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Abstract: Motion object detection (MOD) with freely moving cameras is a challenging task in
computer vision. To extract moving objects, most studies have focused on the difference in motion
features between foreground and background, which works well for dynamic scenes with relatively
regular movements and variations. However, abrupt illumination changes and occlusions often occur
in real-world scenes, and the camera may also pan, tilt, rotate, and jitter, etc., resulting in local irregular
variations and global discontinuities in motion features. Such complex and changing scenes bring
great difficulty in detecting moving objects. To solve this problem, this paper proposes a new MOD
method that effectively leverages local and global visual information for foreground/background
segmentation. Specifically, on the global side, to support a wider range of camera motion, the relative
inter-frame transformations are optimized to absolute transformations referenced to intermediate
frames in a global form after enriching the inter-frame matching pairs. The global transformation is
fine-tuned using the spatial transformer network (STN). On the local side, to address the problem
of dynamic background scenes, foreground object detection is optimized by utilizing the pixel
differences between the current frame and the local background model, as well as the consistency of
local spatial variations. Then, the spatial information is combined using optical flow segmentation
methods, enhancing the precision of the object information. The experimental results show that our
method achieves a detection accuracy improvement of over 1.5% compared with the state-of-the-art
methods on the datasets of CDNET2014, FBMS-59, and CBD. It demonstrates significant effectiveness
in challenging scenarios such as shadows, abrupt changes in illumination, camera jitter, occlusion,
and moving backgrounds.

Keywords: motion object detection; inter-frame transformations; local spatial; optical flow

1. Introduction

With the widespread use of surveillance cameras in recent years, the number of
recorded videos has been increasing dramatically. Surveillance videos typically contain
complex scene information, and it is critical to reasonably analyze and process the inter-
esting part. In most cases, MOD serves as the foundation for advanced vision tasks, such
as video surveillance [1], object tracking [2,3], and human–computer interaction surveil-
lance [4]. It is an important component in intelligent security surveillance video because it
provides basic technical support for massive video analysis and processing.

MOD techniques vary depending on whether the camera is moving or not. Numerous
methods have been researched for the detection of moving objects when using fixed
cameras, including the background subtraction (BGS) methods [5–9], the frame difference
methods [10,11], the optical flow methods [12], and deep learning [13–18]. They primarily
detect motion objects by acquiring inter-frame information or constructing background
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models. Accurate detection results can be obtained when the background is completely
static or the scene is relatively simple. However, in the case of a freely moving camera,
the background is typically dynamic and extremely complex. The pixel intensity at a
specific location in the background may undergo irregular variations, which may invalidate
algorithms designed for fixed cameras, posing a new challenge to MOD.

Currently, there are various MOD methods used to deal with complicated background
sceneries, such as camera jitter [19], small object recognition [20,21], abrupt changes in illu-
mination [22], shadow removal [23], and video with noise or a damaged image frame [24].
According to whether the background is modeled or not, it can be broadly divided into
two categories, i.e., model-based and motion-based algorithms. The first category combines
motion compensation methods [25] to extend MOD under fixed cameras, establishing local
or global background models. Model-based algorithms [26–28] align several adjacent image
frames using affine transformations and then extract foreground objects using background
modeling or background subtraction. Since the motion between adjacent image frames
is localized, it is challenging to detect slowly moving or temporarily stationary objects.
Moreover, this approach fails when the video contains huge amounts of global motion (e.g.,
panning, tilting, rotating, and jittering). It is due to the fact that the motion vector between
consecutive frames does not adequately depict global motion and does not give sufficient
information to rebuild the current frame. The second category analyzes foreground objects
by estimating the consistency of pixel point or image block motion using the optical flow
method [29]. In this case, the MOD results are hardly affected by background variations
as the motion-based algorithms [4,30,31] do not require the construction of an explicit
background model. These methods perform well when there are relatively large objects
and the background is moving in a globally consistent manner on the image. The detection
performance, however, is heavily dependent on the accuracy of the motion vector between
the foreground object and the background. Moreover, in the presence of local spatial noise
and illumination interference, such as changes in the position of light sources, shadows, etc.,
the algorithm may extract inaccurate motion information, which can affect the subsequent
calculation and analysis.

In this paper, we present a hybrid approach that combines the advantages of motion
compensation and optical flow for motion object detection. The primary focus is on
enhancing the accuracy of global motion compensation and mitigating the interference of
complex backgrounds on local foreground areas. Therefore, we propose a MOD algorithm
based on global motion compensation and local spatial information fusion on a freely
moving camera. On the premise of eliminating inter-frame motion transformation with
large errors, we convert the relative projection transformation problem into a global-based
absolute projection transformation problem and perform global optimization to ensure
accurate transformation. Furthermore, in the local spatial, the optical flow segmentation
approach is combined to enhance the foreground object contour and reliably detect the
foreground object. The contributions are summarized as follows:

(1) A novel motion compensation framework for global optimization is constructed. This
framework aims to estimate inter-frame transformations effectively and improve
global matching accuracy by optimizing the residual matching and drawing on the
use of back-end optimization methods [32] and STN [33].

(2) A novel method for local spatial information fusion is proposed, which utilizes several
types of local spatial boundary information, to effectively handle challenges such as
foreground false alarms, hollow foreground objects, and unclear contours.

(3) An end-to-end MOD method is proposed through the collaborative work of the two
modules mentioned above. The proposed approach is validated on three datasets,
and a comparison is made with existing methods. The results show state-of-the-art
performance and confirm the efficacy of the proposed method. Furthermore, the
method covers a wide variety of camera motions, which increases its practical utility.
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2. Related Works

The process of extracting and identifying changing areas from the background image
of a video image sequence is known as MOD. Object detection methods for dynamic scenes
are critical as cameras are increasingly used on mobile cameras. Existing methods for
detecting motion objects with moving cameras are classified into three types: model-based
algorithms, motion-based algorithms, and hybrid algorithms.

2.1. Model-Based Algorithms

The model-based algorithm focuses on finding invariant areas to construct a statis-
tical model of the scene by means of motion compensation. Liu et al. [26] proposed an
unsupervised learning framework based on the foreground model that computes motion
using homography transformations across consecutive frames to find a limited number
of keyframes. The motion cues obtained from the Markov Random Field (MRF) are com-
bined with the appearance of the Gaussian Mixture Model (GMM) to achieve motion
object segmentation. Similarly, Zamalieva et al. [27] proposed a method to adaptively
change the geometric transformation matrix to estimate the background motion caused
by camera motion. They utilized Bayesian learning to model the appearance of the back-
ground and foreground. Recently, some studies [34] proposed a Poisson-fusion-based
background orientation area reconstruction approach to obtain foreground objects by
computing the difference between the original orientation area and the reconstructed ori-
entation area. In other methods, low-rank matrix factorization is employed for subspace
learning. Eltantawy et al. [20] proposed a new principal component pursuit (PCP) [35]
method for modeling moving objects as moving sparse objects based on multiple local
subspaces. Others [36] used the developed candidate background model to iteratively
update the background model, and then performed background subtraction based on the
consistency of local changes. Some methods also focus on establishing background models
in the subspace. Chelly et al. [37] used Robust Principal Component Analysis (RPCA) [38]
to generate a local background map for background reduction. However, this method is
more sensitive to camera rotation and image perspective translation, not to mention that
it is not an end-to-end learning approach, and its applicability is limited. By embedding
affine transformation operators in online subspace learning, He et al. [19] obtained a more
extensive subspace alignment. However, the above algorithm cannot handle non-rigid
dynamic backgrounds, and its performance may suffer if complicated backgrounds cannot
be approximated as planes.

2.2. Motion-Based Algorithms

Motion-based algorithms use the difference in motion patterns between foreground
and background objects. It is classified into two types: point-based and layer-based. Point-
based methods detect and track sparse feature points before executing segmentation on
the same type of object. Some studies [39] deconstruct the motion trajectory matrix and
classify foreground objects at the pixel level using trajectory information. Some [40,41]
extract foreground areas from the video by clustering the obtained long feature trajectories.
Manda et al. [42] combined optical flow information between neighboring frames to ex-
tract features of the object in both spatial and temporal dimensions. Others utilized [43]
lengthy trajectory features and a Bayesian filtering framework to estimate motion and
appearance models. Although these methods are robust in handling large scenes of camera
motion, they only create sparse point segmentation that must be post-processed to produce
dense segmentation.

The layer-based method computes dense optical flows and then clusters them based
on motion consistency. Shen et al. [30] used dense optical flow to calculate the trajectory of
each pixel point and then used a two-stage bottom–up clustering approach to identify the
final motion object. Some researchers utilize initial motion boundary information generated
by dense optical flow fields to detect moving objects. Sugimura et al. [31] employed the
initial foreground and background label boundary information in conjunction with the
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area segmentation method to recognize foreground objects. The initial labels are computed
using the motion boundaries of two different flow field sizes and directions. Additionally,
Zhang et al. [44] used the weighted local difference in orientation of the optical flow to
detect the moving object’s rough contours, and it is used to guide the selection of prospect
objects. In contrast, Bideau et al. [4] combined the optical flow angle and size to optimize the
difference between object motions. Due to quick camera movements and video noise, such
methods may create some mistakes in measurements. Singh et al. [45] used the similarity
of image and optical flow feature information to generate edge weights, and then self-
supervised trained the network using a graph cut mask. The optical-flow-based approach
is further constrained by the initialization process, which necessitates the development
of a priori information such as contour lines and object numbers. Recently, deep learning
methods [46–52] have been used to extract optical flow features to detect moving objects.

2.3. Hybrid Algorithms

With the intention of improving detection, hybrid approaches integrate informa-
tion such as motion, color, and appearance. In this regard, Elqursh et al. [43] relied on
long trajectory information in low-dimensional space, considering non-spatial trajectories
as foreground objects. They utilized long trajectories, motion, and appearance models
combined within a Bayesian filtering framework to obtain the final foreground objects.
Delibacsouglu et al. [53] proposed a moving object detection method based on background
modeling and subtraction, which represents the background as a model with features such
as color and texture. Similar to the above method, Cui et al. [54] used Markov stochastic
models for trajectory, appearance, and spatiotemporal cues for the detection of moving
object trajectories and background trajectories generated by optical flow. Reference [55]
created foreground probability estimates by fusing the motion and appearance modules
and then used graph cuts to generate the final segmentation masks. Some researchers
also proposed to maximize the relationship between foreground and background clues as
much as possible. Makino et al. [56] combined the fraction obtained from the difference
between the background model and the current frame with the motion fraction obtained
from the local optical flow calculation to more accurately detect moving objects. This
method, however, is ineffective when the moving object is too large. Particularly, some
studies [57] modeled multiple foreground objects appearing in the scene at different levels,
treating it as a semantic segmentation problem. They estimated the motion and appearance
models of these objects and employed a Bayesian filtering framework to infer a probability
map. In another research work, Zhao et al. [58] used the GMM to obtain the confidence of
the foreground cue for each pixel point after motion compensation. The confidence in the
foreground cue combines with the confidence in the background pixel points obtained by
feature point matching. Finally, they integrated the two confidences to achieve an accurate
segmentation result.

3. Method

In this section, we propose a MOD method for a moving camera. This method aims to
adapt to complex environments for detecting foreground objects and enhance the overall
detection performance. Traditional foreground object detection methods are often suscep-
tible to environmental factors, such as camera motion and illumination transformations.
These factors can lead to inaccurate detection results. To solve this problem, we use a
novel motion compensation global optimization framework to reduce the effect of camera
motion on detection results. Additionally, we address the influence of local spatial light-
ing variations by constructing a local spatial background model and employing a spatial
information fusion strategy. An overview of the algorithm is shown in Figure 1.
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Figure 1. Overview of the proposed method: (1) Input: input the video sequences. (2) The trans-
formation between adjacent frames is optimized globally. Next, to acquire the global background
model, we apply the global transform to the local background model obtained from local spatial
detection. (3) Combine the coarse foreground image obtained from the global background model
with the optical flow information. Then, select the corresponding object area using an adaptive
method, and fuse the spatial information from both sources to obtain the final foreground object.

3.1. Inter-Frame Registration

The projection transformation establishes the correspondence between the points (x, y)
and (x̂, ŷ) in two different image frames, which is shown below:

τV̂ = HTV (1)

where V̂ = [x̂, ŷ, 1]T and V = [x, y, 1]T represent the vector form of the point, and τ is a
random scaling constant. The projection transformation matrix is denoted as H ∈ R3×3.
Given η > 3 and

{
Vi → V̂i

}η

i=1, the least squares method is used to estimate the optimal
transformation to H, which is shown below:

min
h

∥ψh∥2 s.t. h9 = 1 (2)

where h is the vectorize representation of H, with the constraint that the last element h9
is equal to 1. ψT = [ψT

1 , . . ., ψT
η ]. The solution of Equation (2) is the smallest right singular

vector of ψ, scaled so that the last element is 1, and the following equation holds:

ψi =

[
0 VT

i −ŷiVT
i

VT
i 0 −x̂iVT

i

]
∈ R2×9 (3)

During the registration process, SURF [59] is used to compute features in each frame of
the image, and then RANSAC [60] is employed to eliminate point matches with significant
errors, aiming to estimate H with minimal loss.

In order to achieve precise inter-frame matching pairs while generating more overlap-
ping areas, it is important to ensure that the local RPCA segments are more comprehensive
foreground objects. Inter-frame matching extends to each image with its next n frames, as
shown in Figure 2. The projection transformation error ϕ is calculated for each frame with
its next n frames, and the matching pair Nmax with the largest error value will be rejected,
as shown in Equation (4):

Nmax = arg max
n

MI→In

CI→In

(4)

where ϕ = MI→In /CI→In and {I, I + 1, . . ., I + n} are the current frame and the following
nth frame images. In represents the image obtained by the projective transformation of the
current frame I with respect to the frame I + n. CI→In denotes the number of overlapping
pixels of In and I + n. MI−In denotes the number of pixels in the overlapping pixels that
satisfy the threshold of the difference between the two pixels greater than ρ.
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Figure 2. The image registration process.

3.2. Global Projection Optimization

The motion compensation for inter-frame motion using the transformation matrix H
generated by the preceding method frequently has substantial inaccuracies. To improve
the transformation accuracy even further, the registration images are transferred to the
coordinate system using the intermediate frame as a reference, and the registration data
are processed together. It will solve the synchronization problem on the special Euclidean
group by optimizing the mentioned inter-frame relative transformation matrix with a
back-end optimization algorithm. Given a set of noisy paired transformation matrices, the
values of an unknown pose (position and orientation in Euclidean space) are estimated
through optimization, as shown in Equation (5). By utilizing such optimization method,
the noisy inter-frame relative transformation matrix T̃ij is globally optimized to obtain the
absolute transformation matrix Tj with the reference frame being the intermediate frame.

(
Tj
)N

j = arg min ∑
(i,j)∈ε

aij
∥∥Ri − RjR̃ij

∥∥2
F + bij

∥∥ti − tj − Rj t̃ij
∥∥2

l2 (5)

Here, the inter-frame information is denoted as a non-linear weighted undirected graph
G = (ν, ε, ω), and ν denotes the finite set of optimized frames, (i, j) ∈ ε denotes the
matching relationship between the i-th frame and the j-th frame, and the weights w store
information about the inter-frame relative transformation matrix T̃ij. N is the n-th frame of
the image. ∥∗∥2

F and ∥∗∥2
l2 are Frobenius norm and L2 norm, respectively. aij and bij are

optimized weights, while t̃ij and R̃ij (rotation matrix) belong to the planar rotation group

SO(2). T̃ij =

[
R̃ij t̃ij

01×2 1

]
and Tj =

[
Rj tj

01×2 1

]
.

The STN is utilized to optimize the residual transform and minimize the loss in
Equation (6). It has the ability to automatically perform spatial mapping transformations
and learn translations, scaling, rotations, and more general transformations. Its input
consists of a series of transformation parameters Tj and images, and its output is the trans-
formed image. For more information about the benefits of using STN to learn projection
transformations, please refer to [61].

Γ = arg min
N

∑
j=1

D

∑
i=1

ρ
j
i f
(

xj
i − ui, φ

)
∑a∈D ρ

j
a

+ λ
N

∑
j=1

d
(
Tj, θ

)
(6)

ui =
∑N

j=1 ρ
j
i x

j
i

∑N
j=1 ρ

j
i

(7)

Here, N is the n-th frame image, and D denotes the panorama resulting from absolutely
transforming all image frames after back-end optimization. The value of ρ

j
i indicates the

positional relationship of an image within a panoramic image. It takes a value of 1 when
there is overlap between the image transformed by the absolute transformation of the j-th
frame and the panoramic image, and 0 otherwise. f (., φ) is a differentiable robust error
function. xj

i is the pixel value at position i of the j-th frame of the transformed image, and ui
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is the average pixel value of all transformed images at point i of the panorama. λ > 0; the
parameter d(∗) is used to control a regularization penalty term, which projects the absolute
transformation matrix Tj computed from STN to a regular matrix θ.

Figure 3 shows the panoramic background image obtained from the above global
motion compensation process. By comparison, it is evident that the proposed method
achieves more refined inter-frame motion compensation results and a more complete
panoramic background image.

Figure 3. Panoramic background image: (a) shows the panoramic image obtained by inter-frame align-
ment only, (b) shows the panoramic image after global optimization, and (c) shows the panoramic
image after global optimization and residual transformation.

3.3. Local Spatial Detection

The foreground–background detection problem in the context of a moving camera
can be simplified to the standard static camera foreground–background detection prob-
lem through motion compensation. The RPCA is commonly used for foreground object
detection. Its core idea is to decompose the noise-containing matrix (video sequence) into
a low-rank matrix (background of the video sequence) and a sparse matrix (foreground
of the video sequence). Thus, the projected transformed image data can be decomposed
as follows:

min
L,S

∥L∥∗ + ζ∥S∥1 s.t. M = L + S (8)

where ∥.∥∗ represents the nuclear norm of the matrix, ∥.∥1 represents the L1 norm of the
matrix, and ζ is the parameter that controls sparsity. The matrix solution process can be
optimized using the Alternating Direction Method of Multipliers (ADMM) [62].

When the RPCA is used directly for a panoramic image, it frequently results in
excessive computational complexity and insufficient memory. Therefore, the method
divides the panorama size into several smaller sliding windows. Each window is shifted
by z pixels horizontally or vertically, as shown in Figure 4.

All images are transformed by absolute projection to their corresponding positions
on the panoramic image. The RPCA is applied to compute the local window background
image for the area where the image coverage of the sliding window exceeds κ. During
background subtraction, the local windows of the transformed image area are stitched
together to obtain a local background image. The subtraction is performed between the
transformed image area and the local background image within a range of k pixels around
it. The minimum difference is computed as the final position, as shown in Equation (9):

arg min
D′

∑
i=1

|xi−c − pi| (9)

where D′ represents the area obtained after performing absolute projection of the image,
i denotes the pixel position at a certain point within the area, and c represents the offset
distance from the pixel point i. The valid range for c is [0, k]. x is the pixel value of the pixel
point of the image at position i − c, pi is the local background pixel value corresponding to
the x position. By varying the value of c, the minimum value of Equation (9) is obtained as
the precise adjustment position.

Due to the lack of illumination in the shadow area of moving objects, the pixel values
exhibit local inconsistency. We define Th as the consistency of changes between the current
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frame and the local background, which is used to eliminate shadow areas during the
background subtraction process.

Th =
1

N + M

i=x+N

∑
i=x−N

i=y+M

∑
i=y−M

(I(i, j)− B(i, j)− δ(x, y))2 (10)

Here, I(i, j) represents the pixel values at the position of the moving object in the panoramic
image, while B(i, j) represents the pixel values of the local background that are consis-
tent with the position of the moving object. The local difference between two frames is
computed by averaging the pixel differences within a rectangular area (N × M) around
the corresponding pixels (x, y). This average is denoted as δ(x, y). If Th exceeds a certain
threshold, it is considered that the point on the motion object corresponds to a shadow.

Figure 4. The green bounding box indicates the position of the image frame in the panorama. The red
bounding box represents a sliding window, which only computes the overlap between the sliding
window and the transformed image (with an overlap area larger than κ). The non-overlapping areas
(black areas) within the red bounding box and the areas outside the red bounding box are excluded
from the computation. The results are then saved for each window.

3.4. Spatial Information Fusion

During local spatial subtraction, there is a possibility of low recall due to the similarity
between the object pixel color and the background. By incorporating optical flow segmenta-
tion techniques, it is possible to accurately extract pixels of moving objects with high recall,
even when their intensities are close to the background. The proposed method effectively
integrates optical flow and background spatial information to optimize situations involv-
ing foreground false alarms, detection omissions, and unclear boundaries. The proposed
method combines optical flow and background spatial information to optimize foreground
false alarms, detection misses, and unclear boundaries. It aims to achieve a better balance
between sensitivity and specificity in object detection.

Edge segmentation is performed on the coarse foreground and visualized optical flow
field maps resulting from the above process. The degree of segmentation is determined
based on the changes in the areas (adjacent areas of edge pixels) in the binary image, and
the number of areas increases as the segmentation degree deepens. Then, at a different
degree of segmentation, the intersection over union (IoU) between the two image areas is
calculated based on whether they are adjacent in position. The final segmentation degree is
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determined by selecting the segmentation degree with the highest IoU. In other words, the
binary segmentation degree that achieves the most stable changes in area blocks is selected
for refining the foreground with greater precision. Thus, the area block division problem is
solved by using the method of element grouping, and each area block is enclosed within a
minimum enclosing circle. The binary processing and area segmentation results are shown
in Figure 5.

Figure 5. Spatial classification results. Different segmentation areas are indicated by different colours.

After selecting the binary areas of the visualized optical flow field and the coarse
foreground image, the corresponding areas between the two images are evaluated. This
evaluation is based on the distance between their centroids and the radius relationship.
The areas that satisfy Equation (11) are retained, while the areas that do not satisfy it
are discarded.

α|d|+ β|r1 − r2| < σ (11)

Here, d is the centroid distance between the corresponding areas of the two images, r is the
respective radius, and α and β are the weights of the corresponding centroid distance and
radius. Since the focus here is on the accuracy of the position, a higher weight is assigned
to the centroid distance d compared with the weight assigned to the radius. The threshold
value is denoted as σ.

Once the correct areas are identified, an iterative segmentation is performed using
interactive GraphCut algorithms, such as GraphCut [63], OneCut [64], and GrabCut [65],
on the minimum bounding rectangles of the selected areas. This process results in a refined
foreground image, as shown in Figure 6.

Figure 6. Interactive segmentation result: (a) shows the location situation after area selection, and
(b) applies the GraphCut algorithm to the selected regions.
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4. Experiments

In this section, we conducted extensive experimental evaluations on three datasets
featuring fixed, jittery, and moving cameras, i.e., CDNET2014 [66], FBMS-59 [40], and
CBD [67]. These datasets consist of various video sequences capturing both rigid and non-
rigid moving objects from PTZ cameras, handheld cameras, and unmanned aerial vehicles
(UAVs). Our method was also compared with state-of-the-art methods from recent years
through qualitative and quantitative evaluations. Typical images from the experimental
dataset are shown in Figure 7. Our experiments are run on a Windows 10 PC with AMD
Ryzen 7 4800U with Radeon Graphics 1.8 GHz. The processing time for our computation is
approximately several seconds per frame.

Figure 7. Typical frames of selected datasets.

4.1. Dataset and Metrics

The CDNET2014 [66] dataset is a dedicated video dataset for evaluating MOD methods
with relatively fixed video capture devices. The dataset consists of 53 video sequences,
categorized into 11 different complex background scenarios encountered in indoor and
outdoor surveillance video environments, including Bad Weather (BW), Baseline (BL),
Camera Jitter (CJ), Dynamic Background (DB), Intermittent Object Motion (IOM), Low
Framerate (LF), Night Videos (NV), Pan–Tilt–Zoom (PTZ), Shadow (SH), Thermal (TH),
and Turbulence (TU).

Then, the FBMS-59 [40] dataset is a collection of 59 video sequences specifically
designed for motion segmentation. During the video capture process, the camera is in
motion, involving translation, rotation, and scaling transformations. Similar to other
methods that use partial data from the FBMS-59 dataset as a testing benchmark, the
experiments were conducted only on the most commonly used video sequences (cars1-
cars8, dogs01, dogs02, people1, and people2) [34,54,57]. There are two main reasons for
this: (1) In some video sequences of the dataset, there are multiple moving objects present.
However, only a subset of these objects is used for evaluation purposes, as including all
of them would introduce additional false positives that could impact the final detection
results. (2) A significant portion of the image (>70%) is occupied by foreground objects,
which poses initialization challenges for most algorithms.

Then, the CBD [67] dataset is a collection of video sequences designed for MOD. It
consists of five different scenes, including crowds, traffic, and other real-world moving
objects. The presence of occlusions in the scenes poses significant challenges for MOD.

Similar to other papers, the R (Recall), P (Precision), and Fm (F-measure) metrics
have been used for evaluation. R and P are measures of completeness and accurateness,
respectively. Fm is a combination of R and P. These metrics are defined as follows:

R =
TP

TP + FN
P =

TP
TP + FP

Fm = 2 × PR
P + R



Sensors 2024, 24, 2859 11 of 21

where TP, FP, and FN indicate true positive, false positive, and false negative, respectively.
TP is the number of pixels correctly detected as foreground (moving object area). FP is
the number of background pixels incorrectly detected as foreground. FN is the number of
foreground pixels incorrectly detected as background.

In addition, we set the inter-frame matching number n to 5, the overlapping pixel
threshold ρ to 15, the penalty term coefficient λ to 0.5, the sparsity control parameter ζ to
0.6, the offset range k to 5, α and β to 0.4 and 0.6, and sigma to 10. All parameter settings
were fixed for all experiments to ensure the consistency and reproducibility of our results.

4.2. Experimental Analysis of MOD under Fixed and Jittered Cameras
4.2.1. Quantitative Analysis

In this paper, our method is compared with state-of-the-art methods, including in-
cPCP [7], SWCD [9], AdMH [10], FBS-ABL [6], t-OMoGMF [5], FgSegNet v2 [18], and
BSUV-Net [17] for quantitative analysis under fixed cameras on the CDNET2014 dataset.
These methods represent typical, recent mainstream, and deep learning methods. The Fm
values of each method in different categories of the CDNET2014 dataset are presented in
Table 1. According to Table 1, it can be observed that our method achieves better perfor-
mance in most video categories. The average performance of our method outperforms all
comparison methods, with an Fm of 0.8027. It demonstrates overall robustness, performing
well in categories such as BW, BL, DB, PTZ, and SH. Compared with the second-best
method BSUV-Net, which performs remarkably well in fixed scenes, our method has in-
creased the average Fm by 0.0159. In the BL category, the BSUV-net achieves an impressive
Fm of 0.9693. However, its performance in the PTZ category is less satisfactory, with an
Fm of only 0.6282. The decrease in detection accuracy in the PTZ category is due to the
non-rigid transformations that foreground objects may undergo in such scenarios. More-
over, the BSUV-Net heavily relies on the quality of semantic information, which needs to be
incorporated as prior knowledge during training. Therefore, its detection performance is
highly dependent on the quality of semantic information. Meanwhile, the traditional back-
ground model-based methods such as SWCD, FBS-ABL, incPCP, AdMH, and t-OMoGMF
also exhibit unsatisfactory detection performance in the PTZ category. In the category
BW, it can be seen that our method can still accurately detect moving objects under bad
weather conditions, with a detection accuracy reaching 0.8873. The proposed method in
this paper fully utilizes spatial information for complementary advantages and reduces
the impact of non-rigid transformations. The deep-learning-based method FgSegNet v2
shows low overall detection accuracy in unsupervised scenarios, making it difficult to
detect well-defined foreground objects.

Table 1. Quantitative analysis of the Fm values for each method on the CDNET2014 dataset. To denote
the best Fm for each category of videos, use bold formatting, and for the second-best, use underline.

Methods Videos
BW BL CJ DB IOM LF NV PTZ SH TH TU Overall

incPCP [7] 0.7324 0.8287 0.5684 0.6844 0.5691 0.5767 0.4736 0.6514 0.7154 0.7436 0.6247 0.6524
SWCD [9] 0.8233 0.9214 0.7411 0.8645 0.7092 0.7374 0.5807 0.4545 0.8779 0.8581 0.7735 0.7583

AdMH [10] 0.5600 0.7900 0.7150 0.7750 0.4900 0.4500 0.2600 0.0900 0.6900 0.6900 0.6325 0.5584
FBS-ABL [6] 0.8106 0.8649 0.5298 0.7424 0.7232 0.6328 0.5272 0.3267 0.8671 0.6619 0.5564 0.6585

t-OMoGM [5] 0.7649 0.8027 0.7060 0.7126 0.7348 0.7418 0.5413 0.5843 0.6143 0.7346 0.5466 0.6789
FgSegNet v2 [18] 0.3277 0.6926 0.4266 0.3634 0.2002 0.2482 0.2800 0.3503 0.5295 0.6038 0.0643 0.3715

BSUV-Net [17] 0.8713 0.9693 0.7743 0.7967 0.7499 0.6797 0.6987 0.6282 0.9233 0.8581 0.7051 0.7868
OURS 0.8873 0.8724 0.7962 0.8759 0.6751 0.7618 0.6584 0.8032 0.9376 0.7791 0.7825 0.8027

From Table 1, it can be observed that most methods perform poorly in the NV and
IOM categories. This is because the NV category contains strong glare halos due to low
visibility. In the IOM category, methods may mistakenly identify long-term stationary
foreground objects as background, which significantly affects the detection performance.



Sensors 2024, 24, 2859 12 of 21

Additionally, we specifically analyze the impact of the camera jitter and perform
performance analysis using four camera jitter video sequences from the CDNET2014 dataset:
badminton, boulevard, sidewalk, and traffic. The quantitative comparative analysis results
are shown in Figure 8. According to Figure 8, our proposed method demonstrates favorable
performance on the jitter video sequences. Compared with other methods, our approach
achieves Fm values above 0.7 for each video sequence class, with an average value of 0.7962,
showing a better detection performance. In contrast, the values obtained from AdMH
indicate the instability of its detection performance. When there is significant camera
jitter and image frame blur in a video, as seen in the “sidewalk” example, the detection
performance of most algorithms suffers. In contrast, our proposed method maintains a
relatively stable detection level overall.

Figure 8. Performance of our method compared with other methods on jittery video sequences.

4.2.2. Qualitative Analysis

Figure 9 shows the foreground results obtained by our method on each category of
the CDNET2014 dataset. Our method shows superior performance in detecting foreground
object contours for the video categories BL, PTZ, BW, SH, CJ, and DB, independent of
external environments such as bad weather. Notably, it exhibits the ability to accurately
detect smaller foreground objects, such as LF. In the categories of IOM, TH, and TU, a few
instances of false positives were detected. However, overall, our method demonstrates
improved robustness in background restoration, as well as reduced noise and shadow
effects in video frames. It exhibits strong adaptability to various conditions. The foreground
objects detected in the PTZ and NV categories are slightly larger than the ground truth.
This is due to the inherent perspective changes that occur as the objects move, causing
shape deformations. Additionally, the pixel similarity between the shadow areas of these
objects and the background limits the effectiveness of local inconsistency detection, as
discrepancies of less than 5 pixels are insufficient to trigger such detections.
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Figure 9. The foreground detection results of our method on the CDNET2014 dataset.

The experiment also included testing on the office video sequences from CDNET2014
under different illumination conditions, and the results are shown in Figure 10. It can
be observed that the larger the illumination scaling factor |Alpha| value, the clearer the
contours shown in the residual images. This indicates a greater disparity in illumination
conditions between the illumination images and the adaptive background image. By
adaptively processing multiple image frames, our method gradually obtains the most
suitable background condition, demonstrating a certain level of resistance to variations
in lighting.

Figure 10. Performance tests with different illumination conditions: (a) is the original image sequence.
(b) is the collection of images processed with different illumination scaling factors (Alpha). (c) is the
background image obtained by our method under different illumination. (d) is the corresponding
residual images.
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4.3. Experimental Analysis of MOD under Freely Moving Cameras

Tables 2 and 3 show a performance comparison of our method under moving cameras
with MLBS [57], IFB [58], JA-POLS [37], Sugimura [31], CAG-DDE [51], DS-Net [48],
LOCATE [45], and LTA [52] on the FBMS-59 and CBD datasets. CAG-DDE and DS-Net
are deep learning methods that use optical flow features as inputs. The average value
of multiple measurements is taken as the final Fm. In the IFB algorithm, specifically, the
average of the SIFT, SURF, and KAZE feature matching algorithms is used as the final
result. Figure 11 qualitatively illustrates the comparative results of various methods on
typical frames from the FBMS-59 dataset.

Table 2. Quantitative Analysis of the Fm values for each method on the FBMS-59 dataset. To denote
the best Fm for each category of videos, use bold formatting, and for the second-best, use underline.

Methods Videos
cars1 cars2 cars3 cars4 cars5 cars6 cars7 cars8 dogs01 dogs02 people1 people2 Overall

MLBS [57] 0.9204 0.9016 0.9316 0.9155 0.8662 0.9223 0.9117 0.8593 0.8200 0.8200 0.8138 0.9434 0.8855
IFB [58] 0.6700 0.8167 0.6900 0.8267 0.7333 0.6267 0.7482 0.7103 0.7837 0.9200 0.5626 0.7315 0.7350

JA-POLS [37] 0.5325 0.6587 0.6851 0.7189 0.5126 0.5178 0.4548 0.3671 0.6376 0.3149 0.6012 0.6493 0.5542
Sugimura [31] 0.9010 0.9020 0.9550 0.8740 0.9090 0.8790 0.9150 0.9210 0.8143 0.8285 0.8020 0.8820 0.8819
CAG-DDE [51] 0.9312 0.9186 0.6605 0.9110 0.4358 0.8634 0.8946 0.9371 0.8154 0.8146 0.8738 0.8454 0.8251

DS-Net [48] 0.8922 0.7268 0.4965 0.9089 0.9154 0.8639 0.9146 0.8814 0.7548 0.8459 0.9074 0.8154 0.8269
LOCATE [45] 0.8742 0.7589 0.8473 0.6146 0.9018 0.8356 0.8842 0.8174 0.7732 0.7958 0.8092 0.8467 0.8132

LTS [52] 0.7598 0.5178 0.6734 0.5489 0.8067 0.7256 0.5874 0.6793 0.7421 0.7972 0.8126 0.8298 0.7067
OURS 0.9359 0.9225 0.8846 0.9231 0.9168 0.9384 0.9389 0.9293 0.8530 0.8661 0.8358 0.8965 0.9034

Table 3. Quantitative analysis of the Fm values for each method on the CBD dataset. To denote the
best Fm for each category of videos, use bold formatting, and for the second-best, use underline.

Methods Videos
Drive Forest Parking Store Traffic Overall

MLBS [57] 0.6595 0.7220 0.8366 0.8628 0.4819 0.7126
JA-POLS [37] 0.2101 0.1584 0.1456 0.2876 0.3487 0.2301
Sugimura [31] 0.8880 0.8300 0.8110 0.7590 0.5580 0.7690
CAG-DDE [51] 0.0765 0.8507 0.4123 0.2458 0.5714 0.4313

DS-Net [48] 0.2654 0.8546 0.1769 0.1137 0.0624 0.2946
LOCATE [45] 0.6813 0.7139 0.4661 0.6764 0.5312 0.6138

LTS [52] 0.3488 0.6795 0.2746 0.5163 0.3867 0.4224
OURS 0.7968 0.8159 0.8566 0.8743 0.6381 0.7963

Figure 11. Qualitative comparison of the proposed method with other MOD methods on FBMS-59
dataset. From left to right: Original, Ground Truth, MLBS [57], IFB [58], JA-POLS [37], Sugimura [31],
CAG-DDE [51], DS-Net [48], LOCATE [45], LTS [52], and our method.
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As can be seen from Table 2, our method outperforms the compared methods in most
of the video sequences, achieving an overall detection accuracy 0.0179 higher than that of
the second-best method. Particularly, it demonstrates strong robustness in the case of rigid
motion video sequences, such as cars1–cars8. For non-rigid motion (e.g., people and dogs),
the IFB and JA-POLS methods may produce partial false negatives in the foreground due
to static areas within the moving objects. Consequently, the Fm values for these methods
are only around 0.6. MLBS and Sugimura use hybrid methods to handle moving objects,
no longer relying solely on a single technique for detection, which allows them to adapt
better to complex environments. Even so, these two methods are not as effective as our
method in detecting both rigid and non-rigid motions. Our method effectively combines
the advantages of background and optical flow segmentation, mitigating the impact of
non-rigid motion to a certain extent. Due to the limited number of video frames, the
IFB and JA-POLS methods lack sufficient images to generate statistical models, which
affects the extraction of foreground objects. JA-POLS is also prone to the influence of the
surrounding environment and background color, leading to the occurrence of holes in the
foreground objects. Further, LOCATE relies on optical flow information for detection, thus
the obtained object information is coarse. On the other hand, the method LTS primarily
relies on pixel changes to detect foreground objects. Therefore, its detection performance
may be affected in dynamic background situations, resulting in an overall accuracy of only
0.7067. From Figure 11, it is evident that the proposed method combines the advantages
of low-rank matrix decomposition and optical flow to effectively eliminate foreground
false alarms and obtain accurate foreground contours. Particularly, for rigid motion (such
as cars), it exhibits a better ability to restore its original shape. The methods CAG-DDE
and DS-Net, similar in nature, achieve an Fm of over 0.9 for larger objects. However,
the detection performance significantly deteriorates when multiple moving objects are
present in the scene or when the size of the moving objects is small (such as cars3 and
cars5). Furthermore, the performance was evaluated on the occlusion dataset CBD, as
shown in Table 3. The proposed algorithm maintains steady performance even in complex
background circumstances on mobile cameras. It faces challenges in detecting moving
objects with significant occlusions, which proves to be difficult for methods like JA-POLS,
CAG-DDE, DS-Net, LOCATE, and LTS.

4.4. Analysis of Spatial Fusion Threshold and Ablation Study
4.4.1. Analysis of Threshold σ for Spatial Information Fusion

The spatial relationship in spatial information fusion is determined by the threshold
parameter σ in Equation (10). Figure 12 shows the variation in precision and recall for
different σ. From the graph, it can be observed that the accuracy and recall remain relatively
stable in the range of 2–18 for σ. This allows Fm to maintain a high level of measurement
accuracy. However, once the threshold value exceeds 18, the accuracy starts to decrease
significantly. This is because increasing the threshold expands the spatial matching range,
causing more background pixels to be classified as foreground objects, leading to an increase
in false positives.

4.4.2. Ablation Study

We set up Test1–Test5 to verify the effectiveness of the global motion compensation
optimization and the interactive graph cut algorithms (GraphCut, OneCut, and GrabCut)
in our method. All three algorithms possess good interactivity and controllability, enabling
easy integration with our algorithm to guide them in image segmentation. They all adopt
a global optimization strategy, allowing for the consideration of relationships between
pixels at a global scale, thereby obtaining accurate segmentation results. We conducted
experiments using 12 representative video sequences (cars1–cars8, dogs01, dogs02, people1,
and people2) from the FBMS-59 dataset. The qualitative results of the experimental part are
illustrated in Figure 13. The quantitative evaluation of Fm values is presented in Figure 14.
In addition, the experiments also evaluated the average time performance of the three
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graph cut methods we used and other graph cut algorithms for single segmentation in the
video sequence “cars1” with a resolution of 640 × 480. The results are presented in Table 4.

Figure 12. Precision and recall curves for different values of the threshold parameter σ.

From Figure 13, it can be observed that, compared with using only projective transfor-
mation, our proposed motion compensation optimization method improves the accuracy of
foreground object detection and reduces some false positives. Furthermore, the combination
with graph cut clearly demonstrates a significant improvement in detection performance.
Moreover, as shown in the quantitative results of the algorithm modules in Figure 14, it can
be observed that, in terms of segmentation accuracy, the OneCut and GrabCut segmenta-
tion algorithms outperform the GraphCut algorithm overall. The performances of OneCut
and GrabCut segmentation are comparable, with both achieving similar segmentation
results. Table 4 reveals that, under the same experimental conditions, the OneCut algorithm
exhibits slightly faster time performance compared with GrabCut. However, consider-
ing that OneCut and GraphCut perform single segmentation, while GrabCut allows for
multiple iterative segmentations, GrabCut demonstrates better control over details and
can handle more complex segmentation scenarios. Therefore, when conducting experi-
ments, a reasonable choice should be made based on the specific circumstances. Moreover,
compared with other methods using graph cuts, our approach maintains a considerable de-
tection speed even with limited computational resources (Windows 10 PC with AMD Ryzen
7 4800U with Radeon Graphics 1.8 GHz). Optimization measures such as object pooling and
caching were implemented in the code to improve memory usage efficiency (peak memory
usage is 341.2 MiB, and incremental memory usage is 227.9 MiB). We believe that these
results highlight the robustness and applicability of our approach, even under challenging
computational conditions. In the future, running our experiments on a more powerful
server will significantly reduce processing times and improve overall performance.



Sensors 2024, 24, 2859 17 of 21

Figure 13. Test 1 represents the usage of only the projection transformation and local background
subtraction. Test 2 involves the addition of the motion compensation optimization framework and
local background subtraction. Tests 3, 4, and 5 denote the incorporation of local spatial information
fusion based on Test 2, employing different interactive graph cut algorithms (GraphCut, OneCut, and
GrabCut), respectively.

Figure 14. Comparison of qualitative results of ablation experiments.

Table 4. Average time performance of different interactive graph cut algorithms for one-time segmen-
tation. The best performance is in bold and the next best performance is underlined.

Method GraphCut [63] OneCut [64] GrabCut [65] MLBS [57] JA-POLS [37] Sugimura [31] LOCATE [45]

Time (ms) 7101.96 1369.52 2847.61 6856.73 16,913.64 5178.46 411.29

5. Conclusions

In this paper, we have proposed a novel motion object detection algorithm for mobile cam-
eras that effectively integrates local and global visual information for foreground/background
segmentation. The superiority of the method is demonstrated qualitatively and quanti-
tatively through experiments using three public datasets. The experimental results show
that the model performs well in various challenging scenarios, including poor illumination
conditions, abrupt changes in illumination, camera jitter, shadows, and both fixed and
mobile cameras. The model exhibits good performance and scalability. As our method
relies on the differentiation of pixel points to identify continuously moving objects, it is
challenging to detect disguised or intermittent moving objects effectively. In future work,
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we plan to incorporate object feature information such as shape, texture, and motion pat-
terns to complement pixel-level analysis. By leveraging richer feature representations, the
more accurate and robust detection of moving objects could be achieved, particularly in
scenarios where traditional pixel-based methods may struggle. These enhancements may
not only improve the reliability of moving object detection but also extend the applicability
of our method to a wider range of dynamic scenes and environmental conditions.
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