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Abstract: Traditional laboratory-based water quality monitoring and testing approaches are soon to be
outdated, mainly because of the need for real-time feedback and immediate responses to emergencies.
The more recent wireless sensor network (WSN)-based techniques are evolving to alleviate the
problems of monitoring, coverage, and energy management, among others. The inclusion of the
Internet of Things (IoT) in WSN techniques can further lead to their improvement in delivering,
in real time, effective and efficient water-monitoring systems, reaping from the benefits of IoT
wireless systems. However, they still suffer from the inability to deliver accurate real-time data, a
lack of reconfigurability, the need to be deployed in ad hoc harsh environments, and their limited
acceptability within industry. Electronic sensors are required for them to be effectively incorporated
into the IoT WSN water-quality-monitoring system. Very few electronic sensors exist for parameter
measurement. This necessitates the incorporation of artificial intelligence (AI) sensory techniques
for smart water-quality-monitoring systems for indicators without actual electronic sensors by
relating with available sensor data. This approach is in its infancy and is still not yet accepted nor
standardized by the industry. This work presents a smart water-quality-monitoring framework
featuring an intelligent IoT WSN monitoring system. The system uses AI sensors for indicators
without electronic sensors, as the design of electronic sensors is lagging behind monitoring systems.
In particular, machine learning algorithms are used to predict E. coli concentrations in water. Six
different machine learning models (ridge regression, random forest regressor, stochastic gradient
boosting, support vector machine, k-nearest neighbors, and AdaBoost regressor) are used on a
sourced dataset. From the results, the best-performing model on average during testing was the
AdaBoost regressor (a MAE of 14.37 counts/100 mL), and the worst-performing model was stochastic
gradient boosting (a MAE of 42.27 counts/100 mL). The development and application of such a
system is not trivial. The best-performing water parameter set (Set A) contained pH, conductivity,
chloride, turbidity, nitrates, and chlorophyll.

Keywords: artificial intelligence; IoT; machine learning; water quality measurement; water quality
indicators; water quality sensors; wireless sensor networks

1. Introduction

The traditional approach to water quality measurement (WQM) requires manual water
sampling to determine the quality of water through analysis. This process involves the
collection of water samples by humans for in situ testing by lab technicians in laboratories.
While this process does not enable instantaneous WQM, it has been considered to be the
most feasible solution. Research has generally been focused on improving laboratory
techniques in analyzing water quality [1] and the introduction of sampling-site laboratories
near water bodies to make monitoring more efficient using existing techniques [2]. It
is apparent that the existing WQM techniques have shortcomings. These flaws can be
broadly classified as either human error in the collection of samples, during analysis, and
during the recording of data or improper lab equipment and its handling in the same
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processes. Furthermore, there can be cross-contamination in water samples. These methods
of WQM are neither instantaneous nor timely, leading to a delayed response in the case of
an emergency.

Recently, there has been an uptake on the application of wireless sensor networks
(WSNs) in water quality monitoring. These methods are improving with time and keep
advancing with improvements in technology and communication protocols. The WSN’s
ability to capture, analyze, transmit, and display water quality data has proven to be
effective and instantaneous. The WSN nodes can obtain, process, and transmit water quality
parameter data instantaneously using low-power communication techniques, low-cost
sensors for obtaining data, and low-power circuitry. These sensor nodes are implemented
in networks; thus, a large area can be monitored with these remote sensor nodes. The
deployment of Internet of Things (IoT) in WSN techniques can further improve the delivery
of effective and efficient water-monitoring systems, reaping the benefits of IoT wireless
systems. However, they still suffer from an inability to deliver accurate real-time data, a
lack of reconfigurability, the need to be deployed in ad hoc harsh environments, and their
limited acceptability within the industry.

Water quality indicators (WQIs) (namely turbidity (turb), total dissolved solids (TDSs),
the potential of hydrogen (pH), total hardness (TH), chloride, fecal coliforms (FCs), electri-
cal conductivity (EC), dissolved oxygen (DO), temperature (Temp), and oxidation-reduction
potential (ORP), etc.) can be effectively determined optically, chemically, or biologically.
Few of these indicators can be determined electronically, as their electronic sensors have
not been developed. Electronic sensors are required for them to be effectively incorporated
into the IoT WSN water-quality-monitoring system. Very few electronic sensors exist for
the indicators. Table 1 indicates current water quality parameter determination techniques
detailing the availability/unavailability of electronic sensors. Currently, this is the major
limitation of IoT WSN systems. The unavailability of electronic sensors for some param-
eters has necessitated the incorporation of artificial intelligence sensory techniques for
smart water-quality-monitoring systems for indicators without actual electronic sensors
by relating with the available ones. These techniques are in their infancy and are still not
accepted/standardized by the industry. As with any technology, it is an evolving issue,
and is the subject of this work.

Table 1. WQI measurements.

WQI Chemical/Biological/Measurement Methods Electronic Measurement Sensors

Turbidity
• Nephelometric turbidimeter *.
• Secchi disk measurement *.

• Analogue probes: DFROBOT SEN0189, Shanghai, China
[3], YSI Xylem WQ730, OH, USA [4].

• Digital probes: Aqualabo PF-CAP-C-00174 turbidity
digital sensor, Champigny-sur-Marne, France [5].

• Modbus industrial sensors: Daviteq MBRTU-TBD process
turbidity sensor, Ho Chi Minh City, Vietnam [6].

Total
dissolved
solids (TDS)

• Electroconductivity estimation *.
• Salt weighing method *.
• Cations and anions addition *.

• Analog probes: DFROBOT SEN0244 Shanghai, China [7],
Hanna instruments HI-763133, Johannesburg,
South Africa [8].

• Digital probes: WaterAnywhere TDS Meter TDS-3,
CA, USA [9].

• Modbus industrial sensors: Antratek 314990742 industrial
EC and TDS sensor Modbus RTU, Nieuwerkerk aan den
IJssel, The Netherlands [10].
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Table 1. Cont.

WQI Chemical/Biological/Measurement Methods Electronic Measurement Sensors

pH
• Standard Ph measurements *.
• Litmus papers and pH papers [11].

• Analogue probes: YSI Xylem WQ201, OH, USA [12].
DFROBOT SEN0169-V2, Shanghai, China [13].

• Digital probes: Tetraponics HM Digital SP-P5 pH probe,
MN, USA [14].

• Modbus industrial sensors: Eucatech 314990622 RS485
MODBUS-RTU industrial pH sensor, Boksburg,
South Africa [15].

Chloride

• Colorimetry with ferricyanide method *.
• Titration with silver nitrate, Mohr’s

Method [16].

• Analogue probes: Currently, there are no commercially
available analogue chloride probes.

• Digital probes: YSI EXO Chloride Digital Smart Sensor
(ISE), OH, USA [17].

• Modbus industrial sensors: Riverplus WS102-CL, Bang
Talat, Thailand [18].

Fecal
coliform

• Membrane filtration method *.
• Multiple tube fermentation techniques or

pour plates *.

• Currently, there are no commercially available analogue
and digital sensors available.

• AI sensor equipment: Proteus Instruments Libelium
Proteus sensor, Stoke Prior, UK [19].

E. coli
• Membrane filtration method *.
• Multiple tube fermentation techniques *.

• Currently, there are no commercially available analogue
and digital sensors available.

• AI sensor equipment: Proteus Instruments Libelium
Proteus sensor, Stoke Prior, UK [19].

Conductivity
(EC)

• Conductivity probes *.
• Relational TDS method *.

• Analogue probes: DFROBOT SEN0451, Shanghai, China
[20], YSI WQ-COND, Oh, USA [21].

• Digital probes: Endress+Hauser Indumax CLS54D,
Reinach, Switzerland [22].

• Modbus industrial sensors: Antratek 314990742 industrial
EC and TDS sensor Modbus RTU, Nieuwerkerk aan den
IJssel, The Netherlands [10].

Algae
• Chlorophyll concentrates *.
• Algal cell or colony counts *.

• Currently, there are no commercially available analogue
sensors available.

• Digital probes: YSI EXO Total Algae PC Smart Sensor, OH,
USA [23].

• Modbus industrial sensors: Apure BGA-206A, Shanghai,
China [24].

Clarity • Secchi disk methods *.
• Turbidity measurement methods *.

• Can use sensors for turbidity to determine the clarity
based on the relationship between the two parameters.

Enterococci
(Fecal
streptococci)

• Membrane filtration *.
• Multiple tube fermentation techniques or

pour plates *.

• Currently, there are no commercially available sensor
probes.

Coliphages
• Plaque assay methods *.
• Standardized methods of analysis have

not been defined *.

• Currently, there are no commercially available sensor
probes.

Temperature

• Devices such as thermistors,
thermocouples, and thermometers *.

• Conductivity–Temperature–Depth (CTD)
meter *.

• Analogue probes: YSI Xylem WQ101, OH, USA [25].
• Digital probes: DFROBOT SEN0511 DS18B20, Shanghai,

China [26].
• Modbus industrial sensors: ComWinTop CWT-T01S,

Shenzhen, China [27].
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Table 1. Cont.

WQI Chemical/Biological/Measurement Methods Electronic Measurement Sensors

Ammonia
• Phenate colorimetric method *.
• Titration methods [28].

• Currently, there are no commercially available analogue
sensors available.

• Digital probes: Aquaread ammonia sensor, Kent, UK [29].
• Modbus industrial sensors: Kacise KAN310, Xi’an,

China [30].

Nitrate • Cadmium reduction and diazotization *.

• Currently, there are no commercially available analogue
sensors available.

• Digital probes: Sea-Bird SUNA V2, WA, USA [31],
Aquaread nitrate sensor, Kent, Great Britain [32].

• Xylem 107066 sensor for NH4, WA, USA [33].

* [34–36].

There have been tremendous advances in WSN water quality monitoring. Yang
et al. developed and tested a wireless sensor network for monitoring an aqueous environ-
ment [37]. The system was developed due to the importance placed on developing network
sensor technology in aqueous environments. Ryecroft et al. noted the major developments
in the monitoring of air quality using IoT technology; however, water quality monitoring
is still dependent on manual sample collection [38]. Rosero-Montalvo et al. presented
an intelligent WSN system that has the ability to determine the quality of water using
machine learning (ML) algorithms [39]. The aim of the research is to determine the water
quality of the river through the route by creating data reports into interactive interfaces
for users. Adu-Manu et al. implemented a smart river monitoring system using wireless
sensor networks [40]. The focus of the system was to attain energy efficiency during the
monitoring and transmission of data. Murphy et al. developed a low-cost optical sensor
for water quality monitoring [41]. The development of the optical sensor was informed by
the challenges that wirelessly networked sensors currently have despite advancements in
water quality monitoring. O’Flynn et al. presented the “SmartCoast” multi-sensor system
for water quality monitoring [42]. The SmartCoast system creates a WSN with plug and
play sensors to facilitate communication with low power consumption. Seders et al. pre-
sented LakeNet [43] water quality monitoring with a network of sensors to monitor water
quality in lakes and wetlands for the following parameters: temp, pH, and DO. Chen et al.
developed a system with wireless transmission technology to transmit the water quality
parameters of a fish farm [44]. The parameters monitored were temperature, DO, pH levels,
level of the water, and the implemented sensors’ life expectancy. The system incorporates a
robotic arm with a programmable logic controller, wireless transmission, and an embedded
system designed to undertake automatic measurement and maintenance. Jáquez et al.
developed a prototype utilizing IoT technologies in a water-quality-monitoring system
(IoT-WQMS) [45]. The architecture of the system has a LoRa repeater and an anomaly
detection algorithm. The results of the study indicated that the prototype improved the
reliability of monitoring by promptly identifying sensor malfunctions and the increased
signal range of the LoRa. Razman et al. created a water quality monitoring and filtration
system controlled by Arduino [46]. The system was developed to compare the water quality
of water from lake, river, and tap sources. The system monitored pH levels, turbidity, EC,
ORP, and temperature through the ThingSpeak platform. None of these works present
comprehensible underwater IOT WSNs that utilize ML algorithms to determine unknown
parameter data using the existing data captured by sensor nodes.

The current trend in WQM introduces artificial intelligence (AI) in determining water
quality. Whilst the integration of AI techniques to determine water quality is still a relatively
new approach, there have been systems that incorporate them. AI techniques provide large
water bodies, i.e., rivers, with greater monitoring efficiency. The substantial data collected
through sensor networks can be assessed through prediction by the AI techniques. Ubah
et al. implemented a system that forecasted water quality parameters using an artificial
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neural network [47]. The river was tested at four points for parameters that include pH,
TDS, EC, and sodium. Khan and Islam presented machine-learning-based prediction and
classification models to predict and classify water quality status [48]. The parameters
predicted included pH, suspended solids, EC, TDS, turb, DO, alkalinity, chloride, and
demand for chemical oxygen. H Aldhyani et al. implemented a water quality prediction
system using AI algorithms [49]. In the system, advanced AI algorithms are developed
to predict the water quality index and water quality classification (WQC). Paepae et al.
reviewed the feasibility of utilizing virtual sensing for water quality assessment [50]. One of
the findings of the review was that random forest, artificial neural networks, and multiple
linear regression approaches dominated machine learning techniques in inferential model
development. Chen et al. proposed a hybrid model of machine learning and optimization
algorithms to predict water quality parameters [51]. The authors used the Adaptive
Evolutionary Artificial Bee Colony–Back Propagation Neural Network (AEABC-BPNN)
algorithm model, which was compared to the prediction results of support vector machine
(SVM), back propagation neural network (BPNN), genetic algorithm (GA)–BPNN, particle
swarm optimization (PSO)–BPNN, Artificial Bee Colony (ABC)–BPNN, and long short-
term memory (LSTM) models. AEABC-BPNN was found to increase the robustness of the
prediction models. The results from the testing process showed that the AEABC-BPNN
approach attained convergence in 14 generations and has a quicker convergence speed.
AEABC-BPNN had an optimal mean fitness of 0.0322 and it obtains prediction values
that are more accurate after data anomalies are processed. None of these works provide a
comprehensible solution utilizing ML algorithms to determine the E. coli concentrations in
water using WSNs.

The work of Stoker et al. illustrated that high accuracy in predicting E. coli levels was
possible with just five core parameters, determined through recursive feature selection: pH,
DO, EC, temp, and turb [52]. The work also outlined that the inclusion of more parameters
(8 or 12) only moderately increased the performance of the prediction model [52]. Stoker
et al. determined that the use of a random forest (RF) model provided greater performance
consistently in predicting E. coli levels when compared to other models [52]. Naloufi et al.
found that the prediction of microbial quality in surface waters still proves to be difficult;
thus, the concentrations could not be predicted in all contexts. Developing models to adapt
to environmental changes was determined to be necessary [53]. Whilst the works of Stocker
et al. and Naloufi et al. utilize ML algorithms to predict E. coli concentrations in water,
none of these works utilize WSNs in the study.

There is tremendous research and advances in WQM, wireless water technologies,
hardware equipment development, and data analytics. The communication technologies
have acquired more rapid transmission rates, increased power efficiency, greater network
support in remote areas, and have become more cost efficient in implementation in smart
water quality monitoring (SWQM). These advances bring impressive gains within SWQM.
Though they have their shortcomings, like power consumption, adapting to the technology
outweighs their shortcomings and increases system performance in other areas. Advances
in the reliability of communication technology make remote monitoring more efficient and
achievable. The main areas of advances in hardware can be observed in sensor technology
and energy-harvesting technology. Utilizing and developing these new sensor technologies
creates larger sensor networks and enables the remote monitoring of more WQIs. The
greatest data analytical advance has been the introduction of AI in determining water
quality and WQI. AI techniques have provided a method of analyzing data collected
from SWQM systems and identifying the status of water quality. The inclusion of AI
techniques makes it possible to monitor different WQIs that do not have sensors available
to remotely monitor them based on parameters that were remotely monitored through
sensors. Algorithms and mathematical models have also been utilized to predict trends in
water quality; thus, this allows for the prediction of future water quality changes. Whilst
all of the advancements listed have been implemented in systems, there has been a lack of
SWQM systems that can collectively utilize these advancements.
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This work presents a smart water-quality-monitoring framework featuring an intelli-
gent IoT WSN monitoring system. The system uses AI sensors to account for indicators
without electronic sensors, as the design of electronic sensors is lagging behind monitoring
systems. Whilst the use of AI sensory techniques can be applied to different water quality
parameters, this study focuses on using AI sensory techniques to predict E. coli concen-
trations. The work explores WSN-based WQM systems, WSNs, and wireless sensors, as
well as the constraints and challenges associated with these WSN-based systems, and the
deployment of ML algorithms in the prediction of E. coli concentrations using parameter
data from WSNs. The dataset for the developed AI technique in this work uses the samples
collected from four water-treatment plants in South Africa. The plants used for data sam-
pling were Vaalkop, Klipdrift, Wallmansthal, and Cullinan. The data were sampled over
a period of 7 years (July 2011–June 2018) [54]. The aim of this study is to determine the
effectiveness of using machine learning algorithms to determine E. coli concentrations in
water and the effectiveness of using different parameter sets in machine learning models to
predict E. coli concentrations. The chosen parameter sets were based on the cost of wireless
sensor procurement and local availability of wireless sensors.

2. Smart Water Quality Monitoring (SWQM)
2.1. Smart Water Quality Monitoring (SWQM) Framework

Generally, as illustrated in Figure 1, the commonly implemented SWQM models have,
at a minimum, three elements that together create a basic network to monitor water quality
remotely. These elements are the sensing system, the communication system, and the head
end system (see [55–61]).
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2.1.1. The SWQM Sensing System

The WSN sensing system performs the collection, processing, and transfer of data.
The data collection process is supported by a network of sensing devices at different
locations in water bodies. This enables the sampling of water over large areas at consistent
time intervals. The sensing module consists of a sensor transducer that captures the
parameter and sends it to the processing unit for processing; the data are then sent through
a communication unit to the intermediate nodes or gateway. All these are powered by
the power supply unit. By implementing multiple sensors in various locations along the
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water body to acquire samples at more frequent time intervals, the accuracy in determining
precise water quality levels increases. This can be attributed to more data being available
for analysis when determining water quality.

When the sensing module performs the filtering and processing of data, computational
devices are used to filter the data and apply algorithms to the measured parameters. Data
processing can be performed using two commonly used methods [62]: in-node processing
(InP) and collaborative task processing (CTP). InP involves the node using data collected
from its own sensors, whilst CTP involves the nodes that are near each other sharing data
with one another; thus, they use the data from different locations to perform the processing
stage. The majority of WSN-based WQM systems use both InP and CTP when processing
data. This allows nodes to process their own data and share their data with other nodes for
enhanced or additional processing. To determine the source of contamination, InP is useful
as it can provide a location based on processing at a node. To determine the general status
of the water quality of a water body, CTP is more useful, as it can give an average value
due to the processing of shared data.

2.1.2. The SWQM Communication System

The communication system is responsible for relaying the sensed data to the head
end system. This sensing node can send data directly to the gateway node in a star
topology or through intermediate nodes to the gateway node, or sometimes to the cloud.
The gateway node transfers data via a base station. These communication scenarios are
based solely on the network topology implemented in the network, whether this is a star
or a mesh topology. There are various network communication architectures available
that can be implemented. The architecture can be split into short-, medium-, and long-
range communication. The different remote communications implemented in various
works include wired and wireless technologies: Zigbee [63], IEEE 802.15.4 [64], WiFi [65],
Bluetooth [66], cellular technology, SigFox [67], LoRa [68], NB-IoT [69], and LTE M [70]. The
characteristics, advantages, and disadvantages of the technologies have been extensively
addressed in the literature (see [62,71]).

2.1.3. The Head End System

Through the aid of remote communication, the captured sensor data are transmitted
from the base station to the head end system (HES). Following the analogy of the advanced
metering infrastructure (AMI) framework, The HES provides a control center with the
following functionalities: data acquisition, analysis, storage, management, and the control
of the whole system. It consists of the metering data management system (MDMS) that
receives, stores, manages, and analyses the metering data information and events for
providing better customer services. The HES further contains a user interface; additional
computations are performed by the interface system: the classification and organization of
the data that were obtained by the WSN. The data obtained can be stored using several
methods: using offline storage solutions, online storage solutions, and/or cloud solutions.
The data can be displayed to a user using tables, charts, or graphs. Additional computations
can be made to illustrate water quality along water bodies by plotting maps of the water
body, indicating the water quality geographically. Usually, remote monitoring stations
store water quality data in databases with management systems. The databases used are
mostly available online.

2.2. Challenges in Water Quality Monitoring
2.2.1. Communication Technology

There are common challenges associated with the wired and wireless communication
technologies, including coverage range, energy efficiency, bandwidth, etc. [71]. Underwa-
ter environments present communication challenges to the majority of communication
technologies (such as GSM, GPRS, ZigBee, WiFi, and WiMax), as they do not propagate
effectively through water. These problems include bandwidth availability, fading of sig-
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nals, failure of devices, and propagation delay [72]. An effective underwater WSN-based
SWQM system can incorporate underwater communication techniques with terrestrial
communication techniques for the section of the system that utilizes terrestrial communi-
cation. Electromagnetic and optics communications are more constrained than acoustic
communications [73]. Electromagnetic and optical transmission struggle to communicate
in seawater [73] due to the conducting nature of seawater. Optic waves have difficulties
with transmission distances in seawater due to their waves being absorbed by seawater.
However, acoustic transmission has a stronger underwater communication ability than
both electromagnetic and optic transmission due to acoustic transmission having lower at-
tenuation in seawater [74]. Thus, the choice of communication for underwater transmission
should be acoustic due to the stronger performance in seawater. Acoustic communication
does have implementation challenges such as path loss, noise, multi-path, delay variance,
and Doppler spread [73,75].

2.2.2. Topology

Designing of underwater water quality networks provide numerous challenges. Their
non-static nature adds an additional layer of difficulty when designing network topologies
for underwater networks. With underwater networks relying on acoustic communication
technologies, an efficient topology design would aid in negating most of the shortcomings
of acoustic communication technologies. Network reliability increases with an efficiently de-
signed network topology [73]. Energy efficiency is usually the outcome of a well-designed
network topology; thus, the energy consumption issues surrounding underwater networks
can be controlled [71]. Marais et al. provided an extensive review on topologies used in
WSN applications [76]. The star, tree, and mesh topologies affect packet transmission and,
hence, packet loss.

2.2.3. Bandwidth

Efficient utilization of the accessible bandwidth in WSNs is essential for effective
sharing by all the nodes in the range of the wireless network. The number of sensor
nodes deployed influences the bandwidth available. The depth of node deployment
affects bandwidth. The bandwidth increases with the depth of deployment of the sensor
nodes [77]. The more sensor nodes there are accessing a wireless network, the lower the
bandwidth available. Thus, while greater node density creates the benefit of better multi-
hop routing, less bandwidth is available to the nodes as a result. Due to the utilization
of energy for sensor nodes, less bandwidth is generally available to the sensor nodes
for energy conservation. Bandwidth requires a balance of a suitable network topology,
communication, and power consumption. An investigation into the effect of topology on
network bandwidth made several findings [78]. It was found that the number of nodes in a
total network affects the bandwidth of the network. Network bandwidth is affected by the
number of inter-nodal links. Thus, it was recommended that, if there is a large amount of
traffic in a network, only then should the number of nodes in the system be increased, and
there should be fewer inter-nodal links.

2.2.4. Power Consumption

Energy constraints always pose a problem in deploying WSNs. Furthermore, energy
constraints exacerbate the other challenges of WQMs. The sensing system requires energy
to sense, process, and transmit data. Consequently, energy consumption becomes prevalent
to ensure that sufficient power is available for sensor nodes to optimally perform data
capture. The total energy dissipated by the sensor node can be taken as follows: the
parameter sensing undertaken by the sensor and ADC, the microcontroller and memory
devices processing the data, and the communication of the data via a transceiver. The
energy expended during communication of data in WSNs is much greater than the energy
expended during sensing and the processing of data [79]. Generally, battery-powered
sources are utilized for sensor nodes. However, in underwater sensors, battery-powered
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sources are rendered infeasible due to batteries being inaccessible or difficult to replace.
Furthermore, charging and recharging of the systems is a constraint due to their locations.
To conserve energy in a monitoring system, varying the sampling rate is a favorable method
to achieve conservation. Other measures like energy harvesting have also been deployed.
It is noted that WSN systems currently implemented with energy-harvesting systems
mainly utilize solar panels to harvest energy from the sun. The harvested energy charges
lithium-ion batteries. Solar energy harvesting for WSN networks is a popular option due to
solar energy’s power density compared to other currently implemented energy-harvesting
solutions [62].

2.2.5. Fabrication

Underwater SWQM that use WSNs create a unique constraint during monitoring.
The stress that an underwater environment exerts on sensor nodes makes them prone to
water ingress and structural failure at depths. The electronic components that collectively
enable the functioning of the sensor node are sensitive to liquid and will fail if they
make contact with water over an extended period. Thus, the enclosure that houses these
components must be waterproof and structurally resistant to the pressure exerted on them
at underwater depths. Yang et al. and Ryecroft et al. fabricated enclosures to alleviate some
of the challenges faced in using underwater WSNs (see [37,38]). Enclosures of sensor nodes
would need to be able to withstand the underwater forces and wireless sensors would need
to be waterproofed to ensure that water ingress does not damage their sensing components.
Wiring would need to be protected or placed internally in the sensor node, to be protected
from terrain, floating debris, and marine lifeforms. Placement of sensor nodes can create
issues in communication. The closer the sensor nodes are to the bed of the water body, the
greater the risk of the acoustic waves scattering or reflecting.

2.2.6. Security

Security in systems that utilize wireless communication networks are a concern due
to the inherent vulnerability present when there is an absence of a physical connection.
In WSNs, security is compromised more significantly than other wireless communication
networks due to the limited nature of the supply of energy to nodes [80]. A greater
complexity in the security of a network results in greater energy usage. The data captured
by sensors should determine the priority level of the security in the system. If the data
captured contain sensitive information, then the compromise between energy and security
would need to be addressed accordingly. If inadequate security is implemented in the
system, hackers can intercept and alter data from the network. The database can also have
malicious code inserted into the system. The addition of authentication and authorization
protocols in the system will heighten security. Whilst current and previous works on
implemented SWQM systems have very little security integration in their design, there
are a few examples in simulated systems of security integration. The reason for the low
number in security integration can be attributed to the increased power requirements for
security protocols. In a smart solution for water quality monitoring [81], the system has
integrated security protocols for data transmission. The transport layer security (TLS) was
used for data encryption and JavaScript object notation web algorithms (RFC 7518) for
authentication based on public/private keys. In the implemented multi-hop underwater
WSN system using the bowtie antenna [38], an AES encryption module was used to ensure
that all communications were encrypted.

2.2.7. Theft and Damages

With the WSNs being present in bodies of water, the risk of interference caused by
the nodes becomes prevalent. The disturbance caused can invite interference from human
leisure (swimming, boating, etc.), wildlife activity, and natural forces (wind, etc.). It would
be appropriate to ensure that the hardware utilized adheres to high quality standards
and have methods available to monitor the nodes for indications of component failure or
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theft [80]. To lower the risk of interference, implementing sensors in a discrete manner
would result in reduced attraction of wildlife. Using sensors that maintain high quality but
are cost-effective would result in lower costs in replacing sensors if failures were to occur.

2.2.8. The Underwater Environment

The underwater environment provides unique challenges for designers. One of
these challenges is the corrosion of sensing modules, providing difficulties in the function
of electronics in capturing data. When the exposed metals of sensing equipment are
submerged for continuous periods, the metals react with the oxygen in the water and form
metal oxides; the dissolved oxygen in the water causes corrosion. To overcome the problem
of corrosion, Murphy et al. developed an optical sensor with a copper shroud. The copper
shroud is corrosion-resistant; thus, it can have a longer functional lifespan underwater [41].

2.2.9. Sensors

In SWQM, using WSNs, sensors are the most important component of the system as
they are responsible for the acquisition of parameter data. However, these sensors have con-
straints that can affect their functionality, effectiveness, and their implementation. Firstly,
the availability of sensors is a problem. There are wireless sensors for the measurement
of water quality parameters. However, not all parameters can currently be measured by
wireless sensors. This is a subject of ongoing testing, research, and development, and
the commercialization of many sensors for certain parameters has not yet occurred. A
solution is to integrate ML algorithms to determine the quantity of parameters. By using
other known parameters that have a wireless sensor available to measure the quantity, a
relationship between an unknown parameter quantity and a known parameter quantity
can be established; thus, an ML algorithm can be used to predict the unknown quantity
from the relationship.

Secondly, sensor calibration poses issues. Sensors can have a temporal shift in response
when faced with sustained chemical and physical conditions [62]. This is known as sensor
drift. Damage to the sensors caused by water or ground water fluxes can create errors
in measurement by the sensors [82]. Sensor drift creates doubt in the credibility of data
obtained for monitoring over a period of time; thus, developing trends or datasets from
the sensor data may exhibit variation due to inconsistencies in the obtained data. Sensors
must be calibrated at every specified interval to achieve accurate readings. Calibration drift
occurs when there is a difference in the obtained readings from the calibrated sensor and
current sensor reading in a standard solution. Calibration drift is an electronic drift and
would require the sensor to be recalibrated to obtain accurate readings once again.

Thirdly, Biofouling occurs on the surface of sensors due to their immersion in water for
long periods of time when capturing parameter data. Algae and bacteria cause fouling; thus,
there is a high possibility of biofouling occurring in SWQM systems using WSNs. There
are several factors that influence biofouling occurrence on the surface of sensors. These
factors can be chemical, physical, and biological [62]. The lifespan of a sensor decreases
when biofouling occurs on the surface of the sensor and there can be inconsistencies in the
data obtained from the sensor, thus reducing the accuracy of the sensor. Currently, many
sensor manufacturers are researching and applying new technologies to sensors, designed
to reduce the effect of biofouling. However, these sensors are not currently available for
commercial use.

2.3. Summary

Section 2 investigated the SWQM frameworks and the challenges associated with their
implementation. It was found that the SWQM framework comprises a sensing system,
a communication system, and an HES. The sensing system performs the collection of
data, the processing of data, and the transferring of data. The communication system is
responsible for relaying the sensed data to the HES. The HES provides a control center
for data acquisition, analysis, storage, and management and the control of the system.
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The challenges associated with the implementation of SWQM were found to include
communication technology, power consumption, theft and damages, the underwater
environment, fabrication, security, topology, bandwidth, and sensors.

3. Artificial Intelligence in Water Quality Monitoring Model

In WQM, it is not possible to monitor all the water quality indicators due to the
unavailability and limitations of wireless sensors. However, numerous water quality
indicators are related to each; thus, using these measured parameters, unknown water
quality indicators can be determined using mathematical predictive models and artificial
intelligence techniques. ML algorithms create mathematical models that can predict or
make decisions based on training (sample) data. They can perform these predictions and
decisions, independently from human intervention. In wireless sensor networks, the use of
supervised ML algorithms can greatly bolster data interpretation, classification, early warning,
and water quality parameter prediction. Whilst ongoing research still faces the challenges
of high power demand, the increased quality of computational resources to generate results,
and the increased training data size to improve the performance of ML algorithms, the need
for these techniques do outweigh the challenges. The ML techniques employed for water
monitoring are presented next. This consists of the dataset and the ML models.

3.1. Materials and Methods
3.1.1. Dataset Acquisition and Processing in the Literature

In a study by Masindi, a dataset was used in determining the status of the surface
water quality for raw water in water-treatment plants [54]. Data were collected from four
water-treatment plants in South Africa. The plants used for data sampling were Vaalkop,
Klipdrift, Wallmansthal, and Cullinan. The data were sampled over a period of 7 years
(July 2011–June 2018). The parameters sampled included pH, chloride, ammonia, sodium,
turbidity, sulphate, conductivity, nitrates, color, potassium, E. coli, alkalinity, iron, hardness,
organic carbon, precipitation potential, chlorophyll, nitrite, phosphate, and manganese.
Masindi used the datasets to determine the status of the surface water quality by using the
treatability index for the raw water. In this report, the sampled raw water dataset from
the Vaalkop water-treatment plant was used to determine the feasibility of deploying ML
algorithms to determine the E. coli concentrations in water.

The used dataset was the Vaalkop dataset containing 85 samples. The dataset was
cleaned to exclude samples with missing data and reduced to 80 samples. The dataset was
separated into two sets, namely Set A and Set B. Each set contains different parameters
based on the availability or high expense of the wireless sensor required to sample the
parameter. Set A contained the more commonly available and more affordable wireless
sensors, whilst Set B contained the wireless sensors that are more difficult or more costly
to acquire in comparison with the Set A wireless sensors. The reasoning behind the set
division was to determine the effectiveness and correlation of the more commonly available
or more affordable wireless sensors in predicting E. coli concentrations and benchmark these
parameters against the Set B parameters. If the Set A parameters could provide a strong
correlation to E. coli concentrations, then these wireless sensors could be implemented
without the need for the implementation of Set B parameters in the WSN; alternatively,
we might create a scenario where the Set B parameters could be implemented at a later
stage in the deployment of the WSN to increase the predicting power of the system. It
was also crucial to determine whether the Set A or Set B parameters were suitable for
implementation in predicting E. coli concentrations. Parameters such as fecal coliform were
excluded from testing due to the cost associated with their procurement. Locally, few WQM
WSNs deploy fecal coliform wireless sensors due to procurement costs; thus, their inclusion
in the study would provide little benefit, since few local systems deploy them. Various
other parameters were excluded for the same reason. The parameters of Set A and Set B can
be seen in Table 2. Both Set A and Set B contained pH and chloride as common parameters.
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Table 2. List of set parameters.

Set Parameters

Set A pH, conductivity, chloride, turbidity, nitrates, and chlorophyll

Set B pH, ammonium, chloride, nitrites, iron, manganese, phosphate, and sulphate

3.1.2. Model Selection

Six different models were used in the evaluation: ridge regression, random forest,
stochastic gradient boosting, support vector machine regression, k-nearest neighbors re-
gression, and AdaBoost regression. Ridge regression is a regularization technique that
penalizes the L2-norm of the coefficients in linear regression [83]. To improve variance
and aid generalization, ridge regression aims to increase the bias. Ridge regression is
usually enhanced by datasets that have a lower number of observations than the number of
predictors and which have multicollinearity. The accuracy of predictions in ridge regression
is improved through the lowering of the standard error. The addition of bias in predictions
creates a reduction in the standard error. Thus, ridge regression will avoid overfitting
during the training set to improve accuracy in the testing set predictions. A ridge regression
estimator ( β̂

)
is given by Equation (1) [84].

β̂ = argminβ∥y − Xβ∥2
2 + λ∥β∥2

2 (1)

where the 𝓁2—norm penalty is given by ∥β∥2
2 = ∑

p
j=1 β2

j . β represents the vector of re-
gression coefficients of the markers, X is the n × p marker matrix, λ ≥ 0 is the tuning
parameter, y = (y1, .., yn)

T is the vector of observed phenotypes, and i, p represent markers
(i = 1,2, 3,. . .., p) in Equation (1) [84].

The random forest algorithms use ensemble learning to provide predictions [85]. The
algorithm has numerous decision trees, creating groups of random decision trees to avoid
the overfitting of data. Bagging or bootstrap aggregating trains the forest. The prediction
of the algorithm is the weighted average of all the decision trees. The accuracy of the
prediction can be improved through the addition of more decision trees.

Stochastic gradient boosting uses an ensemble of weaker models to achieve predictions.
A subsample of data from the training set is taken at random and has a weak model fitted
to it [86]. This is considered to be a step approach as this process is repeated at every step to
build the model. The weaker models used are often decision trees. With stochastic gradient
boosting, the algorithm is quicker due to regression trees having smaller datasets fitted in
each iteration in contrast to conventional gradient boosting.

Support vector machine regression (SVR) differs from linear regression. SVR searches
for a hyperplane in the plane of data that will best fit the most amount of data points
in a particular distance that can be achieved [87]. An advantage of this approach is the
ability of SVR to contend with nonlinear correlation between the inputted variables and
the prediction variable, utilizing a kernel function.

K-nearest neighbor (KNN) regression estimates the relation between the independent
variables and the predicted observation through the averaging of the k-nearest observations
in the neighborhood (k) [88]. The size of k is set by the user or through cross-validation. This
distance between the k-nearest observations is determined using the Euclidean distance.

AdaBoost regression is an ensemble technique like stochastic gradient boosting. They
both utilize and build decision trees to use as weak learners. AdaBoost uses the decision tree
on the training data and will adjust the variable weights on each repeat based on prediction
error, with emphasis placed on unfavorable fitting and predictions [89]. A weighted
median from all the weak models will collectively provide the result of the prediction.
AdaBoost reduces the loss function; thus, outliers in the data can create vulnerability in the
algorithm. The weak classifiers have their performance enhanced through the introduction
of reinforced training on samples that are classified as erroneous [90]. The classification
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error function is utilized in AdaBoost to boost weak classifier weights. The classifier can be
seen in Equation (2) [90]:

h(x) =
{

1 i f ∑t
i=1 atht ≥ threshold
0 otherwise

(2)

where ht is the weak classifier t output and at is the classifier weight that is assigned in
Equation (2) [90].

The decision trees of AdaBoost have one level of classification. The training dataset is
weighted at each instance and the initialization of weight is given in Equation (3) [90]:

weight (xi) = 1/n (3)

where xi and n represent the training instance and the number of training instances,
respectively.

Stoker et al. determined that the random forest (RF) model had superior performance
in predicting E. coli levels in comparison to other models in the study [52]. Whilst the
findings of this study indicated that the AdaBoost regressor provided better performance
over the RF regressor, it still performed well enough to be considered in the implementation
of the predictive model. The findings of this study indicated that the use of core parameters
provided high accuracy in predicting E. coli concentrations.

3.1.3. Evaluation Metrics

The metrics used to evaluate each of the models were root mean squared error (RMSE)
and mean average error (MAE). MAE provides an insight into the accuracy of the model
by ignoring the direction and measuring the average magnitude of the errors for the
predictions [91]. RMSE provides insight into the standard deviation of the predicted result
errors. Larger errors result in a higher value of RMSE, making it an ideal evaluation tool in
models that consider larger errors unacceptable [92]. When collectively analyzing the MAE
and RMSE of a model, one can identify variation in the errors of the predictions. RMSE will
always be greater than or equal to the MAE measured [91]. If both MAE and RMSE are of
equal value, then the errors have the same magnitude. Greater variance in the predictions
will be noted when there is a larger difference between the MAE and RMSE [91]. Equations
for MAE and RMSE are given by Equations (4) and (5) [93]:

MAE =
1
n

n

∑
i=1

|xi − x| (4)

and

RMSE =

√
1
n

n

∑
i=1

(xi − x)2 (5)

where n = number of samples, xi = the actual value, and x = the predicted value in
Equations (4) and (5) [93].

3.1.4. Method

All the models were implemented using Scikit-Learn and its libraries. Each model
underwent a 10-fold cross-validation to achieve their best evaluation results on the dataset.
K-fold validation splits the dataset into k subsets or folds. Training and evaluation of the
model is completed K number of times. The validation set being a different fold each time.
Figure 2 shows the system model for obtaining results for each ML model.
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4. Results and Discussion
4.1. Results

The results in Table 3 represent the best evaluation results of each model. Thus, the
predicted results are based on each model’s best outcome.

From Table 3, it can be observed that all the models tested provided different levels of
accuracy in their prediction. On average, the random forest regressor, stochastic gradient
boosting, and ridge regressor yielded the worst accuracy of the six models tested, with
stochastic gradient boosting being the least accurate of the aforementioned three. The
average MAE between the worst three models was 4.81 (14.50%) and the average RMSE
was 10.38 (16.16%). On average, the AdaBoost regressor, support vector machine, and
k-nearest neighbors showed the greatest accuracy of all six models, with the AdaBoost
regressor yielding the best accuracy on average. The average MAE between the best three
models was 4.19 (26.81%) and the average RMSE was 20.48 (83.24%). The large percentage
of average MAE and RMSE between the best three models is due to the difference between
the best two models: the AdaBoost regressor and k-nearest neighbors. The difference
in MAE between the two models is 6.15 (42.80%) and 33,06 (152.07%) for RMSE. The
differences in MAE and RMSE between the worst-performing model on average (stochastic
gradient boosting) and the best-performing model on average (AdaBoost regressor) were
27.90 (194.16%) and 59.39 (273.18%), respectively.

Table 3. List of best MAE and RMSE results for parameter Set A and Set B.

Evaluation Metric Parameter Set
Evaluation Score

MAE RMSE

Ridge regression
Set A 28.65 37.50

Set B 36.67 83.26

Random forest regressor
Set A 36.63 58.14

Set B 46.58 91.22

Stochastic gradient boosting
Set A 45.36 73.26

Set B 39.17 88.99

Support vector machine
Set A 19.46 37.20

Set B 26.01 88.18

k-nearest neighbors
Set A 12.08 19.04

Set B 28.96 90.56

AdaBoost
Set A 15.42 20.14

Set B 13.32 23.34

An observation noted was the consistency in model performance across all six models
with both parameter Sets A and B. The models that performed strongly for Set A had strong
performance in Set B; likewise, the weaker-performing models performed poorly across
both parameter Sets A and B. This would give confidence in choosing a suitable model for
implementation in WQM WSNs for E. coli prediction: a strong-performing model would
work for both sets of wireless parameter sensors.

Table 4 contains the MAE and RMSE by adding all MAE and RMSE results, respectively,
from Table 3 for parameter Sets A and B and obtaining the average for each parameter set.
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Table 4. List of MAE and RMSE for parameter Sets A and B.

Set A Set B

MAE 26.27 31.79

RMSE 40.88 77.59

From Table 4, it was determined that parameter Set A provided a higher level of
performance when compared to parameter Set B. The best-performing parameter set on
average was Set A. The differences in MAE and RMSE between Set A and Set B were
5.52 (21.01%) and 36.71 (89.80%), respectively. This indicated that using more commonly
available wireless sensors in the initial deployment of the WQM WSN would benefit
the performance of the model in predicting the E. coli concentrations. However, the
performance difference noted was not significant; thus, the model would benefit from the
addition of Set B parameter sensors at later implementations of the WQM WSN to provide
more data for the model to improve its predictions.

Table 5 contains the MAE and RMSE by adding all MAE and RMSE results, respec-
tively, from Table 3 for each of the six models used in the study and obtaining the average
for each model.

From Table 5, it was determined that the best-performing model on average during
testing was the AdaBoost regressor; the worst-performing model was stochastic gradient
boosting. The AdaBoost regressor had an RMSE value 7.37 (51.29%) greater than the
MAE value. This relatively small range in difference between the MAE and RMSE values
indicates a small variance in the sample errors. The difference is relatively small when
compared to the difference between the MAE and RMSE values of stochastic gradient
boosting. Stochastic gradient boosting had an RMSE value that was 38.86 (91.93%) greater
than the MAE value. This large range in the differences between the MAE and RMSE
values indicates high variance in the sample errors. However, the largest variance can be
seen in the support vector machine, with a large difference in MAE and RMSE value of
39.95 (175.68%).

Table 5. List of MAE and RMSE for each of the six models used in the study.

Model MAE RMSE

Ridge regression 32.66 60.38

Random forest regressor 41.61 74.68

Stochastic gradient boosting 42.27 81.13

Support vector machine 22.74 62.69

k-nearest neighbors 20.52 54.80

AdaBoost 14.37 21.74

There are numerous reasons that can be cited for the large variation in MAE and
RMSE between the best- and worst-performing models. The main reason is the number of
samples and the data quality of the dataset [94]. If more high-quality data are available,
the difference between the best and worst models could be smaller. Outliers in the dataset
can affect the accuracy of models, especially with linear and boosting models [95]. With
boosting, outliers create issues with classifiers since they must correct previously found
errors, and outliers greatly affect linear models [96].

The graphs in Figures 3–7 illustrate the resulting data of the actual E. coli concentrations
from the test dataset versus the predicted E. coli concentrations using the best-performing
predictive model. Figure 3 illustrates the best-performing model for parameter Set A (k-
nearest neighbors), with the red and green lines representing the 95% confidence interval
upper and lower bounds for the dataset mean E. coli concentrations. Figure 4 illustrates the
best-performing model for parameter Set B (AdaBoost regression), with the red and green
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lines representing the 95% confidence interval upper and lower bounds for the dataset mean
E. coli concentrations. Figure 5 illustrates the same graph as Figure 4; however, the highest
E. coli value (extreme outlier) from the graph in Figure 4 was excluded to improve the scale
of the graph and highlight the predicting performance for E. coli values situated near the
lower bound of the confidence interval. Figure 6 illustrates the best-performing model
overall for both parameter Sets A and B (AdaBoost regression), with the red and green lines
representing the 95% confidence interval upper and lower bounds for the dataset mean E.
coli concentrations. Figure 7 illustrates the same graph as Figure 6; however, the highest E.
coli value (extreme outlier) from the graph in Figure 6 was excluded to improve the scale
of the graph and highlight the predicting performance for E. coli values situated near the
lower bound of the confidence interval.

An encouraging observation that suits an early-warning system for E. coli concen-
tration is the ability of the best-performing models to identify extreme changes in E. coli
concentrations. From Figures 3 and 4, the greatest values of actual E. coli concentration for
each figure were noted to be 150 counts/100 mL and 425 counts/100 mL, respectively. The
largest concentration of predicted E. coli level was also achieved on the same entry of actual
E. coli concentration 95 counts/100 mL and 425 counts/100 mL, respectively. Whilst the
best-performing model for Set A did not predict the same concentration as the actual E. coli
level, it was still the highest predicted concentration of Set A. Thus, this would also instill
confidence in currently deploying ML algorithms as an early-warning system for E. coli
concentrations. It was observed that predicted concentrations within the 95% confidence
interval dataset mean for E. coli concentrations had higher levels of prediction inaccuracy
when compared to predictions that fell outside the bounds of the 95% confidence interval
for all models.
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4.2. Discussion

Whilst the findings of the study indicated a large difference in the accuracy of the best-
and worst-performing tested models, the E. coli concentrations were predicted in all models
with an accuracy that would suggest that the further development of models is feasible and
that larger datasets of high-quality data can improve the predicting accuracy of ML models.
They can become useful in early-warning detection systems for E. coli concentration levels.
The models can be considered feasible when one considers that the stipulated acceptable
range of E. coli concentration being 0–130 counts/100 mL (Department of Water Affairs
and Forestry, 1996); the study yielded an MAE for the best-performing predictive model of
14.37 counts/100 mL and an MAE for the worst predictive model of 42.27 counts/100 mL.

As stated, the results of the study would suggest that using ML models to predict E.
coli would be more suitable as an early-warning detection system. This was motivated
by the accuracy of prediction by the best-performing ML model. The error would not
instill the necessary confidence in deployers to solely rely on the prediction for their E. coli
levels. However, if used as an early-warning detection system, relevant action can be taken,
including a physical measurement to confirm and rectify the level.

The results of this study warrant further research into ML algorithms to predict E.
coli levels; however, further work strongly depends on the availability of data to train ML
models. The acquisition of reliable data from multiple sources can greatly help train models
to adapt to external variations brought through ecosystems, seasonal changes, etc. It is only
through continuous training of models with data that a shift to a prediction-based solution
in E. coli detection can be the reference method of measurement. This would also apply to
the prediction of other measured parameters using ML algorithms.

5. Conclusions

The work provides an insight into the challenges and the current and future trends
of IOT WQM using WSNs. The work develops a generic IOT WQM-based framework
consisting of a sensing system, a communication system, and a head end system. The work
then focuses on one of the constraints of current IOT WQM systems, the unavailability of
electronic sensors, and develops an AI-based framework to predict the concentrations of E.
coli with unavailable electronic sensors. Thereby, the researchers explored the probability
of predicting water quality parameters with unavailable sensors. The ridge regression,
random forest, stochastic gradient boosting, support vector machine regression, k-nearest
neighbors regression, and AdaBoost regression models were used in the prediction of E. coli
concentrations. The developed results based on the MAE and RMSE performance measures
indicate that E. coli concentrations can be predicted by AI to a fairly accurate level; however,
the results indicated that the use of AI to predict E. coli concentrations would currently
be more beneficial as an early-warning system until further research and testing can be
completed, due to the level of accuracy in predictions. The results of the study indicated
that the AdaBoost regressor had performed the best in predicting E. coli concentrations
based on the performance evaluation (MAE and RMSE values). The parameters from Set
A had superior performance over the parameters of Set B in E. coli prediction based on
the performance evaluation (MAE and RMSE values). E. coli concentrations were able to
be predicted using machine learning algorithms with reasonable accuracy. The accuracy
of the predictions achieved showed that using ML algorithms would be more suitable
as an early-warning detection system. E. coli concentrations were also predicted with
parameters that can be procured with little difficultly and lower procurement costs, as seen
with the prediction accuracy when using Set A parameters. Thus, the aims of the paper
were achieved through the results. This work presents the possibility of developing AI
techniques further to compliment parameters with non-existent sensors.

Author Contributions: Conceptualization, T.W. and Y.S.; methodology, T.W. and Y.S.; software, T.W
and Y.S.; validation, T.W. and Y.S.; formal analysis, T.W and Y.S.; investigation, T.W and Y.S.; resources,
T.W.; data curation, T.W. and Y.S.; writing—original draft preparation, T.W. and Y.S.; writing—review



Sensors 2024, 24, 2871 19 of 22

and editing, T.W. and Y.S.; visualization, T.W. and Y.S.; supervision, T.W.; project administration, T.W.;
funding acquisition, T.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by UKZN Research Funds.

Institutional Review Board Statement: The paper was extensively reviewed by the institution.

Informed Consent Statement: The details and processes of the paper are clear and understood.

Data Availability Statement: The dataset used in study is available online: [54].

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Sanders, T. Design of Networks for Monitoring Water Quality; Water Resources Publications: Littleton, CO, USA, 1983.
2. Strobl, R.; Robillard, P. Network Design for Water Quality Monitoring of Surface Freshwaters: A Review. J. Environ. Manag. 2008,

87, 639–648. [CrossRef] [PubMed]
3. DFROBOT SEN0189 Turbidity Sensor. 2023. Available online: https://www.dfrobot.com/product-1394.html (accessed on

1 November 2023).
4. YSI WQ730 Turbidity Sensor. 2023. Available online: https://www.ysi.com/wq730 (accessed on 13 October 2023).
5. Aqualabo PF-CAP-C-00174 Turbidity Sensor. 2023. Available online: https://en.aqualabo.fr/turbidity-digital-sensor-bare-wires-

7-m-cable-b3968.html (accessed on 5 October 2023).
6. Daviteq Modbus Turbidity Sensor. 2023. Available online: https://daviteq.com/en/manuals/books/product-data-sheet-for-

modbus-output-sensors/page/process-turbidity-sensor-with-modbus-output-mbrtu-tbd (accessed on 8 October 2023).
7. DFROBOT SEN0244 TDS Sensor. 2023. Available online: https://www.dfrobot.com/product-1662.html (accessed on 1 November

2023).
8. Hanna Instruments HI-763133 TDS Sensor. 2023. Available online: https://www.hannainstruments.co.uk/electrodes-and-

probes/2633-hi-763133-quick-connect-tds-conductivity-probe (accessed on 15 October 2023).
9. Wateranywhere TDS-3 TDS Sensor. 2023. Available online: https://wateranywhere.com/tds-meter-tests-0-9990-ppm-total-

dissolved-solids-in-water-pocket-size-hm-digital/ (accessed on 3 October 2023).
10. Antratek 314990742 Modbus TDS and EC Sensor. 2023. Available online: https://www.antratek.com/industrial-ec-tds-sensor-

modbus-rtu-rs485-0-2v (accessed on 7 October 2023).
11. Caballero, B.; Trugo, L.; Finglas, P.M. Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003.
12. YSI WQ201 pH Sensor. 2023. Available online: https://www.ysi.com/wq201 (accessed on 18 October 2023).
13. DFROBOT SEN0169-V2 pH Sensor. 2023. Available online: https://www.dfrobot.com/product-2069.html (accessed on

1 November 2023).
14. Tetraponics SP-P5 pH Sensor Probe. 2023. Available online: https://www.tetraponics.com/products/replacement-ec-probe

(accessed on 10 October 2023).
15. Eucatech 314990622 Modbus pH Sensor Probe, 2023. Available online: https://euca.co.za/products/sensecap-industrial-ph-

sensor-nsc257 (accessed on 12 October 2023).
16. Belcher, R.; Macdonald, A.M.G.; Parry, E. On mohr’s method for the determination of chlorides. Anal. Chim. Acta 1957, 16,

524–529. [CrossRef]
17. YSI EXO Chloride Smart Sensor. 2023. Available online: https://www.ysi.com/product/id-599711/EXO-Chloride-Smart-Sensor

(accessed on 20 October 2023).
18. Riverplus WS102-CL Modbus Sensor. 2023. Available online: https://iiot.riverplus.com/product/ws102-cl-modbus-water-

quality-analysis-residual-chloride-ion-cl-sensor/ (accessed on 11 October 2023).
19. Libelium Proteus Water Sensor for Real-Time Detecting E. coli Bacteria. 2023. Available online: https://proteus-instruments.com/

proteus-bod-multiparameter-water-quality-meter/ (accessed on 26 October 2023).
20. DFROBOT SEN0451 Conductivity Sensor. 2023. Available online: https://www.dfrobot.com/product-2565.html (accessed on

1 November 2023).
21. YSI WQ-COND Conductivity Sensor. 2023. Available online: https://www.ysi.com/wqc (accessed on 27 October 2023).
22. Endress+Hauser CLS54D Conductivity Sensor. 2023. Available online: https://www.endress.com/en/field-instruments-overview/

liquid-analysis-product-overview/conductivity-toroidal-sensor-cls54d?t.tabId=product-overview (accessed on 1 October 2023).
23. YSI EXO Total Algae PC Smart Sensor. 2023. Available online: https://www.ysi.com/exo/talpc (accessed on 30 October 2023).
24. Apure BGA-206A Algae Sensor. 2023. Available online: https://apureinstrument.com/water-quality-analysis/blue-green-algae-

sensor/bga-206a-blue-green-algae-sensor/ (accessed on 28 October 2023).
25. YSI WQ101 Temperature Sensor. 2023. Available online: https://www.ysi.com/wq101 (accessed on 19 October 2023).
26. DFROBOT DS18B20 SEN0511 Temperature Sensor. 2023. Available online: https://www.dfrobot.com/product-2481.html

(accessed on 2 November 2023).
27. ComWinTop CWT-T01S Modbus Temperature Sensor. 2023. Available online: https://store.comwintop.com/products/rs485

-modbus-water-proof-temperature-humidity-sensor-probe?variant=42249549054179 (accessed on 10 October 2023).

https://doi.org/10.1016/j.jenvman.2007.03.001
https://www.ncbi.nlm.nih.gov/pubmed/17459570
https://www.dfrobot.com/product-1394.html
https://www.ysi.com/wq730
https://en.aqualabo.fr/turbidity-digital-sensor-bare-wires-7-m-cable-b3968.html
https://en.aqualabo.fr/turbidity-digital-sensor-bare-wires-7-m-cable-b3968.html
https://daviteq.com/en/manuals/books/product-data-sheet-for-modbus-output-sensors/page/process-turbidity-sensor-with-modbus-output-mbrtu-tbd
https://daviteq.com/en/manuals/books/product-data-sheet-for-modbus-output-sensors/page/process-turbidity-sensor-with-modbus-output-mbrtu-tbd
https://www.dfrobot.com/product-1662.html
https://www.hannainstruments.co.uk/electrodes-and-probes/2633-hi-763133-quick-connect-tds-conductivity-probe
https://www.hannainstruments.co.uk/electrodes-and-probes/2633-hi-763133-quick-connect-tds-conductivity-probe
https://wateranywhere.com/tds-meter-tests-0-9990-ppm-total-dissolved-solids-in-water-pocket-size-hm-digital/
https://wateranywhere.com/tds-meter-tests-0-9990-ppm-total-dissolved-solids-in-water-pocket-size-hm-digital/
https://www.antratek.com/industrial-ec-tds-sensor-modbus-rtu-rs485-0-2v
https://www.antratek.com/industrial-ec-tds-sensor-modbus-rtu-rs485-0-2v
https://www.ysi.com/wq201
https://www.dfrobot.com/product-2069.html
https://www.tetraponics.com/products/replacement-ec-probe
https://euca.co.za/products/sensecap-industrial-ph-sensor-nsc257
https://euca.co.za/products/sensecap-industrial-ph-sensor-nsc257
https://doi.org/10.1016/S0003-2670(00)89979-1
https://www.ysi.com/product/id-599711/EXO-Chloride-Smart-Sensor
https://iiot.riverplus.com/product/ws102-cl-modbus-water-quality-analysis-residual-chloride-ion-cl-sensor/
https://iiot.riverplus.com/product/ws102-cl-modbus-water-quality-analysis-residual-chloride-ion-cl-sensor/
https://proteus-instruments.com/proteus-bod-multiparameter-water-quality-meter/
https://proteus-instruments.com/proteus-bod-multiparameter-water-quality-meter/
https://www.dfrobot.com/product-2565.html
https://www.ysi.com/wqc
https://www.endress.com/en/field-instruments-overview/liquid-analysis-product-overview/conductivity-toroidal-sensor-cls54d?t.tabId=product-overview
https://www.endress.com/en/field-instruments-overview/liquid-analysis-product-overview/conductivity-toroidal-sensor-cls54d?t.tabId=product-overview
https://www.ysi.com/exo/talpc
https://apureinstrument.com/water-quality-analysis/blue-green-algae-sensor/bga-206a-blue-green-algae-sensor/
https://apureinstrument.com/water-quality-analysis/blue-green-algae-sensor/bga-206a-blue-green-algae-sensor/
https://www.ysi.com/wq101
https://www.dfrobot.com/product-2481.html
https://store.comwintop.com/products/rs485-modbus-water-proof-temperature-humidity-sensor-probe?variant=42249549054179
https://store.comwintop.com/products/rs485-modbus-water-proof-temperature-humidity-sensor-probe?variant=42249549054179


Sensors 2024, 24, 2871 20 of 22

28. Standard Methods Committee of the American Public Health Association. American Water Works Association. Water Environ-
ment Federation. 4500-nh3 nitrogen (ammonia). In Standard Methods for the Examination of Water and Wastewater; Lipps, W.C.,
Baxter, T.E., Braun-Howland, E., Eds.; APHA Press: Washington, DC, USA, 2017. [CrossRef]

29. AQUAREAD Ammonia Sensor. 2023. Available online: https://www.aquaread.com/sensors/ammonium-ammonia (accessed
on 30 October 2023).

30. Kacise KAN310 Modbus Ammonia Sensor. 2023. Available online: https://www.fluid-meter.com/sale-13682999-kan310-online-
ammonia-nitrogen-sensor-rs485-modbus-convenient-to-connect-to-plc-dcs-patented-ammoniu.html (accessed on 7 October
2023).

31. Sea Bird Scientific SUNA V2 Nitrate Sensor. 2023. Available online: https://www.seabird.com/nutrient-sensors/suna-v2-nitrate-
sensor/family?productCategoryId=54627869922 (accessed on 30 October 2023).

32. AQUAREAD Nitrate Sensor. 2023. Available online: https://www.aquaread.com/sensors/nitrate (accessed on 30 October 2023).
33. Xylem 107066 Modbus Nitrate Sensor. 2023. Available online: https://www.xylemanalytics.com/en/general-product/id-151/

ise-combination-sensor-for-ammonium-and-nitrate---wtw (accessed on 2 October 2023).
34. DWAF Department of Water Affairs & Forestry. South African Water Quality Guidelines Volume 1 Domestic Water Use, 2nd ed.;

DWAF: Pretoria, South Africa, 1996.
35. DWAF Department of Water Affairs and Forestry. South African Water Quality Guidelines. Volume 2: Recreational Use, 2nd ed.;

DWAF: Pretoria, South Africa, 1996.
36. Republic of South Africa, Department of Environmental Affairs. South African Water Quality Guidelines for Coastal Marine

Waters—Natural Environment and Mariculture Use; Department of Environmental Affairs: Cape Town, South Africa, 2018.
37. Yang, X.; Ong, K.G.; Dreschel, W.R.; Zeng, K.; Mungle, C.S.; Grimes, C.A. Design of a Wireless Sensor Network for Long-term,

In-Situ Monitoring of an Aqueous Environment. Sensors 2002, 2, 455–472. [CrossRef]
38. Ryecroft, S.; Shaw, A.; Fergus, P.; Kot, P.; Hashim, K.S.; Tang, A.; Moody, A.; Conway, L. An Implementation of a Multi-Hop

Underwater Wireless Sensor Network using Bowtie Antenna. Karbala Int. J. Mod. Sci. 2021, 7, 3. [CrossRef]
39. Rosero-Montalvo, P.D.; López-Batista, V.F.; Riascos, J.A.; Peluffo-Ordóñez, D.H. Intelligent WSN System for Water Quality

Analysis Using Machine Learning Algorithms: A Case Study (Tahuando River from Ecuador). Remote Sens. 2020, 12, 1988.
[CrossRef]

40. Kofi Sarpong, A.-M.; Katsriku, F.A.; Abdulai, J.-A.; Engmann, F. Smart River Monitoring Using Wireless Sensor Networks. Wirel.
Commun. Mob. Comput. 2020, 2020, 8897126. [CrossRef]

41. Murphy, K.; Heery, B.; Sullivan, T.; Zhang, D.; Paludetti, L.; O’Connor, N.; Diamond, D.; Regan, F. A low-cost autonomous optical
sensor for water quality monitoring. Talanta 2014, 132, 520–527. [CrossRef]

42. O’Flynn, B.; Martínez-Català, R.; Harte, S.; O’Mathuna, C.; Cleary, J.; Slater, C.; Regan, F.; Diamond, D.; Murphy, H. SmartCoast:
A Wireless Sensor Network for Water Quality Monitoring. In Proceedings of the 32nd IEEE Conference on Local Computer
Networks (LCN 2007), Dublin, Ireland, 15–18 October 2007; pp. 815–816. [CrossRef]

43. Seders, L.; Butler, C.S.; Lemmon, M.; Talley, J.; Maurice, P.A. LakeNet: An integrated sensor network for environmental sensing in
lakes. Environ. Eng. Sci. 2007, 24, 183–191. [CrossRef]

44. Chen, C.-H.; Wu, Y.-C.; Zhang, J.-X.; Chen, Y.-H. IoT-Based Fish Farm Water Quality Monitoring System. Sensors 2022, 22, 6700.
[CrossRef]

45. Jáquez, A.D.B.; Herrera, M.T.A.; Celestino, A.E.M.; Ramírez, E.N.; Cruz, D.A.M. Extension of LoRa Coverage and Integration of
an Unsupervised Anomaly Detection Algorithm in an IoT Water Quality Monitoring System. Water 2023, 15, 1351. [CrossRef]

46. Razman, N.A.; Wan Ismail, W.Z.; Abd Razak, M.H.; Ismail, I.; Jamaludin, J. Design and analysis of water quality monitoring and
filtration system for different types of water in Malaysia. Int. J. Environ. Sci. Technol. 2023, 20, 3789–3800. [CrossRef] [PubMed]

47. Ubah, J.I.; Orakwe, L.C.; Ogbu, K.N.; Awu, J.I.; Ahaneku, I.E.; Chukwuma, E.C. Forecasting water quality parameters using
artificial neural network for irrigation purposes. Sci. Rep. 2021, 11, 24438. [CrossRef] [PubMed]

48. Khan, S.I.; Islam, S.; Nasir, M. Predicting Water Quality using WSN and Machine Learning. Bachelor’s Thesis, Mawlana Bhashani
Science and Technology, University Santosh, Tangail, Bangladesh, 2020.

49. Aldhyani, T.H.H.; Al-Yaari, M.; Alkahtani, H.; Maashi, M. Water Quality Prediction Using Artificial Intelligence Algorithms. Appl.
Bionics Biomech. 2020, 2020, 6659314. [CrossRef]

50. Paepae, T.; Bokoro, P.N.; Kyamakya, K. From Fully Physical to Virtual Sensing for Water Quality Assessment: A Comprehensive
Review of the Relevant State-of the-Art. Sensors 2021, 21, 6971. [CrossRef] [PubMed]

51. Chen, L.; Wu, T.; Wang, Z.; Lin, X.; Cai, X. A novel hybrid BPNN model based on adaptive evolutionary Artificial Bee Colony
Algorithm for water quality index prediction. Ecol. Indic. 2023, 146, 109882. [CrossRef]

52. Stocker, M.D.; Pachepsky, Y.A.; Hill, R.L. Prediction of E. coli Concentrations in Agricultural Pond Waters: Application and
Comparison of Machine Learning Algorithms. Front. Artif. Intell. 2022, 4, 768650. [CrossRef] [PubMed]

53. Naloufi, M.; Lucas, F.S.; Souihi, S.; Servais, P.; Janne, A.; Wanderley Matos De Abreu, T. Evaluating the Performance of Machine
Learning Approaches to Predict the Microbial Quality of Surface Waters and to Optimize the Sampling Effort. Water 2021, 13, 2457.
[CrossRef]

54. Masindi, V. Dataset on physicochemical and microbial properties of raw water in four drinking water treatment plants based in
South Africa. Data Brief 2020, 31, 105822. [CrossRef]

https://doi.org/10.2105/SMWW.2882.087
https://www.aquaread.com/sensors/ammonium-ammonia
https://www.fluid-meter.com/sale-13682999-kan310-online-ammonia-nitrogen-sensor-rs485-modbus-convenient-to-connect-to-plc-dcs-patented-ammoniu.html
https://www.fluid-meter.com/sale-13682999-kan310-online-ammonia-nitrogen-sensor-rs485-modbus-convenient-to-connect-to-plc-dcs-patented-ammoniu.html
https://www.seabird.com/nutrient-sensors/suna-v2-nitrate-sensor/family?productCategoryId=54627869922
https://www.seabird.com/nutrient-sensors/suna-v2-nitrate-sensor/family?productCategoryId=54627869922
https://www.aquaread.com/sensors/nitrate
https://www.xylemanalytics.com/en/general-product/id-151/ise-combination-sensor-for-ammonium-and-nitrate---wtw
https://www.xylemanalytics.com/en/general-product/id-151/ise-combination-sensor-for-ammonium-and-nitrate---wtw
https://doi.org/10.3390/s21100455
https://doi.org/10.33640/2405-609X.2759
https://doi.org/10.3390/rs12121988
https://doi.org/10.1155/2020/8897126
https://doi.org/10.1016/j.talanta.2014.09.045
https://doi.org/10.1109/LCN.2007.34
https://doi.org/10.1089/ees.2006.0044
https://doi.org/10.3390/s22176700
https://doi.org/10.3390/w1507135
https://doi.org/10.1007/s13762-022-04192-x
https://www.ncbi.nlm.nih.gov/pubmed/35729914
https://doi.org/10.1038/s41598-021-04062-5
https://www.ncbi.nlm.nih.gov/pubmed/34952922
https://doi.org/10.1155/2020/6659314
https://doi.org/10.3390/s21216971
https://www.ncbi.nlm.nih.gov/pubmed/34770278
https://doi.org/10.1016/j.ecolind.2023.109882
https://doi.org/10.3389/frai.2021.768650
https://www.ncbi.nlm.nih.gov/pubmed/35088045
https://doi.org/10.3390/w13182457
https://doi.org/10.1016/j.dib.2020.105822


Sensors 2024, 24, 2871 21 of 22

55. Yaroshenko, I.; Kirsanov, D.; Marjanovic, M.; Lieberzeit, P.A.; Korostynska, O.; Mason, A.; Frau, I.; Legin, A. Real-Time Water
Quality Monitoring with Chemical Sensors. Sensors 2020, 20, 3432. [CrossRef]

56. Pasika, S.; Gandla, S. Smart water quality monitoring system with cost-effective using IoT. Heliyon 2020, 6, e04096. [CrossRef]
57. Morón-López, J.; Rodríguez-Sánchez, M.C.; Carreño, F.; Vaquero, J.; Pompa-Pernía, Á.G.; Mateos-Fernández, M.; Aguilar, J.A.P.

Implementation of Smart Buoys and Satellite-Based Systems for the Remote Monitoring of Harmful Algae Bloom in Inland
Waters. IEEE Sens. J. 2021, 21, 6990–6997. [CrossRef]

58. Nguyen, D.; Phung, P.H. A Reliable and Efficient Wireless Sensor Network System for Water Quality Monitoring. In Proceedings
of the 2017 International Conference on Intelligent Environments (IE), Seoul, Republic of Korea, 21–25 August 2017; pp. 84–91.
[CrossRef]

59. Wang, X.; Zhang, F.; Ding, J. Evaluation of water quality based on a machine learning algorithm and water quality index for the
Ebinur Lake Watershed, China. Sci. Rep. 2017, 7, 12858. [CrossRef] [PubMed]

60. Milánkovich, Á.; Klincsek, K. Wireless Sensor Network for Water Quality Monitoring. In European Project Space on Information and
Communication Systems; SCITEPRESS: Setúbal, Portugal, 2015; pp. 28–47. [CrossRef]

61. Demetillo, A.; Japitana, M.; Taboada, E. A system for monitoring water quality in a large aquatic area using wireless sensor
network technology. Sustain. Environ. Res. 2019, 29, 12. [CrossRef]

62. Kofi, A.-M.; Tapparello, C.; Heinzelman, W.; Katsriku, F.; Abdulai, J.-D. Water Quality Monitoring Using Wireless Sensor
Networks: Current Trends and Future Research Directions. ACM Trans. Sens. Netw. 2017, 13, 1–41. [CrossRef]

63. Safaric, S.; Malaric, K. ZigBee wireless standard. In Proceedings of the ELMAR 2006, Zadar, Croatia, 7–9 June 2006; pp. 259–262.
[CrossRef]

64. IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011); IEEE Standard for Low-Rate Wireless Networks. IEEE: Piscataway, NJ,
USA, 22 April 2016; pp. 1–709. [CrossRef]

65. IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-2016); IEEE Standard for Information Technology–Telecommunications and
Information Exchange between Systems–Local and Metropolitan Area Networks–Specific Requirements–Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications–Redline. IEEE: Piscataway, NJ, USA, 26 February 2021;
pp. 1–7524.

66. IEEE Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002); IEEE Standard for Information technology–Local and Metropolitan Area
Networks–Specific Requirements–Part 15.1a: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications
for Wireless Personal Area Networks (WPAN). IEEE: Piscataway, NJ, USA, 14 June 2005; pp. 1–700. [CrossRef]

67. Sigfox Whitepapers. Available online: https://www.sigfox.com/ (accessed on 14 August 2023).
68. Devalal, S.; Karthikeyan, A. LoRa Technology—An Overview. In Proceedings of the 2018 Second International Conference on

Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; pp. 284–290. [CrossRef]
69. NB-IoT Whitepapers. Available online: https://www.narrowband.com/ (accessed on 25 August 2023).
70. Labdaoui, N.; Nouvel, F.; Dutertre, S. Energy-efficient IoT Communications: A Comparative Study of Long-Term Evolution for

Machines (LTE-M) and Narrowband Internet of Things (NB-IoT) Technologies. In Proceedings of the 2023 IEEE Symposium on
Computers and Communications (ISCC), Gammarth, Tunisia, 9–12 July 2023; pp. 823–830. [CrossRef]

71. Olatinwo, S.O.; Joubert, T.-H. Enabling Communication Networks for Water Quality Monitoring Applications: A Survey. IEEE
Access 2019, 7, 100332–100362. [CrossRef]

72. Suciu, G.; Suciu, V.; Dobre, C.; Chilipirea, C. Tele-Monitoring System for Water and Underwater Environments Using Cloud and
Big Data Systems. In Proceedings of the 2015 20th International Conference on Control Systems and Computer Science, Bucharest,
Romania, 27–29 May 2015; pp. 809–813. [CrossRef]

73. Awan, K.M.; Shah, P.A.; Iqbal, K.; Gillani, S.; Ahmad, W.; Nam, Y. Underwater Wireless Sensor Networks: A Review of Recent
Issues and Challenges. Wirel. Commun. Mob. Comput. 2019, 2019, 6470359. [CrossRef]

74. Myint, C.Z.; Gopal, L.; Aung, Y.L. Reconfigurable smart water quality monitoring system in IoT environment. In Proceedings of
the 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), Wuhan, China, 24–26 May 2017;
pp. 435–440. [CrossRef]

75. Akyildiz, I.; Pompili, D.; Melodia, T. Challenges for efficient communication in underwater acoustic sensor networks. ACM
SIGBED Rev. 2004, 1, 3–8. [CrossRef]

76. Marais, J.; Malekian, R.; Ye, N.; Wang, R. A Review of the Topologies Used in Smart Water Meter Networks: A Wireless Sensor
Network Application. J. Sens. 2016, 2016, 9857568. [CrossRef]

77. Sehgal, A.; Tumar, I.; Schonwalder, J. Variability of available capacity due to the effects of depth and temperature in the underwater
acoustic communication channel. In Proceedings of the Oceans 2009-Europe, Bremen, Germany, 11–14 May 2009. [CrossRef]

78. Gallagher, M. Effect of topology on network bandwidth, Master of Engineering (Hons.). Master’s Thesis, Faculty of Informatics,
University of Wollongong, Wollongong, NSW, Australia, 1998. Available online: https://ro.uow.edu.au/theses/2539 (accessed
on 16 July 2023).

79. Pottie, G.J.; Kaiser, W.J. Wireless integrated network sensors. Commun. ACM 2000, 43, 51–58. [CrossRef]
80. Watt, A.J.; Phillips, M.R.; Campbell, C.E.; Wells, I.; Hole, S. Wireless Sensor Networks for monitoring underwater sediment

transport. Sci. Total Environ. 2019, 667, 160–165. [CrossRef]
81. Júnior, A.C.D.S.; Munoz, R.; Quezada, M.D.L.Á.; Neto, A.V.L.; Hassan, M.M.; De Albuquerque, V.H.C. Internet of Water Things:

A Remote Raw Water Monitoring and Control System. IEEE Access 2021, 9, 35790–35800. [CrossRef]

https://doi.org/10.3390/s20123432
https://doi.org/10.1016/j.heliyon.2020.e04096
https://doi.org/10.1109/JSEN.2020.3040139
https://doi.org/10.1109/IE.2017.34
https://doi.org/10.1038/s41598-017-12853-y
https://www.ncbi.nlm.nih.gov/pubmed/28993639
https://doi.org/10.1038/10.5220/0006164600280047
https://doi.org/10.1186/s42834-019-0009-4
https://doi.org/10.1145/3005719
https://doi.org/10.1109/ELMAR.2006.329562
https://doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.1109/IEEESTD.2005.96290
https://www.sigfox.com/
https://doi.org/10.1109/ICECA.2018.8474715
https://www.narrowband.com/
https://doi.org/10.1109/ISCC58397.2023.10218061
https://doi.org/10.1109/ACCESS.2019.2904945
https://doi.org/10.1109/CSCS.2015.31
https://doi.org/10.1155/2019/6470359
https://doi.org/10.1109/ICIS.2017.7960032
https://doi.org/10.1145/1121776.1121779
https://doi.org/10.1155/2016/9857568
https://doi.org/10.1109/OCEANSE.2009.5278268
https://ro.uow.edu.au/theses/2539
https://doi.org/10.1145/332833.332838
https://doi.org/10.1016/j.scitotenv.2019.02.369
https://doi.org/10.1109/ACCESS.2021.3062094


Sensors 2024, 24, 2871 22 of 22

82. Luethi, R.; Phillips, M. Challenges and solutions for long-term permafrost borehole temperature monitoring and data interpreta-
tion. Geogr. Helv. 2016, 71, 121–131. [CrossRef]

83. Rokem, A.; Kay, K. Fractional ridge regression: A fast, interpretable reparameterization of ridge regression. GigaScience 2020, 9,
giaa133. [CrossRef] [PubMed]

84. Ogutu, J.O.; Schulz-Streeck, T.; Piepho, H.P. Genomic selection using regularized linear regression models: Ridge regression,
lasso, elastic net and their extensions. BMC Proc. 2012, 6 (Suppl. 2), S10. [CrossRef] [PubMed]

85. Segal, M.R. Machine Learning Benchmarks and Random Forest Regression. Center for Bioinformatics and Molecular Biostatistics; University
of California: San Francisco, CO, USA, 2004. Available online: https://escholarship.org/uc/item/35x3v9t4 (accessed on
10 August 2023).

86. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
87. Boswell, D. Introduction to Support Vector Machines; Departement of Computer Science and Engineering, University of California:

San Diego, CA, USA, 2002.
88. Kramer, O. Unsupervised K-nearest neighbor regression. arXiv 2011, arXiv:1107.3600.
89. Xiao, F.; Wang, Y.; He, L.; Wang, H.; Li, W.; Liu, Z. Motion Estimation from Surface Electromyogram Using Adaboost Regression

and Average Feature Values. IEEE Access 2019, 7, 13121–13134. [CrossRef]
90. Koduri, S.; Gunisetti, L.; Ramesh, C.; Mutyalu, K.; Ganesh, D. Prediction of crop production using adaboost regression method.

J. Phys. Conf. Ser. 2019, 1228, 012005. [CrossRef]
91. Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing

Average Model Performance. Clim. Res. 2005, 30, 79–82. [CrossRef]
92. Robeson, S.M.; Willmott, C.J. Decomposition of the mean absolute error (MAE) into systematic and unsystematic components.

PLoS ONE 2023, 18, e0279774. [CrossRef]
93. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the

literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]
94. Sessions, V.; Valtorta, M. The Effects of Data Quality on Machine Learning Algorithms. ICIQ 2006, 6, 485–498.
95. Arimie, C.O.; Biu, E.O.; Ijomah, M.A. Outlier Detection and Effects on Modeling. Open Access Libr. J. 2020, 7, e6619. [CrossRef]
96. Li, A.H.; Bradic, J. Boosting in the Presence of Outliers: Adaptive Classification with Nonconvex Loss Functions. J. Am. Stat.

Assoc. 2017, 113, 660–674. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5194/gh-71-121-2016
https://doi.org/10.1093/gigascience/giaa133
https://www.ncbi.nlm.nih.gov/pubmed/33252656
https://doi.org/10.1186/1753-6561-6-S2-S10
https://www.ncbi.nlm.nih.gov/pubmed/22640436
https://escholarship.org/uc/item/35x3v9t4
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1109/ACCESS.2019.2892780
https://doi.org/10.1088/1742-6596/1228/1/012005
https://doi.org/10.3354/cr030079
https://doi.org/10.1371/journal.pone.0279774
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.4236/oalib.1106619
https://doi.org/10.1080/01621459.2016.1273116

	Introduction 
	Smart Water Quality Monitoring (SWQM) 
	Smart Water Quality Monitoring (SWQM) Framework 
	The SWQM Sensing System 
	The SWQM Communication System 
	The Head End System 

	Challenges in Water Quality Monitoring 
	Communication Technology 
	Topology 
	Bandwidth 
	Power Consumption 
	Fabrication 
	Security 
	Theft and Damages 
	The Underwater Environment 
	Sensors 

	Summary 

	Artificial Intelligence in Water Quality Monitoring Model 
	Materials and Methods 
	Dataset Acquisition and Processing in the Literature 
	Model Selection 
	Evaluation Metrics 
	Method 


	Results and Discussion 
	Results 
	Discussion 

	Conclusions 
	References

