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Abstract: Accurate measurement of coal gas permeability helps prevent coal gas safety accidents
effectively. To predict permeability more accurately, we propose the IDBO-BPNN coal body gas
permeability prediction model. This model combines the Improved Dung Beetle algorithm (IDBO)
with the BP neural network (BPNN). First, the Sine chaotic mapping, Osprey optimization algo-
rithm, and adaptive T-distribution dynamic selection strategy are integrated to enhance the DBO
algorithm and improve its global search capability. Then, IDBO is utilized to optimize the weights
and thresholds in BPNN to enhance its prediction accuracy and mitigate the risk of overfitting to
some extent. Secondly, based on the influencing factors of gas permeability, effective stress, gas
pressure, temperature, and compressive strength, they are chosen as the coupling indicators. The
SPSS 27 software is used to analyze the correlation among the indicators using the Pearson correlation
coefficient matrix. Additionally, the Kernel Principal Component Analysis (KPCA) is employed
to extract the original data. Then, the original data is divided into principal component data for
the model input. The prediction results of the IDBO-BPNN model are compared with those of the
PSO-BPNN, PSO-LSSVM, PSO-SVM, MPA-BPNN, WOA-SVM, BES-SVM, and DPO-BPNN models.
This comparison assesses the capability of KPCA to enhance the accuracy of model predictions and
the performance of the IDBO-BPNN model. Finally, the IDBO-BPNN model is tested using data
from a coal mine in Shanxi. The results indicate that the predicted outcome closely aligns with the
actual value, confirming the reliability and stability of the model. Therefore, the IDBO-BPNN model
is better suited for predicting coal gas permeability in academic research writing.

Keywords: coal gas; permeability; improved dung beetle optimizer (IDBO); BP neural network (BPNN);
prediction model

1. Introduction

Coal mine gas accidents are a significant concern in the global coal mining safety field,
posing a serious threat to both coal production and the safety of workers’ lives [1,2]. Coal
gas permeability refers to the ability of gas to transmit through a unit area of coal within a
unit of time. It is one of the key parameters for evaluating the potential release of gas from
coal reservoirs [3,4]. However, accurately predicting the gas permeability of coal remains a
challenging problem due to the heterogeneity and complex geological structure of coal.

Currently, both domestic and international scholars are primarily focused on studying
the factors that influence changes in gas permeability [5,6]. Li Bobo et al. [7] conducted
research on coal samples from the Liupanshui mining area in Guizhou. They applied the
theory of effective stress to conduct seepage tests on coal and rock to investigate the impact
of pore pressure changes on the characteristics of coal and rock infiltration. Gong Weidong
et al. [8] utilized a triaxial penetration device to conduct tests and concluded that the gas
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permeability of coal is closely associated with factors such as effective stress, gas pressure,
and compressive strength of coal. In recent years, with the advancement of science and
technology, machine learning and deep learning have become widely utilized as emerging
methods for prediction [9,10]. For instance, Tang Guoshui et al. [11] employed the enhanced
Artificial Bee Colony algorithm (ABC) to optimize the kernel function parameters C and γ

of the Support Vector Machine (SVM). They developed a permeability prediction model for
coal-containing gas based on ABC-SVM. The findings demonstrate strong generalization
ability and provide a new perspective for studying the permeability of coal-bearing gas.
Shao Liangshan et al. [12] utilized Particle Swarm Optimization (PSO) to optimize the
hyperparameters of the Least Squares Support Vector Machine (LSSVM). They developed
a gas permeability prediction model called PSO-LSSVM and compared its predictive
performance with that of BP Neural Network (BPNN) and SVM to enhance the accuracy of
predictions. Xie Lirong et al. [13] utilized Learning Vector Quantization (LVQ) to classify
and identify sample parameters. They then optimized the weights and thresholds of the
BPNN using an enhanced PSO method. They developed a coal gas permeability prediction
model based on LVQ-CPSO-BPNN, which showed the closest predicted values to the
actual ones. Wang Pan et al. [14] utilized the Mean Impact Value method (MIV) to analyze
the factors influencing coal seam gas permeability. They then developed a more precise
prediction model for coal seam gas permeability using BPNN. This research provides
valuable insights for the study of coal mine safety production and related fields. Ma
Shengxiang et al. [15] employed factor analysis to reduce the dimensionality of the original
data, thereby decreasing the number of input layers in the BPNN structure and simplifying
it. This led to an improvement in the accuracy of model predictions. Song Xi et al. [16]
utilized the Random Forest (RF) algorithm to construct a model for predicting coal gas
permeability. The effectiveness of the model was validated through practical engineering
tests, demonstrating its applicability in actual production and its significant role in guiding
mine safety production. In summary, previous studies have made some progress in
predicting coal gas permeability. However, there are still several shortcomings that need
to be addressed. For instance, Support Vector Machine (SVM) is only suitable for small
sample sizes and lacks the optimal method for determining values. LSSVM compromises
the robustness and sparsity of standard SVM.BPNN is prone to getting stuck in local
optimal values and has a slow convergence rate, as well as potential “overfitting” issues
under certain conditions [17]. RF has limited capability in processing low-dimensional
data and may exhibit randomness [18]. PSO is sensitive to parameter selection. Although
it converges quickly, it easily falls into local optima. None of these methods address the
issue of machine learning models tending to overfit. It is evident that current methods
for predicting coal gas permeability have limitations that prevent them from meeting the
requirements for accurate prediction in academic research.

In order to enhance the accuracy of predicting the gas permeability of coal bodies, the
author improved the Dung Beetle Optimizer (DBO) algorithm to rectify its shortcomings
and prevent the “overfitting” issue of BPNN. The enhanced DBO algorithm, referred to
as IDBO, was employed to optimize the weights and thresholds in BPNN, leading to
the development of a prediction model for coal gas permeability known as IDBO-BPNN.
Subsequently, the performance of this model was compared with that of PSO-BPNN, PSO-
SVM, PSO-LSSVM, and SSA-BPNN models to validate its prediction accuracy. Finally, the
model was applied to a coal mine in Shanxi Province to investigate its practicality and
stability further. These efforts aim to provide theoretical references to ensure safe and
efficient production in coal mines and address related issues.

2. Basic Method Principles
2.1. Influence Factors of Gas Permeability in Coal

The influencing factors of gas permeability in coal bodies are highly complex, en-
compassing coal rock properties, stress states, temperature, gas pressure, gas content, and
geological structure. An increase in effective stress leads to a reduction in the gap between
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coal bodies, subsequently decreasing gas permeability. Conversely, an increase in gas pres-
sure leads to higher molecular flow speeds and increased gas permeability. Furthermore,
higher temperatures lead to faster movement rates of gas molecules and, consequently,
higher permeability [19]. The compressive strength plays a crucial role in determining
the compactness of particle arrangement within the coal. Greater compressive strength
corresponds to smaller particle gaps and lower permeability [20]. These non-linear factors
interact with each other to collectively determine changes in gas permeability within coal.

2.2. BP Neural Network

BPNN is a widely used artificial neural network algorithm, typically consisting of
three layers of neurons: the input layer, hidden layer, and output layer [21]. The number of
nodes in the hidden layer is usually determined by the empirical formula

√
N1 + N0 + L

where N represents the number of nodes in the hidden layer, N1 represents the number of
nodes in the input layer, and N0 represents the number of nodes in the output layer [22].
The topology is illustrated in Figure 1.
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Figure 1. Topology structure of BPNN.

2.3. Improved DBO
2.3.1. DBO

DBO is a novel intelligent optimization algorithm inspired by the rolling, dancing,
foraging, stealing, and reproduction behaviors of dung beetles. The algorithm categorizes
the dung beetle population into four groups: rolling dung beetle, brooder dung beetle, small
dung beetle, and thief dung beetle [23]. Further details can be found in the literature [24].

2.3.2. Improved DBO

Overfitting is a common issue encountered by machine learning models. When
the model is too complex, interfered with noise, or when there is limited training data,
overfitting is more likely to occur. Therefore, Differential Biogeography Optimization
(DBO) is used to optimize the hyperparameters of the Back Propagation Neural Network
(BPNN). However, DBO has shortcomings, such as an imbalance in global exploration and
local development abilities, which can result in local optimal problems and a weak global
exploration ability. To enhance the global search capability of DBO and avoid overfitting
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BPNN, three strategies are employed to improve DBO. Furthermore, the fitness function is
not called multiple times in IDBO. The complexity is consistent with the original DBO.

(1) The population is initialized using the Sine chaotic mapping strategy [25]. The
utilization of random generation in the initialization process by intelligent optimization
algorithms leads to poor ergodicity, which results in a decrease in the quality of the
initial solution [26]. However, utilizing chaotic mapping to generate random numbers
significantly enhances the fitness function value and distributes them more evenly. This
broader search range helps enhance the accuracy and stability of the algorithm, thereby
improving its global search capability. Sine mapping, as a typical representative of chaotic
mapping, is simple in form and easy to implement [27]. Its specific formula is as follows:

xk+1 =
1
4

sin(πxk), a ∈ (0, 4] (1)

where xk is the chaos number of the kth iteration.
(2) The Osprey optimization algorithm is introduced in this study. The global explo-

ration strategy of the Osprey optimization algorithm addresses the limitations of the DBO
in ball-rolling behavior. The DBO solely relies on the worst value and lacks timely commu-
nication with other dung beetles, in addition to having numerous parameters. Therefore,
the Osprey optimization algorithm employs a global exploration strategy to randomly
locate the position of a dung beetle and update its position by rolling. The specific formula
for this strategy is as follows:

xP1
i = xi + r · (SF − I · xi) (2)

where xP1
i is the new position of the i dung beetle in the exploration stage; r is the random

number between [0, 1]; SF is the selected dung beetle and I is the random number in the
set {1.2}.

(3) Adaptive T-distribution dynamic selection strategy. During the foraging stage of
dung beetles, T-distribution perturbations are implemented to influence their foraging
behavior. The T-division mutation operator, with the iteration number variation formula
serving as the degree of freedom parameter of the T-distribution, is utilized to perturb
the foraging behavior. This approach not only makes the best use of current position
information but also introduces random interference information, which facilitates escaping
from local optimal algorithms [28]. As the number of iterations increases, the T-distribution
gradually approaches a Gaussian distribution, thereby enhancing the speed of algorithm
convergence. Its mathematical characterization is as follows:

xj
new = xj

best + t(C_iter) · xj
best (3)

where xj
new is the position of the optimal solution in the jth dimension after the adaptive

T-distribution variation perturbation; xj
best is the position of the optimal solution in the jth

dimension before the variation perturbation; t(C_iter) is the degree of freedom parameter
of the t distribution.

The introduction of the adaptive T-distribution mutation operator can significantly
enhance the optimization performance of the algorithm. However, it is indiscriminately
used in all individuals in each iteration, which may lead to an increase in calculation
time. Meanwhile, it doesn’t take advantage of the benefits of the original algorithm. To
address this issue, a dynamic selection probability P is adopted to adjust the use of adaptive
T-distribution mutation operators. This ensures that the algorithm demonstrates strong
global development ability in the early stage of iteration while maintaining good local
exploration ability in the late stage. Additionally, supplementing the algorithm with T-



Sensors 2024, 24, 2873 5 of 24

distribution mutation with a small probability further enhances the convergence speed [29].
The calculation formula for dynamic selection probability P is as follows:

P = w1 − w2 · (Maxiter − iter)/Maxiter (4)

where w1 is the upper limit of dynamic selection probability; w1 = 0.5; w2 is the change
amplitude of dynamic selection probability; w1 = 0.1; Maxiter is the maximum number of
iterations; iter is the current number of iterations.

2.3.3. Algorithm Validity Test

In order to evaluate the optimization performance of IDBO, the CEC2005 test set is
utilized for iterative testing in the Matlab R2023a environment. The algorithm is compared
with the Whale Optimization Algorithm (WOA), Subtraction Average Based Optimizer
(SABO), Grey Wolf Optimizer (GWO), Northern Goshawk Optimization (NGO), Harris
Hawk Optimization (HHO), and the original DBO. Each algorithm’s population size and
maximum number of iterations are set to 30 and 1000, respectively, with the test being
repeated 30 times. The details of the test function information can be found in Table 1.

Table 1. Test function information.

Reference Functions Dimensionality Radius

F1 =
n
∑

i=1
x2

i
30 [−100, 100]

F2 =
n
∑

i=1
|xi|+

n
∏
i=1

|xi| 30 [−10, 10]

F3 =
n
∑

i=1

(
i

∑
j=1

xj

)2
30 [−100, 100]

F4 = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100]

F5 = −
n
∑

i=1

(
xi sin(

√
|xi|)

)
30 [−500, 500]

F6 =

−20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
30 [−32, 32]

F7 =

−
m
∑

i=1

[
(x − ai)(x − ai)

T + ci

]−1 4 [0, 10]

F8 =
n
∑

i=1
ix4

i + random[0, 1) 30 [−1.28, 1.28]

The seven algorithms are tested for comparison and analysis. The test results are
shown in Figure 2. The standard test function generates a two-dimensional convergence
curve after each algorithm is executed. In this curve, the x-coordinate represents the
number of iterations. During each iteration, the algorithm attempts to optimize the function.
Therefore, the x-coordinate records the number of these optimization attempts. The goal of
CEC test functions is to find the global minimum of the function, so the ordinate usually
represents the function value. If the curve slopes downward, it indicates that the algorithm
is approaching the optimal solution. If the curve fluctuates greatly, it may suggest that the
algorithm is oscillating near the local optimum. According to Figure 2, the slope of the
IDBO curve decline is significantly steeper than that of other algorithms in both single-peak
benchmark functions and multi-peak, as well as fixed-dimensional multi-peak benchmark
functions, which suggests that IDBO exhibits a faster convergence speed. Other algorithms
show a relatively gradual decline, indicating that they may be trapped in local optima or
experience slow convergence speeds. At the same time, the optimization accuracy of IDBO
in test functions F2, F3, F4, F5, F6, F7, and F8 is the best. The fitness value of IDBO in test
function F1 is not the best, but it still ranks ahead of several algorithms. The results show
that the local development ability of IDBO is significantly improved, which reveals good
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local development ability compared with the original DBO. In general, IDBO can not only
converge quickly but also have the ability to explore and develop balancedly and escape
from local optimal solutions.

The seven algorithms are tested by eight different functions with optimal value,
standard deviation, average value, median value, and worst value as evaluation indices,
which reflect the convergence accuracy and stability of the algorithms, as shown in Table 2.
As can be seen from Table 2, IDBO can accurately find the optimal value 0 in various
functions, which can adapt to the transformation in global exploration and local exploration.
Therefore, compared with other algorithms, IDBO has improved the accuracy of the solution
and is more stable in average optimization performance.
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Table 2. Comparison of test results.

Functions Evaluation Criteria WOA DBO SABO GWO NGO HHO IDBO

F1

Optimal value 2.7 × 10−101 2.1 × 10−191 1.6 × 10−241 4.92 × 10−36 1.1 × 10−108 7.6 × 10−132 0
Standard deviation 1.03 × 10−90 1.5 × 10−132 0 1.57 × 10−33 8.7 × 10−106 5.7 × 10−109 0

Mean value 3.09 × 10−91 2.8 × 10−133 2.7 × 10−237 1.18 × 10−33 3.3 × 10−106 1.1 × 10−109 0
mid-value 6.86 × 10−94 1.8 × 10−162 1.5 × 10−238 5.89 × 10−34 1 × 10−106 7.6 × 10−122 0

Worst value 5.47 × 10−90 8.3 × 10−132 2.5 × 10−236 5.73 × 10−33 4.8 × 10−105 3.1 × 10−108 0

F2

Optimal value 5.7 × 10−106 5.2 × 10−206 2.6 × 10−242 1.94 × 10−36 3.9 × 10−109 8.6 × 10−133 0
Standard deviation 9.38 × 10−91 8.5 × 10−137 0 2.09 × 10−34 9.5 × 10−107 6.9 × 10−113 0

Mean value 2.68 × 10−91 1.6 × 10−137 1.3 × 10−236 8.17 × 10−35 4.5 × 10−107 1.3 × 10−113 0
mid-value 5.7 × 10−95 1.7 × 10−160 9 × 10−240 2.76 × 10−35 9.4 × 10−108 1.8 × 10−122 0

Worst value 4.81 × 10−90 4.7 × 10−136 3.4 × 10−235 1.09 × 10−33 4.2 × 10−106 3.8 × 10−112 0

F3

Optimal value 3.31 × 10−68 1.59 × 10−94 4.1 × 10−137 2.58 × 10−21 6.72 × 10−57 2.72 × 10−67 0
Standard deviation 3.19 × 10−61 7.59 × 10−71 5.3 × 10−133 2.75 × 10−20 8.67 × 10−55 4.38 × 10−59 0

Mean value 7.62 × 10−62 1.39 × 10−71 1.9 × 10−133 2.76 × 10−20 5.7 × 10−55 8.82 × 10−60 1.9 × 10−300

mid-value 2.9 × 10−65 5.74 × 10−83 2.1 × 10−134 1.68 × 10−20 2.8 × 10−55 9.15 × 10−64 0
Worst value 1.67 × 10−60 4.16 × 10−70 2.2 × 10−132 1.34 × 10−19 4.54 × 10−54 2.4 × 10−58 5.6 × 10−299

F4

Optimal value 12,353.02 3.6 × 10−157 2.62 × 10−97 1.21 × 10−10 1.03 × 10−34 2.7 × 10−117 0
Standard deviation 12,261.04 2.88 × 10−65 1.15 × 10−51 7.79 × 10−7 2.99 × 10−27 6.18 × 10−72 0

Mean value 40,102.65 5.26 × 10−66 2.13 × 10−52 3.05 × 10−7 9.91 × 10−28 1.13 × 10−72 0
mid-value 38,697.38 7.6 × 10−128 6.67 × 10−72 1.14 × 10−8 4.27 × 10−30 5.5 × 10−102 0

Worst value 64,604.58 1.58 × 10−64 6.31 × 10−51 3.44 × 10−6 1.23 × 10−26 3.38 × 10−71 0

F5

Optimal value 2.7 × 10−164 0 0 9.42 × 10−67 1.2 × 10−210 1.5 × 10−262 0
Standard deviation 5.3 × 10−135 0 0 4.38 × 10−60 0 0 0

Mean value 1.1 × 10−135 6.7 × 10−279 0 9.29 × 10−61 1.7 × 10−204 1.9 × 10−221 0
mid-value 1.7 × 10−145 0 0 4.92 × 10−63 1.5 × 10−207 5.5 × 10−245 0

Worst value 2.9 × 10−134 2 × 10−277 0 2.4 × 10−59 2.6 × 10−203 5.8 × 10−220 0

F6

Optimal value 2.9 × 10−160 5.6 × 10−216 0 6.6 × 10−129 2.4 × 10−224 1.4 × 10−177 0
Standard deviation 3.9 × 10−130 9.2 × 10−137 0 9.4 × 10−111 0 2.7 × 10−147 0

Mean value 8.4 × 10−131 1.7 × 10−137 2.2 × 10−302 1.7 × 10−111 4.9 × 10−217 7.1 × 10−148 0
mid-value 1.1 × 10−138 8.4 × 10−170 3 × 10−308 7.7 × 10−122 2.8 × 10−220 4.9 × 10−157 0

Worst value 2.1 × 10−129 5.1 × 10−136 4.4 × 10−301 5.2 × 10−110 1.2 × 10−215 1.1 × 10−146 0

F7

Optimal value 2.15 × 10−47 3.27 × 10−70 0.099873 0.099873 0.099873 2.98 × 10−66 0
Standard deviation 0.059587 0.042932 1.28 × 10−07 0.055086 1.95 × 10−13 5.98 × 10−58 0

Mean value 0.129878 0.075022 0.099873 0.179873 0.099873 1.86 × 10−58 0
mid-value 0.099873 0.099873 0.099873 0.199873 0.099873 7.44 × 10−62 0

Worst value 0.299873 0.099873 0.099874 0.299873 0.099873 2.73 × 10−57 0

F8

Optimal value 0 0.009716 0.009716 0.009716 0.009716 0 0
Standard deviation 0.018154 2.79 × 10−08 7.25 × 10−08 0.013327 5.29 × 10−14 0 0

Mean value 0.022947 0.009716 0.009716 0.034005 0.009716 0 0
mid-value 0.009716 0.009716 0.009716 0.037224 0.009716 0 0

Worst value 0.078189 0.009716 0.009716 0.078189 0.009716 0 0

Then, the performance of IDBO is further evaluated by the CEC2017 and CEC2021 test
sets, as shown in Table 3. It is evident from Table 3 that IDBO has good performance in
both the CEC2017 and CEC2021 test sets, showing strong convergence accuracy and speed.
In summary, IDBO excellently performs in different test functions. It not only has absolute
advantages in convergence speed but also demonstrates good convergence accuracy. At
the same time, IDBO achieves a good balance between development and exploration
capabilities, which further indicates that IDBO demonstrates outstanding comprehensive
performance in many metaheuristic algorithms.
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Table 3. Optimization curves for different test sets.

Test Set Type Functions Convergence Curves Radius

CEC2017 Shifted and Rotated
Rosenbrock’s Function
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mid-value 0.099873 0.099873 0.099873 0.199873 0.099873 7.44 × 10−62 0 

Worst value 0.299873 0.099873 0.099874 0.299873 0.099873 2.73 × 10−57 0 

F8 

Optimal 

value 
0 0.009716 0.009716 0.009716 0.009716 0 0 

Standard de-

viation 
0.018154 2.79 × 10−08 7.25 × 10−08 0.013327 5.29 × 10−14 0 0 

Mean value 0.022947 0.009716 0.009716 0.034005 0.009716 0 0 

mid-value 0.009716 0.009716 0.009716 0.037224 0.009716 0 0 

Worst value 0.078189 0.009716 0.009716 0.078189 0.009716 0 0 

Then, the performance of IDBO is further evaluated by the CEC2017 and CEC2021 
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speed. In summary, IDBO excellently performs in different test functions. It not only has 
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Table 3. Cont.

Test Set Type Functions Convergence Curves Radius

CEC2017 Hybrid Function (N = 3)
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2.4. Construction of IDBO-BPNN Model 

The metaheuristic optimization algorithm used to optimize machine learning or deep 

learning models has been demonstrated to significantly improve their prediction accuracy 

[30]. Therefore, the author utilized Improved Differential Bees Optimization (IDBO) to 

optimize the weights and thresholds of the Back Propagation Neural Network (BPNN) 

and established the coal gas permeability prediction model based on IDBO-BPNN. The 

construction process is illustrated in Figure 2. The specific construction steps are as fol-

lows: 

(1) Data preprocessing involves handling missing values in the collected data; 

(2) Determining whether dimensionality reduction is necessary can be conducted 

through the Pearson correlation coefficient matrix. If reduction is needed, Kernel Principal 

Component Analysis (KPCA) can be used to extract principal components from the origi-

nal data; 
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Table 3. Cont.

Test Set Type Functions Convergence Curves Radius

CEC2021 Hybrid Function (N = 5)
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2.4. Construction of IDBO-BPNN Model

The metaheuristic optimization algorithm used to optimize machine learning or deep
learning models has been demonstrated to significantly improve their prediction accu-
racy [30]. Therefore, the author utilized Improved Differential Bees Optimization (IDBO)
to optimize the weights and thresholds of the Back Propagation Neural Network (BPNN)
and established the coal gas permeability prediction model based on IDBO-BPNN. The
construction process is illustrated in Figure 2. The specific construction steps are as follows:

(1) Data preprocessing involves handling missing values in the collected data;
(2) Determining whether dimensionality reduction is necessary can be conducted

through the Pearson correlation coefficient matrix. If reduction is needed, Kernel Princi-
pal Component Analysis (KPCA) can be used to extract principal components from the
original data;

(3) Dividing test samples and training samples in a 7:3 ratio and carrying out normal-
ization processing;

(4) Setting the relevant parameters of IDBO and BPNN;
(5) Utilizing the Sine chaotic mapping to initialize the population and calculate the

initial fitness value of dung beetles;
(6) Updating the position of each dung beetle and calculating its fitness value to obtain

the optimal solution;
(7) Utilizing an adaptive T-distribution dynamic selection strategy to perturb the

current optimal solution, acquire a new solution, and assess the need for a position update;
(8) Determining whether termination conditions are met. If not, repeat steps 6–7. If

yes, output the optimal parameter;
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(9) BPNN acquires optimal weight and threshold parameters for training and simulat-
ing predictions.

3. Experimental Contrastive Analysis
3.1. Data Source and Principal Component Extraction

According to relevant tests and theoretical analysis in the literature [8,31], it is evident
that there are numerous factors influencing the gas permeability of coal. The main influ-
encing factors include effective stress, gas pressure, temperature, and coal compressive
strength. Therefore, 50 sets of coal gas permeability data under various conditions were
selected from the literature [11] as test data for this experiment. Among these groups, data
from samples 1 to 40 were used as training samples, while data from 41 to 50 were used as
test samples. A portion of the test data is presented in Table 4.

Table 4. Coal gas permeability sample data.

No. Effective
Stress/MPa Gas Pressure/MPa Temperature/◦C Compressive

Strength/MPa Permeability/(10−5 m2)

1 2 1.8 40 10.85 0.881
2 1.51 0.5 55 12.85 1.062
3 4.01 0.5 30 14.13 0.559

. . . . . . . . . . . . . . . . . .
24 1.73 1.8 45 14.13 0.805
25 2 1 60 12.62 0.633
26 2.5 1.5 30 12.37 0.677
. . . . . . . . . . . . . . . . . .
48 3.78 1 30 12.85 0.491
49 1.73 0.5 30 14.13 1.189
50 2 1 70 11.5 0.632

The correlation analysis chart is a method used to visually represent the distribution
of data and the relationship between different factors. In order to accurately capture the
impact of different factors, SPSS 27 software was used to perform correlation analysis on
the initial data concerning the factors influencing coal gas permeability. This analysis aimed
to generate the Pearson correlation coefficient matrix for various indicators, as illustrated
in Figure 3. The positive and negative signs in the correlation coefficient indicate the
direction of the correlation between variables. A positive correlation coefficient indicates a
consistent trend of change between two variables; specifically, when one variable increases,
the other variable also increases. A negative correlation coefficient indicates an opposite
trend in changes between two variables. This means that when one variable increases,
the other variable decreases. According to Figure 4, a negative correlation is observed
between effective stress and gas pressure, compressive strength and gas pressure, as well
as temperature and compressive strength. Conversely, a positive correlation exists between
temperature and effective stress, as well as between temperature and gas pressure. The
closer the absolute value of the correlation coefficient is to 1, the stronger the relationship
between the variables. A correlation coefficient of 1 indicates a perfect positive correlation,
while a correlation coefficient of −1 indicates a perfect negative correlation. A correlation
coefficient close to 0 suggests that there is no linear correlation between the two variables.
These findings are important for understanding and analyzing relationships between
variables in academic research. As shown in Figure 4, the correlation between coal body gas
permeability and the influencing factors is not entirely linear; there is a slight correlation
between the index factors. For instance, the correlation coefficients between effective stress
and gas pressure, temperature, and compressive strength are −0.107, −0.001, and −0.103,
respectively. This suggests a limited association among these factors in influencing coal
gas permeability. The correlation coefficient between gas pressure and temperature is
0.174. When the correlation value between the two factors is too low (e.g., less than 0.2),
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it indicates that it may be less helpful for information enrichment. If used directly, it
will inevitably affect the result to some extent. Therefore, it is essential to conduct kernel
principal component analysis on the original data, which can not only reduce the amount
of calculation but also improve the accuracy of model prediction.
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Kernel Principal Component Analysis (KPCA) is a nonlinear method for processing
data based on a high-dimensional feature space. It involves mapping the data from
the original space to a new space and then conducting principal component analysis
to successfully achieve dimensionality reduction of linear non-fractional datasets. This
technique is widely used in academic research and has proven to be effective in various
applications. Due to the nonlinear relationship between the influencing factors of coal gas
permeability, Kernel Principal Component Analysis (KPCA) was utilized to reduce the
dimensionality of the original data. The selection criteria for this reduction were based
on interpreting more than 85% of the cumulative variance. Ultimately, three principal
components were extracted and labeled as Y1, Y2, and Y3, respectively. Their respective
variance interpretation rates were recorded as 41.74%, 26.83%, and 20.02%. The cumulative
interpretive variance is 88.59%, indicating that the three extracted principal components
can better reflect the vast majority of information in the original data. Some data after
dimensionality reduction are shown in Table 5.
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Table 5. KPCA dimension reduction data.

No. Y1 Y2 Y3 Permeability/(10−5 m2)

1 0.615 −0.972 1.635 0.881
2 −0.404 −0.453 −0.373 1.062
3 −0.497 2.050 −2.133 0.559

. . . . . . . . . . . . . . .
24 −0.906 −1.783 −0.342 0.805
25 0.173 −0.330 0.496 0.633
26 −0.190 −0.404 −0.053 0.677
. . . . . . . . . . . .
48 0.092 1.489 −0.806 0.491
49 −1.578 −0.560 −2.232 1.189
50 0.967 −0.088 1.646 0.632

3.2. Model Evaluation Index

In order to verify the accuracy and reliability of the constructed prediction model,
six indicators are used as the basis to test the prediction accuracy, model advantages and
disadvantages, and fitting performance of the prediction model [32]. These indicators
include Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean
Square Error (RMSE), R-Square (R2), Mean Squared Error (MSE), and Forecast Bias Ratio
(FBR). The calculation formulas for these indicators are shown as follows:

MAE =
1
n

n

∑
i=1

| fi − yi| (5)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ fi − yi
yi

∣∣∣∣× 100% (6)

RMSE =

√
1
n

n

∑
i=1

( fi − yi)
2 (7)
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R2 = 1 −

n
∑

i=1
(yi − fi)

2

n
∑

i=1
(yi − y)2

(8)

MSE =
1
n

n

∑
i=1

( fi − yi)
2 (9)

FBR =
yi − fi

yi
× 100% (10)

where n is the number of samples; fi is the predicted value; yi is the true value; y is the
average of the true values. Among them, the smaller the MAE, MAPE, RMSE, and MSE
values, the closer the R2 value is to 1, the better, and the closer the FBR value is to 0,
the better.

3.3. Experimental Comparison and Analysis
3.3.1. Multi-Optimization Model Construction

According to the literature [5], the PSO-BPNN model is constructed, and the thresholds
and weights of BPNN are optimized using PSO. The PSO-LSSVM model was constructed
based on literature [12], and the two parameters γ and σ in LSSVM were optimized using
PSO. Based on reference [33], the PSO-SVM model was constructed, and the penalty param-
eters and kernel parameters in SVM were optimized using PSO. Additionally, the Marine
Predators Algorithm (MPA) optimizing (BPNN) models (MPA-BPNN) was developed
based on reference [34]. Furthermore, the WOA-SVM model was developed based on
literature [35], while the Bald Eagle Search (BES) optimization SVM model (BES-SVM) was
constructed according to reference [36]. These optimization models are compared with
IDBO-BPNN and DPO-BPNN models constructed by the author, with parameter settings
for each optimization model shown in Table 6.

Table 6. The parameters of each model are set.

Parameter Name Specific Setting Parameter Name Specific Setting

Population size 30 Maximum iterations 100
BPNN training times 1000 BPNN target error 1 × 10−6

BPNN learning rate 0.01 BPNN hidden layer node 12
SVM cross-validate parameters 5 SVM option.gap 0.9

SVM option.cbound [1, 100] SVM option.gbound [1, 100]
PSO learning factor 1.5 PSO inertia weight 0.8

PSO maximum speed limit 1 PSO Maximum speed limit PSO minimum
speed limit −1

MPA FADs 0.2 Probability of WOA contraction
enveloping mechanism [0.1]

WOA spiral position update probability [0.1] Variation range of BES spiral trajectory (0.5, 2)
BES position change parameters (1.5, 2) BES spiral trajectory parameters (0, 5)

3.3.2. Comparative Analysis

In the process of fitting and mapping multiple indicators, the significant difference
in magnitude between the indicators can directly impact the final result. Therefore, the
‘mapminmax’ function in MATLAB R2023a is used to normalize the original data within
a [0, 1] interval. After completing the model simulation and prediction, the mapminmax
function is then used to reverse-normalize the data back to its original values. Based on the
aforementioned model parameter settings, both the original data and principal component
data are used as inputs to obtain permeability prediction results for test samples in each
model. The prediction results for the original data are presented in Table 7, while those for
the principal component data are shown in Table 8.
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Table 7. Raw data predicted results.

No. True
Value

Predicted Value

PSO-
BPNN

PSO-
LSVM

PSO-
SVM

MPA-
BPNN

WOA-
SVM

BES-
SVM

DBO-
BPNN

IDBO-
BPNN

40 0.891 0.759 0.863 0.804 0.797 0.820 0.801 0.815 0.803
41 0.516 0.548 0.635 0.582 0.584 0.582 0.579 0.588 0.552
42 0.619 0.525 0.582 0.585 0.609 0.600 0.613 0.608 0.611
43 0.632 0.569 0.612 0.613 0.635 0.629 0.641 0.635 0.642
45 0.564 0.602 0.711 0.676 0.680 0.704 0.691 0.683 0.665
46 0.786 0.724 0.867 0.840 0.811 0.870 0.841 0.844 0.865
47 0.683 0.732 0.705 0.784 0.740 0.689 0.670 0.736 0.688
48 0.491 0.412 0.534 0.518 0.544 0.544 0.538 0.518 0.487
49 1.189 1.044 1.171 1.070 1.163 1.146 1.113 1.127 1.151
50 0.632 0.632 0.727 0.704 0.690 0.725 0.695 0.703 0.686

Table 8. Principal component data prediction results.

No. True
Value

Predicted Value

PSO-
BPNN

PSO-
LSSVM

PSO-
SVM

PSO-
BPNN

WOA-
SVM

BES-
SVM

PSO-
BPNN

IDBO-
BPNN

40 0.891 0.746 0.856 0.805 0.850 0.829 0.834 0.830 0.850
41 0.516 0.541 0.472 0.542 0.500 0.505 0.520 0.479 0.518
42 0.619 0.651 0.589 0.607 0.634 0.639 0.558 0.613 0.621
43 0.632 0.685 0.628 0.631 0.637 0.650 0.596 0.620 0.626
45 0.564 0.644 0.498 0.681 0.521 0.514 0.542 0.545 0.558
46 0.786 0.788 0.723 0.864 0.759 0.712 0.750 0.812 0.789
47 0.683 0.759 0.627 0.698 0.676 0.676 0.703 0.653 0.659
48 0.491 0.512 0.553 0.503 0.522 0.518 0.493 0.513 0.511
49 1.189 1.134 1.174 1.165 1.186 1.185 1.153 1.167 1.190
50 0.632 0.655 0.554 0.659 0.587 0.582 0.607 0.622 0.625

By summarizing the aforementioned performance evaluation indicators, the original
data evaluation index comparison is shown in Table 9. The comparison of the principal
component data evaluation index is shown in Table 10. By comparing the prediction results
in Tables 7 and 8, as well as the performance evaluation indicators in Tables 9 and 10,
principal component extraction of the original data is effectively helpful in concentrating
the data, thereby improving the prediction accuracy of the model. Additionally, according
to Tables 9 and 10, the IDBO-BPNN model outperforms other models in various indices.
Furthermore, MAE, MAPE, RMSE, R2, MSE, and FBR of other models in the test samples
exhibit significant fluctuations compared to the training samples. This suggests a potential
overfitting phenomenon in the test sample stage for these models. As a result, the model’s
robustness decreases, and the error of the test sample increases. This further indicates that
IDBO enhances the global search capability of the original DBO and improves the prediction
accuracy of BPNN. In the case of using the original data, the MAE of the IDBO model in the
test stage decreased by 0.0086~0.0271; MAPE decreased by 1.89~3.89%; RMSE decreased
by 0.0064~0.0265; and R2 increased by 0.0188~0.0916 compared with other models. MSE
decreased by 0.0008~0.0036; FBR increased by 1.24~4.21%. In the case of using principal
component data, the MAE of the IDBO-BPNN model in test samples decreased by 0.0399,
0.0341, 0.0286, 0.0121, 0.021, 0.0188 and 0.0134, respectively, compared with other models.
MAPE decreased by 5.61%, 5.55%, 4.19%, 2.01%, 3.14%, 2.5%, 1.95%, and RMSE decreased
by 0.0476, 0.0338, 0.0376, 0.0112, 0.023, 0.0185, 0.012, respectively. R2 was increased by 0.098,
0.0577, 0.0679, 0.0127, 0.033, 0.0244, and 0.0139, respectively, while MSE was decreased by
0.0039, 0.0023, 0.0027, 0.0005, 0.0013, 0.0009, and 0.0005, respectively. FBR decreased by
2.53%, 4.1%, 2.51%, 1.2%, 1.94%, 2.77%, and 1.49%, respectively. Therefore, the IDBO-BPNN
model has the smallest error and the best performance.
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Table 9. Comparison of raw data evaluation indicators.

Models

Model Performance

MAE MAPE/% RMSE R2 MSE FBR/%

Train Test Train Test Train Test Train Test Train Test Train Test

PSO-
BPNN 0.0564 0.0695 7.35 9.65 0.0775 0.0815 0.8568 0.8318 0.0060 0.0066 4.83 5.61

PSO-
LSSVM 0.0542 0.0608 8.34 10.00 0.0705 0.0751 0.8817 0.8573 0.0050 0.0056 −5.44 −7.27

PSO-
SVM 0.0526 0.0692 7.38 9.95 0.0679 0.0770 0.8903 0.8499 0.0046 0.0059 −2.56 −4.30

MPA-
BPNN 0.0457 0.0510 6.65 8.00 0.0569 0.0614 0.9230 0.9046 0.0032 0.0038 −1.49 −5.14

WOA-
SVM 0.0462 0.0576 6.75 8.95 0.0582 0.0703 0.9193 0.8748 0.0034 0.0049 −2.64 −5.93

BES-
SVM 0.0486 0.0548 7.00 8.19 0.0589 0.0657 0.9173 0.8907 0.0035 0.0043 −1.31 −4.33

DBO-
BPNN 0.0447 0.0551 6.54 8.27 0.0570 0.0639 0.9225 0.8966 0.0033 0.0041 −2.60 −5.17

IDBO-
BPNN 0.0397 0.0424 5.60 6.11 0.0534 0.0550 0.9319 0.9234 0.0029 0.0030 −0.46 −3.06

Table 10. Comparison of evaluation indexes of principal component data.

Models

Model Performance

MAE MAPE/% RMSE R2 MSE FBR/%

Train Test Train Test Train Test Train Test Train Test Train Test

PSO-
BPNN 0.0327 0.0511 4.63 7.27 0.0405 0.0644 0.9609 0.8949 0.0016 0.0042 −0.62 −3.10

PSO-
LSSVM 0.0167 0.0453 2.56 7.21 0.0422 0.0506 0.9575 0.9352 0.0018 0.0026 1.07 4.67

PSO-
SVM 0.0388 0.0398 5.52 5.85 0.0497 0.0544 0.9411 0.9250 0.0025 0.0030 −0.49 −3.08

MPA-
BPNN 0.0120 0.0233 1.70 3.67 0.0200 0.0280 0.9905 0.9802 0.0004 0.0008 −0.35 1.77

WOA-
SVM 0.0114 0.0322 1.80 4.80 0.0286 0.0398 0.9805 0.9599 0.0008 0.0016 −0.18 2.51

BES-
SVM 0.0175 0.0300 2.49 4.16 0.0311 0.0353 0.9770 0.9685 0.0010 0.0012 1.21 3.34

DBO-
BPNN 0.0130 0.0246 1.91 3.61 0.0237 0.0288 0.9866 0.9790 0.0006 0.0008 1.02 2.06

IDBO-
BPNN 0.0045 0.0112 0.70 1.66 0.0074 0.0168 0.9987 0.9929 0.0001 0.0003 −0.02 0.57

4. Model Case Test

In machine learning models, model stability refers to the consistency of performance
across various datasets, even when the data is slightly altered or affected by noise. Ensuring
the stability of a model is crucial to guarantee its reliability and generalization ability in
practical applications. A coal mine in Shanxi Province was selected as the research subject to
showcase the reliability and stability of the IDBO-BPNN model. The thickness of No. 2 coal
seam in the mine is 0.75~1.93 m, the average thickness is 1.07 m, the coal seam inclination
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is 3~7◦, the absolute emission of gas is 22.23 m3/min, the relative emission is 11.74 m3/t, it
is a high gas mine, not easy to spontaneous combustion coal seam, coal dust is explosive.
Therefore, a more accurate prediction of coal gas permeability is essential for preventing
gas outburst accidents and ensuring the safe and efficient production of mines. A total of
67 groups of experimental data were selected from the coal mine. Groups 1 to 47 were used
as training samples, while groups 48 to 67 were used as test samples. The model parameters
remained consistent with the above. First, the Pearson correlation coefficient matrix is
used to assess whether the original data needs dimensionality reduction, as shown in
Table 11. It is evident from Table 11 that this data requires principal component extraction;
therefore, KPCA is still used to process the original data. Finally, three principal components
(denoted as Z1, Z2, and Z3) are extracted. Their respective variance interpretation rates
are 40.45%, 26.27%, and 19.27%, with a total cumulative variance interpretation rate of
85.99%. Using principal components Z1, Z2, and Z3 as model inputs and permeability as
the output variable, the prediction results for each test sample of the model are presented
in Table 12. Additionally, the comparison results of performance evaluation indicators for
each model are illustrated in Figure 5. As shown in Table 12 and Figure 5, the IDBO-BPNN
model developed by the author demonstrates optimal performance in both the training
and test samples. In the training sample, the MAE of the IDBO-BPNN model decreased
by 0.011~0.139; MAPE decreased by 0.17~1.79%; RMSE decreased by 0.0025~0.0169; R2

increased by 0.0087~0.0529, compared with other models. MSE decreased by 0.0002~0.0017;
FBR decreased by 0.12~1%. In the test sample, the MAE of the IDBO-BPNN model is
reduced by 0.0111, 0.0076, 0.0097, 0.0053, 0.0066, 0.0027, and 0.0035, respectively, compared
with other models. The MAPE decreased by 2.48%, 1.09%, 2.18%, 1.03%, 1.26%, 0.72%,
and 0.74%, while the RMSE decreased by 0.0169, 0.0188, 0.0162, 0.0071, 0.0094, 0.0068,
0.0056, respectively. R2 was increased by 0.1166, 0.0726, 0.1126, 0.0478, 0.0594, 0.0418, and
0.0408, while MSE was decreased by 0.0022, 0.0025, 0.0021, 0.0009, 0.0012, 0.0008, and
0.0007, respectively. FBR decreased by 3.15%, 0.42%, 2.21%, 0.68%, 0.76%, 1.3%, and 0.26%,
respectively. Therefore, the IDBO-BPNN model demonstrates good prediction accuracy
and generalization performance.

Table 11. Pearson correlation coefficient matrix.

Effective Stress Gas Pressure Compressive Strength Compressive Strength

Effective stress 1 −0.062 0.056 −0.122
Gas pressure −0.062 1 0.229 −0.230

Compressive strength 0.056 0.229 1 −0.434
Compressive strength −0.122 −0.230 −0.434 1

Table 12. Each model tested the prediction results of the sample.

No. True
Value

Predicted Value

PSO-
BPNN

PSO-
LSSVM

PSO-
SVM

MPA-
BPNN

WOA-
SVM

BES-
SVM

DBO-
BPNN

IDBO-
BPNN

48 0.516 0.527 0.556 0.516 0.564 0.578 0.567 0.570 0.561
49 0.810 0.834 0.762 0.836 0.840 0.828 0.845 0.827 0.839
50 0.516 0.572 0.568 0.552 0.581 0.566 0.576 0.572 0.567
51 0.514 0.564 0.527 0.554 0.557 0.570 0.551 0.562 0.538
52 0.511 0.557 0.522 0.550 0.516 0.520 0.517 0.518 0.533
53 1.056 1.032 0.832 1.034 0.945 0.929 0.931 0.945 0.935
54 0.489 0.545 0.522 0.537 0.516 0.520 0.519 0.518 0.516
55 0.680 0.649 0.718 0.658 0.742 0.762 0.718 0.752 0.718
56 0.845 0.925 0.844 0.927 0.872 0.869 0.871 0.863 0.853
57 0.645 0.572 0.575 0.560 0.608 0.615 0.616 0.602 0.602
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Table 12. Cont.

No. True
Value

Predicted Value

PSO-
BPNN

PSO-
LSSVM

PSO-
SVM

MPA-
BPNN

WOA-
SVM

BES-
SVM

DBO-
BPNN

IDBO-
BPNN

58 0.431 0.667 0.616 0.667 0.598 0.602 0.616 0.590 0.560
59 0.580 0.676 0.649 0.677 0.598 0.602 0.616 0.590 0.595
60 0.768 0.671 0.718 0.677 0.758 0.762 0.777 0.769 0.775
61 0.478 0.547 0.532 0.540 0.549 0.538 0.547 0.535 0.557
62 0.745 0.704 0.691 0.695 0.643 0.645 0.669 0.641 0.673
63 0.850 0.802 0.823 0.808 0.781 0.813 0.793 0.796 0.763
64 0.834 0.862 0.801 0.863 0.817 0.799 0.826 0.802 0.792
65 0.654 0.688 0.629 0.683 0.595 0.578 0.606 0.587 0.608
66 0.567 0.544 0.567 0.537 0.515 0.518 0.518 0.517 0.533
67 0.582 0.561 0.628 0.532 0.589 0.575 0.582 0.580 0.585Sensors 2024, 24, x FOR PEER REVIEW 21 of 25 
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In conclusion, the IDBO-BPNN model constructed by the author not only demon-
strates high prediction accuracy but also exhibits a certain level of reliability and stability.
Furthermore, its prediction results are more aligned with reality and can accurately forecast
the gas permeability of coal bodies.

5. Discussion

(1) In the structural design of the BPNN model, empirical methods are still used
to determine the number of hidden layer nodes. However, the verification method for
empirical formulas lacks theoretical guidance. Therefore, determining the number of
hidden layer nodes in the neural network structure using a scientific and rational method
is a future research direction.

(2) The author employs BPNN and SVM as the fundamental models for predicting
coal gas permeability. While there are numerous outstanding machine learning and deep
learning methods available for developing prediction models, it is essential to conduct
further research on combining and comparing these methods in the future.

(3) There are issues such as limited sample data and insufficient verification times. For
future studies, it is recommended to select coal samples from different mines and various
geological conditions for comparison. This will help to further improve the engineering
application capability and universality of the IDBO-BPNN model.

6. Conclusions

(1) The integration of Sine chaotic mapping, Osprey optimization algorithm, and
adaptive T-distribution dynamic selection strategies into DBO enhances the convergence
speed and global search capability of IDBO. Iterative testing was conducted on the CEC2005
test set to validate its performance, comparing it with WOA, SABO, GWO, NGO, HHO,
and the original DBO. Further validation was carried out on the CEC2017 and CEC2021
test sets. The results demonstrate that IDBO outperforms other intelligent optimization
algorithms in terms of iteration times and accuracy.

(2) A prediction model of gas permeability in a coal body is constructed based on
IDBO-BPNN. This model considers the factors influencing gas permeability in a coal body
and combines them with IDBO and BPNN. Additionally, a Pearson correlation coefficient
matrix analysis was conducted on the original data using SPSS software. The analysis
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indicated that dimensionality reduction processing was necessary for the original data.
Subsequently, principal component extraction was performed on the original data using
KPCA, resulting in a cumulative variance of 88.59%.

(3) The original data and principal component data were used as model inputs. The
prediction results of the IDBO-BPNN model were compared with those of the PSO-BPNN,
PSO-LSSVM, PSO-SVM, MPA-BPNN, WOA-SVM, BES-SVM, and DPO-BPNN models.
The results indicate that using the principal component data can effectively improve the
model’s prediction accuracy compared to the original data. This suggests that KPCA can
effectively help concentrate the data. Secondly, when utilizing principal component data,
the MAE of the IDBO-BPNN model in the test samples decreased by 0.0399, 0.0341, 0.0286,
0.0121, 0.021, 0.0188, and 0.0134, respectively, in comparison to other models. The MAPE
decreased by 5.61%, 5.55%, 4.19%, 2.01%, 3.14%, 2.5%, and 1.95%. Additionally, the RMSE
decreased by 0.0476, 0.0338, 0.0376, 0.0112, 0.023, 0.0185, and 0.012, respectively. R2 was
increased by 0.098, 0.0577, 0.0679, 0.0127, 0.033, 0.0244, and 0.0139, respectively, while MSE
was decreased by 0.0039, 0.0023, 0.0027, 0.0005, 0.0013, 0.0009, and 0.0005, respectively.
FBR decreased by 2.53%, 4.1%, 2.51%, 1.2%, 1.94%, 2.77%, and 1.49%, respectively. The
results indicate that the IDBO-BPNN model demonstrates superior quality, minimal error,
and strong fitting performance. Furthermore, it suggests that IDBO significantly enhances
global search capability and optimization accuracy compared to the original DBO. As a
result, BPNN demonstrates higher prediction accuracy.

(4) To investigate the reliability and stability of the IDBO-BPNN model further, it was
applied to a coal mine in Shanxi Province and compared with other prediction models. The
results indicate that the IDBO-BPNN model outperforms other models in both training and
test samples, demonstrating good prediction accuracy. The result is the closest to the actual
value, indicating that the IDBO-BPNN model constructed by the author is more stable and
better suited for predicting coal gas permeability. This finding can offer valuable insights
for similar mining engineering practices.
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