud
uq

]
, l = ωe

C1 =
[
cos θe − sin θe

]
,C2 =

[√
3/2 sin θe − 1/2 cos θe 1/2 sin θe +

√
3/2 cos θe

]
K1 and K2 are observer gain matrices whose values are set according to the require-

ments of stability, fault sensitivity, and robustness.
Based on the observer described in Equations (3) and (4), residuals R1 and R4 can be

designed as shown in Equations (5) and (6), respectively.

R1(k) = yIa(k)− ŷ1(k) (5)

R4(k) = yIb(k)− ŷ2(k) (6)

3.1.2. Residual R2

The equation set MSO2 consists of 20 equations that generate residual R2 to detect
faults. From correlation Equation (1), the following can be obtained:

ûq · [(2Sa − Sb − Sc) · cos(np · yθn) +
√

3(Sb − Sc) · sin(np · yθn)]

= ûd · [−(2Sa − Sb − Sc) · sin(np · yθn) +
√

3(Sb − Sc) · cos(np · yθn)]
(7)

where the expressions of ûd and ûq are the estimated voltage values of the output d-axis
and q-axis of the inverter, respectively, and the expression is shown in Equation (8).{

ûd = Ld
did
dt + Rsid − np · Lq · iq · dθn

dt
ûq = Lq

diq
dt + Rsiq + np · (Ld · id + ψ f ) · dθn

dt

(8)
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The first-order backward difference is used to discretize Equation (8), and the residual
R2(k) can be obtained.

R2(k) = ûq(k) · [(2Sa − Sb − Sc) · cos(np · yθn)+√
3(Sb − Sc) · sin(np · yθn)]+

ûd(k) · [(2Sa − Sb − Sc) · sin(np · yθn)−√
3(Sb − Sc) · cos(np · yθn)]

(9)

3.1.3. Residual R3

As it can be seen from Table 4, MOS3-related parties included a related signal in the
equations, so we estimated the rotor speed and rotor position information by establishing
an MRAS based on Popov’s super-stability theorem and feeding it back to the current
observer [27] and by establishing a residual error by motor current estimation. Taking the
phase-A current estimation error as residual R3, we could obtain

R3(k) = yIa(k)− (îd(k) · cos θ̂e(k)− îq(k) · sin θ̂e(k)) (10)

3.2. Fault Detection and Decision
3.2.1. Periodic Adaptive Fault Detection Strategy

Due to the influence of nonlinear factors such as intermediate DC voltage fluctuation,
dead time, and tube voltage drop, the output voltage of the inverter reconstructed by
the IGBT pulse state and intermediate voltage have a certain deviation from the actual
voltage, and the residual is shown as high-frequency harmonics. In addition, the residual
signal characteristics have a strong correlation with the inverter output voltage and current
frequency. Therefore, based on the actual output voltage and current frequency, this paper
uses a periodic adaptive sliding window to construct periodic detection statistics for fault
detection, which can avoid the influence of different speeds on residual calculation.

It is assumed that, in the normal operation, the residual is satisfied as R~N (µ0, σ2
0 ),

where µ0 = 0 is the mean of normal residuals, and σ2
0 is related to the measurement noise

and harmonics of residuals that can be obtained by learning a large number of historical
data from the site under normal working conditions. Let R̃ =

{
R1, R2, · · · , RN}

be the
periodic sampling value of Ri.

The detection statistics are defined as follows:

T2 =

N
∑

i=1
(Ri)

2

σ2
0

(11)

where T2 satisfies the standard Chi-square distribution, denoted as χ2, with N degrees of
freedom, and p(T2 > χ2

α

∣∣H0) = α . p(T2 > χ2
α

∣∣H0) = α denotes the probability that the
detection statistic T2 is larger than χ2

α under the fault-free assumption H0.
This method was adopted for fault detection, and the threshold value was obtained by

an approximate Chi-square distribution, that is [28,29]

Tα = χ2
α(N − 1) (12)

where Tα represents the detection threshold, χ2
α(N − 1) represents the Chi-square distribu-

tion of N − 1 degrees of freedom, and α represents the confidence level, which is generally
understood as the probability of allowing false detection. N = fs/ f0 is the number of
sampled data points in the sliding window, the signal sampling rate is fs, and the inverter
output current fundamental frequency is f0.

The corresponding fault detection decision logic can be expressed as

F =

{
1, T2 > Tα

0, T2 ≤ Tα
(13)
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where F represents the detected fault status flag, 1 is the fault state, and 0 is the
normal state.

3.2.2. Fault Decision Making

Assuming that the fault detection results corresponding to the four residuals are
FRi, i = 1, · · · , 4, combined with the fault feature matrix in Table 4, the effective detection
and isolation of each fault can be achieved based on the diagnosis rules shown in Table 5.

Table 5. Fault diagnosis rule table.

Rules Precondition
ConclusionCode FR1 FR2 FR3 FR4

1 1 0 1 1 fUdc = 1
2 1 1 1 0 fIa = 1
3 0 1 1 1 fIb = 1
4 1 0 1 fθn = 1

The basic framework of the proposed diagnostic algorithm is shown in Figure 5, and
the entire algorithm is divided into two parts: offline design and online implementation.
The offline design part mainly completes the design of the residual and sets corresponding
thresholds. In the online implementation part, the system collects real-time sensor and
system status information, filters and normalizes the signal, and calculates the residual and
the related detection statistics in real time based on the offline-designed residual expression.
Combined with the offline-designed threshold parameters and the fault feature matrix, it
can realize the effective detection and diagnosis decision of different sensor faults.
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4. Testing and Verification
4.1. Diagnostic Objects and Test Platforms

Based on the PMTDS of a certain train (the main relevant parameters are shown in
Table 6), this model simulates the faults of various sensors through the semi-physical
simulation test platform and records the relevant data, and then introduces them to the
physical test verification platform based on the online recording of fault data to test and
verify the proposed algorithm.

The whole experimental system is divided into two parts: the dSPACE semi-physical
simulation platform and the diagnosis algorithm verification platform based on online
fault data recording. The physical diagram is shown in Figure 6a. Among them, the semi-
physical simulation platform is mainly composed of a real controller (control chassis), a
real-time simulator (dSPACE chassis), and a signal-conditioning system. The semi-physical
simulation platform is used to simulate various sensor faults on site and generate and
save the related fault data records. Then, the Flash memory is transmitted to the fault
diagnosis unit by the host computer and is monitored for the diagnostic algorithm test.
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The verification platform of the diagnosis algorithm consists of a fault diagnosis unit and
a monitoring host unit. The hardware architecture of the fault diagnosis unit is shown in
Figure 6b, and it is mainly composed of two OMAPL138 chips, an FPGA chip, and a Flash
memory. The real-time diagnosis algorithm is implemented in the OMAP1 chip of the fault
diagnosis unit. When the real-time diagnosis algorithm is tested, the OMAP2 chip reads
the fault data file from the Flash memory into the memory and sends it to OMAP1 via
FPGA to complete the true representation of the on-site fault scene.

Table 6. Description of the main parameters of PMTDSs.

Parameters Value

Rated intermediate voltage of the converter/V 3500
Rated output voltage/V 2517

Rated torque/(Nm) 5994
Rated speed/(r·min−1) 2274

Rated current of permanent magnet motor (rms)/A 351
Maximum current of permanent magnet motor (rms)/A 490

Rated power/kW 1430
Stator resistance/Ω 0.03

Direct axis inductance/mH 2.97
Quadrature axis inductance/mH 8.49

Permanent magnet flux linkage/Wb 1.92
Number of motor poles 3Sensors 2024, 24, x FOR PEER REVIEW 12 of 19 
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Figure 6. Physical testing and verification platform of the diagnosis algorithm based on online fault
data recording: (a) the physical diagram; and (b) the hardware architecture of the fault diagnosis unit.

The main parameters of the traction drive system are shown in Table 6. When t = 0.1 s,
the traction inverter is started, the set speed is linearly increased from 0 to 1000 r/min,
and the actual speed is sampled in real time for closed-loop constant speed control. When
t = 2 s, 2000 Nm torque is loaded, and then different types of sensor fault signals are injected
when t = 4 s, and the relevant fault data waveforms are collected for real-time diagnosis
algorithm testing. The system control response curve under normal working conditions is
shown in Figure 7.
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4.2. Experiment Results

Figures 8–11 show the system’s response and the real-time fault diagnosis results
under different sensor fault conditions. In these figures, in order to prevent data overflow
without affecting the diagnosis results, the maximum value of detection statistics in the
diagnosis algorithm is limited to 1000.
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Figure 8. Intermediate DC voltage sensor fault test result: (a) relevant sensor sampling signal and
system control response; (b) residual changes; and (c) detection of changes.
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Figure 9. Motor A-phase current sensor fault test results: (a) relevant sensor sampling signal and
system control response; (b) residual changes; and (c) detect changes in statistics.
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Figure 10. Motor B-phase current sensor fault test results: (a) relevant sensor sampling signal and
system control response; (b) residual changes; and (c) detection of changes.
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Figure 11. Motor position sensor fault test results: (a) relevant sensor sampling signal and system
control response; (b) residual changes; and (c) detection of changes.

Figure 8 shows the diagnostic test results when the simulated intermediate voltage
sensor has a 10% deviation fault after t = 4 s. As it can be seen from Figure 8a, due to the
closed-loop control of the system, the motor speed signal fluctuates slightly after the fault
and becomes stable rapidly, while the motor current does not fluctuate significantly. The
reason is that the 10% negative deviation measured mid-voltage will lead to an increase in
the duration times of the applied voltage vectors in the space vector pulse width modulation
(SVPWM), thus resulting in larger reference voltage and torque. Accordingly, the speed
will increase slightly and then decrease to a steady value due to the regulation of the
speed-loop controller.
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However, it is easy to see from Figure 8b that residuals R1, R3, and R4 all show
significant changes, and their corresponding detection statistics all exceed their detection
thresholds, meeting the fault diagnosis rules of the intermediate voltage sensors in Table 5.

Figures 9 and 10 are the fault test results simulating the −50 A deviation fault of the
A- and B-phase current sensors of the motor, respectively, when t = 4 s. It can be seen from
the corresponding subfigure (a) that, after the motor current sensor fails, the system speed
fluctuates greatly. Due to the closed-loop regulation of the system, the fault-phase current
signal is adjusted to the amplitude of the normal-phase current, increasing the amplitude
of the true fault-phase current compared to that of the normal-phase current, which is
about the size of the deviated fault current. If the sensor fault is not diagnosed in time,
the risk of system overcurrent increases. It can be seen from the corresponding Figures 9b
and 10b that, after the fault, the corresponding residuals and detection statistics change
laws are consistent with the faults of the A-phase and B-phase current sensors of the motor
in Table 5, and the system can normally diagnose the faults of the A-phase and B-phase
current sensors of the motor.

An abnormal motor position signal can easily lead to system control malfunction.
Figure 11 shows the diagnostic results of a 0.5% deviation fault of the motor speed sensor
signal when t = 4 s is simulated. As it can be seen from Figure 11a, a deviation in the
speed-sampling signal will cause the deviation between the position signal and the real
position signal to gradually increase, the constant speed control of the motor will gradually
fail, and the motor current will rapidly diverge. It can be seen from Figure 11b that, with the
control malfunction, the amplitudes of residuals R1, R2, and R4 correspondingly increase
rapidly, their corresponding detection statistics rapidly exceed the detection threshold, and
the system can correctly diagnose the fault of the motor position sensor.

Regarding the diagnosis of sensor faults in permanent magnet traction transmission
systems, there are currently three main methods: model-based, signal-based, and data-
driven methods. Model-based methods have a small computational complexity and a
fast diagnostic speed, but they require a high accuracy of the model and are sensitive to
system parameter perturbations, resulting in the low robustness of their diagnostic strategy.
The method based on current signals does not require system parameters, but noise, load
disturbances, and different load conditions may bring uncertainty to its diagnosis, resulting
in a high rate of false alarm. The data-driven diagnostic method does not require an accurate
system-analytical model when dealing with fault diagnosis problems in complex systems,
but it has problems such as a large computational complexity, unclear physical concepts,
and generally slow response speeds to faults. Hence, according to the experimental results,
the proposed structured model-based joint diagnosis method in this paper overcomes the
shortcomings of the above methods, and the faults of the intermediate DC voltage sensor,
the A- and B-phase current sensors, and the position sensor in PMTDSs can be correctly
diagnosed in real time.

5. Conclusions

Based on the typical sensor layout of PMTDSs in practical engineering, the diagnosabil-
ity of each sensor fault was hereby demonstrated, and a real-time joint diagnosis method for
the multi-sensor fault of permanent magnet traction systems was proposed. This method is
based on the structured model of permanent magnet traction systems, including sensor
faults, and takes full account of the correlation between the sensor signals to establish the
residual. It has the advantages of a clear physical concept, simple implementation, and a
small amount of calculation and has good engineering application prospects.

However, due to the use of the IGBT status, the motor parameters, and other infor-
mation in structured modeling, when an IGBT fault occurs in the system, the change in
the motor parameters will affect the diagnosis results. Therefore, our future research will
add IGBT faults to the model and increase the real-time identification strategy of the motor
parameters to improve the adaptability of the proposed method.
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