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Abstract: Being motivated has positive influences on task performance. However, motivation could
result from various motives that affect different parts of the brain. Analyzing the motivation effect
from all affected areas requires a high number of EEG electrodes, resulting in high cost, inflexibility,
and burden to users. In various real-world applications, only the motivation effect is required for
performance evaluation regardless of the motive. Analyzing the relationships between the motivation-
affected brain areas associated with the task’s performance could limit the required electrodes. This
study introduced a method to identify the cognitive motivation effect with a reduced number of
EEG electrodes. The temporal association rule mining (TARM) concept was used to analyze the
relationships between attention and memorization brain areas under the effect of motivation from the
cognitive motivation task. For accuracy improvement, the artificial bee colony (ABC) algorithm was
applied with the central limit theorem (CLT) concept to optimize the TARM parameters. From the
results, our method can identify the motivation effect with only FCz and P3 electrodes, with 74.5%
classification accuracy on average with individual tests.

Keywords: cognitive motivation task; electroencephalography (EEG); motivation; temporal association
rule mining (TARM)

1. Introduction

Motivation is an essential state of mind that can enhance the attention and perfor-
mance of learners during their learning process. With the advantages of being motivated
to perform the task, many researchers have taken an interest in studying motivation. In
educational psychology, motivated individuals were found to have preferable traits that en-
hance their learning performance [1–5]. Renninger and Wozniak [1] studied the motivation
of children to the item of interest. They found that the high level of motivation the children
felt for the item contributed to increased attention, recognition, and recall performance.
Various studies [2–4] found that the motivation of the participants to demonstrate their
competence positively correlates with the actual achievement of the participants. This
type of motivation often occurs when they compare their performance to that of others. In
2022, Mussel [5] researched the curiosity of students, which is a factor leading to motiva-
tion. Their study’s results suggested that curiosity is significantly related to the student’s
academic performance.

In studies [1–5], motivation could occur from various motives, such as interest [1],
reward (grade, emotional self-rewarding) [2–4], or even curiosity [5]. Each of these motives
is a factor that can motivate us to perform the task. These motives affect different areas
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within our brain related to their activities. Various fMRI studies [6–8] have reported the
relationship of the brain areas and their activities related to these motives. Lee et al. [6]
studied the effects of intrinsic and extrinsic motivation. They found that reward (extrinsic
motivation) affects the right posterior cingulate cortex, which was hypothesized to be a
reward-based area. On the other hand, self-satisfying feelings (intrinsic motivation) were
found to affect the right insular cortex, which was hypothesized to be an emotion-based
area. Ulrich et al. [7] studied the motivation resulting from the challenge of the task. Their
research suggested various areas related to the process of motivation, including the puta-
men, related to the coding of increased outcome probability (probability to choose higher
reward outcome); the inferior frontal gyrus (IFG), related to a deeper sense of cognitive
control; the medial prefrontal cortex (MPFC), related to the decreased self-referential pro-
cessing; and the amygdala (AMY), related to the process of decrease in negative arousal.
The study of curiosity and interest by Lee and Reeve [8] found that the anterior insular
cortex (AIC) and striatum work together in an intrinsic motivation system. While AIC is
related to the subjective feelings resulting from the body, the striatum plays a crucial role in
reward processing. The striatum is also a central part of extrinsically generated motivation.
They also found a relationship between intrinsic motivation and the frontal areas of the
brain (e.g., dorsolateral prefrontal cortex, medial frontal gyrus), which is believed to be
related to higher-order cognitive processes.

The fMRI studies [6–8] help us understand various brain areas and their activities
related to different motives. However, for use in real-world situations, fMRI is inflexible as
the measurement due to the limitations of the equipment. EEG, which has advantages in the
combination of low cost and flexibility for use in the real-world environment, has become
one of the conventional equipments in motivation studies. These EEG studies [9–12] also
found similar results to fMRI studies that motivation could affect various areas depending
on the motives. The study of van der Ven et al. [9] investigated the N400 ERP component
of EEG on a reading task with the reward depending on the result. They found that C3, Cz,
C4, CP1, CP2, P3, Pz, and P4 from the central and parietal areas are electrodes influenced by
motivation. The motivation resulting from the challenging task was studied with the mean
amplitude of stimulus-preceding negativity (SPN, an ERP component) by Ma et al. [10] in
2017. They found that the challenging level of the task influenced F4, F6, F8, FC4, FC6, and
FT8 of the frontal area electrodes. Jin et al. [11] researched interesting/boring tasks with
P300 and feedback-related negativity (FRN) ERP components. They found a difference
between the interesting and boring cases in F1, Fz, F2, FC1, FCz, FC2, C1, Cz, and C2
electrodes with the FRN and C1, Cz, C2, CP1, CPz, CP2, P1, Pz, and P2 electrodes with
the P300 component. In 2018, Brydevall et al. [12] studied an information-seeking task, a
curiosity-based task, with a feedback-related negativity (FRN) ERP component. In their
study, Fpz, AFz, Fz, FCz, and Cz electrodes were found to be influenced by motivation.

Although EEG can also be used to detect various motivations relating to the learning
process [9–12], different motives leading to motivation affect electrodes in various brain
areas. In a real-world situation, such as in the classroom, we could not know the type
of motive that each learner has at a different part of the lesson. If we measure the effect
of motivation from all known motives, a high number of electrodes would be required.
However, for educational purposes, the type of motives may not be significant enough to
know; only the motivation effect on brain activities that lead to learning performance is
required. Since motivation could affect task performance, we have an idea to investigate
the motivation effect through the relationship among the brain areas associated with the
task performance affected by motivation (e.g., attention and recognition in the cognitive
motivation task). Even though the motive cannot be identified by this approach, the number
of electrodes required for measuring the effect of motivation could be reduced.

The cognitive motivation task was used as an example and was focused on in this study.
Therefore, the effect of motivation on the relationship between attention and memorization
brain areas was analyzed. Attention and memory tasks related to motivation were studied
by Robinson et al. [13]. In their study, attention was measured by response time with the



Sensors 2024, 24, 2857 3 of 20

Attentional Network Test (ANT), while the Newcastle Spatial Memory Test (NSMT) was
used to measure memory. The extrinsic motivation was known when the reward was given,
while the Intrinsic Motivation Inventory (IMI) questionnaire was used to measure intrinsic
motivation. With these measurements, they found that extrinsic and intrinsic motivation
improves the participant’s memory and attentional performance. Their results confirmed
that motivation is related to both the attention and memory performance of participants.
Additionally, the relationship between attention and memory was found in a top-down
process in the case of the successful formation of episodic memories [14,15]. Episodic
memory is related to the process of remembering the spatial and contextual features of
the visual scene stimulus. In this top-down process, the activation of the area within
the prefrontal cortex (attention-related area) leads to the activation of the area within the
parietal cortex (memory-related area).

The results of our previous study [16] on the cognitive motivation task with EEG
also confirmed the relationship of motivation with attention and memory in the study of
Robinson et al. [13]. In our previous study, the participants could freely decide whether
they wanted to remember the presented scenic stimulus. The participants were considered
as being motivated when they selected that they wanted to remember the stimulus and
not being motivated if otherwise. The recognition test was conducted afterward to confirm
the results of their motivation for each stimulus. It was found that when the participants
were motivated to remember the stimuli, there was a significant difference in attention and
memorization-related areas between the cases where they could and could not remember
the stimulus afterward. We found a longer continuous alpha desynchronization pattern in
the “being motivated and remembered” case than in the “being motivated but forgot” case. The
areas of interest are mainly around the frontal (attention-related area [17]) and left parietal
(memory encoding-related area [18]) part of the head, which will be represented by FCz
and P3 electrodes in this study. No difference was found among “not being motivated” cases
where the participants were not motivated to remember the stimulus. The results suggest
that motivation can affect both attention and memorization [13,16] and that the occurrence
of attention brain activity leads to memorization brain activity [14].

In this study, we further our investigation. We hypothesized that the temporal relation-
ship of brain activities between attention and memorization-related areas could identify
the effect of motivation on remembering the stimulus. With this hypothesis, the number
of electrodes is reduced to two, which includes the FCz and P3 electrodes. To find the
temporal relationship between two brain areas, the concept of Temporal Association Rule
Mining (TARM) [19], which is the idea of finding association rules or patterns between
two sequences while considering time constraints, could be useful. The TARM concept
has been successfully applied to various similar applications [20,21]. For example, in 2009,
Hojung et al. [20] tested a TARM-based method with the Saccharomyces cerevisiae cell
cycle time-series microarray gene expression dataset and found effective rules for the
KEGG cell-cycle pathway. In the field of intelligent transportation systems, Feng et al. [21]
proposed a hybrid temporal association rule mining method to predict traffic congestion
in a road network. Their experimental results showed high accuracy in the prediction of
traffic congestion levels.

We proposed a method based on the TARM concept to identify the motivation effect
from the temporal relationship of brain activities between attention and memorization
areas while the participants are being motivated. To determine the complex brain activity
relationship, the metaheuristic algorithms could be used to optimize the parameters of the
method. In this study, we employed an Artificial Bee Colony (ABC) [22] algorithm as an
example of the metaheuristic algorithm. The ABC algorithm is known for its performance
and simplicity; ABC requires relatively fewer algorithm parameters to adjust than other
metaheuristic algorithms while performing well on a variety of benchmark functions.
The concept of the Central Limit Theorem (CLT) [23] was applied to identify a suitable
representative of the method parameter set. The knowledge contributed by our work not
only validates the previous knowledge [13–15,17,18] but also provides a method to measure
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the effect of motivation with a reduced number of EEG electrodes. This contribution could
improve future related studies and applications to be more suitable learning services on the
individual level (personalized learning services). The knowledge from this study can be
applied to help reduce the cost of equipment and improve the flexibility of measurement
methods in the real-world environment while also lessening the burden on the users during
their learning process in future related studies as well as educational applications.

This article comprises four sections. Section 2 describes the raw data, experiment set-
ting, and cognitive motivation identification method based on the TARM concept. Section 3
provides the results, including the suggested optimized parameter set, accuracy of the
constructed model, feature analysis, and model validation. Finally, Section 4 discusses the
study’s findings, limitations, and conclusion.

2. Materials and Methods
2.1. Raw Data

To identify the effect of motivation that could lead to remembering the stimulus,
the EEG data from the motivation task are required for the analysis. The data used in
this study are identical to those used in our previous cognitive-motivation study [16].
More information on our publicly available dataset can be found in the “Data Availability
Statement” section. The participants comprised fourteen male and two female Asian
volunteers between 21 and 37 years of age. None of the participants have prior visual
perception or memory disorders. The data in this study were obtained from the cognitive-
motivational task that was separated into two parts: the cognitive experiment and the
recognition test. During the cognitive experiment, the Nihon Kohden Neurofax EEG-1100
equipment (NIHON KOHDEN CORPORATION, Tokyo, Japan) with 32 electrodes was
used to measure EEG data with a sampling frequency of 500 Hz. The experiments were
conducted in a room with no distractions. All experimental procedures and purposes were
disclosed to the participants before the experiments.

In the cognitive experiment, participants were presented with 250 random, unique
visual scenic stimuli, one by one. Each stimulus was presented for 3 s. Then, the participant
had to decide whether they wanted to remember the stimulus within 9 later seconds. With
this setup, the cognitive experiment was completed in around 50 min for each participant.
This estimation excludes the setup time and the short break requested by participants. The
participants could freely make their decision on whether they wanted to remember the
scene. The decision was used as an indication of their motivation; the trial is considered a
“being motivated” case when the participant chooses to remember the stimulus and a “not
being motivated” case if otherwise. Because motivation is the topic of the study, it depends
on the participants’ motivation towards the stimulus; hence, the number of trials between
two cases could be unequal for each participant.

In the recognition test, 500 random scenes, comprising 250 from the cognitive experi-
ment and 250 new scenes, were presented. The participants were asked to answer whether
they recognized the presented scene in the cognitive experiment. The answer from this test
indicated the motivation effect corresponding to their motivation for the stimulus in their
prior cognitive experiment. There are no time constraints in this recognition test. The brain
signals were not measured during the recognition test.

By relating the motivation of the participant to the corresponding results from the
recognition test, the data were categorized into four groups: “being motivated and remem-
bered”, “being motivated but forgot”, “not being motivated but remembered”, and lastly, “not being
motivated and forgot”. Since the purpose of this study is to analyze the effect of motivation,
“not being motivated” data were excluded. The total number of data epochs used in this
study is 1873 epochs from the “being motivated” case that resulted in 1429 remembered (RR)
and 444 forgot (RF) cases.
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2.2. Cognitive Motivation Effect Identification

To identify the effect of motivation on brain activities related to cognitive perfor-
mance, we designed the TARM-based method for EEG. Figure 1 shows the overview of
the method’s process. The processes are divided into two parts: the model construction
part, shown in Figure 1A, and the identification part, shown in Figure 1B. For the model
construction part, the EEG data are preprocessed to remove physiological noise, power
line noise, and eye-blinking artifacts. Only the epochs without saccade characteristics are
used for analysis. Because alpha desynchronization is known from the previous study [16]
to involve cognitive motivation, the preprocessed EEG epochs are transformed into ERSP
data to prepare for determining desynchronization trends. The ERSP data are moving
averaged to smoothen the spectral perturbation and to reveal the trend. Then, the trend
data are represented by discretized sequences. The details of the preprocessing steps are
described in Section 2.2.1. The discretized sequences are then analyzed to determine the
temporal relationship between two signals; the details are explained in Section 2.2.2. The
TARM concept is applied in this method to find the temporal relationship patterns. The
temporal relationship patterns are used to build classification models for classifying the
cognitive performance (whether the scene is remembered or forgotten); the details are
given in Section 2.2.3. However, EEG signals are highly complex; the method requires
some parameters along the processing pipeline to be optimized to obtain an effective clas-
sification model for identification. Section 2.2.4 describes the process for parameter and
model optimization. The output parameter set and classification model are then used in the
identification part. Figure 1B illustrates the procedure for the cognitive motivation effect
identification part.
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2.2.1. Preprocessing Steps

In this study, the EEG signals were analyzed by MATLAB R2014b (MathWorks, Natick,
MA, USA) with the open-source toolbox EEGLAB v13.4.4b [24]. MATLAB is a commercial
software that allows complex matrix manipulation and computation, which is suitable
for EEG signal processing. EEGLAB, which is the open-source toolbox working on the
MATLAB environment, provides comprehensive tools from visualization, processing, and
analysis to in-depth self-coding for specific studies. The preprocessing steps start with
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mapping the EEG signals to their corresponding electrode locations on the head model.
Then, the average referencing was conducted by subtracting the average potential of all
electrodes from each electrode at each time point. After that, both 0.5–50 Hz bandpass and
60 Hz notch filters were applied to remove physiological and power line noise, respectively.
The signals were then marked into epochs and labeled by the participants’ motivation
choices and recognition results regarding the scene stimuli. An epoch that has a signal
voltage higher than 500 microvolts (µV) or lower than −500 microvolts was considered
an abnormal value epoch and, thus, excluded from this study. The components related to
eye-blinking artifacts were analyzed using the Independent Component Analysis (ICA)
method and then selected and removed manually using the GUI tool of the EEGLAB
toolbox. After that, the epoch with the saccade characteristic was manually selected and
discarded. The epoch without response in the recognition test was also excluded. Finally,
there are 1094 RR and 332 RF case epochs in this study.

All remaining epochs were transformed into the time-frequency domain using the
Event-Related Spectral Perturbation (ERSP) method [25]. The average ERSP data across
the alpha band (8–12Hz) were used in this study. Note that the preprocessing steps up to
this point are the same as in our previous study [16]. Previously, we found that at the FCz
and P3 electrodes the continuous alpha desynchronization patterns of the RR cases are
significantly longer than those of the RF cases. Hence, the processed ERSP data from the
FCz and P3 electrodes were used as representatives for attention and memorization areas,
respectively, in this study.

To reduce the complexity of the preprocessed ERSP data, the Simple Moving Average
(SMA) method was applied. The trends were revealed. Nevertheless, a suitable SMA
parameter should be selected. This is one of the parameters to be optimized later. The data
were then discretized into sequences representing downward and upward trends. The
downward trend indicates the continuous desynchronization period, while the upward
trend relates to the synchronization period of the ERSP data. Each trend was represented by
the starting and ending time points. The data sequence is considered to have a downward
trend when all time points have continuously lower values than the preceding points.
Similarly, the data sequence with continuously higher values than the preceding points
is considered an upward trend. In this study, the downward trends of the FCz and P3
electrodes were analyzed as the potential attention and memorization sequences of interest.
The processes of preprocessing EEG data into discretized sequences for the cognitive
motivation effect identification method are shown in Figure 2. The bottom part of Figure 2
illustrates the examples of data output from each of the processes.
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2.2.2. Relationship Identification

The alpha desynchronization is known to relate to the attention state [26,27]. Based on
the findings in our previous study [16], the continuous alpha desynchronization patterns
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of the RR cases are significantly longer than those of the RF cases. In this study, we
hypothesized that motivation could lead the participant to continue paying attention to
the stimulus, which, in turn, resulted in stimulus memorization. It is anticipated that,
for the remembered cases, the attention downward sequences should occur before the
memorization downward sequences. According to Allen’s 13 temporal logics [28], there are
3 possible temporal relationships between attention and memorization sequences based on
this hypothesis: before, contain, and overlap. We explored the potential of these 3 temporal
relationships for the association rules between brain areas.

For each relationship, we measured the relationship level, which indicates the likeli-
hood that the relationship is related to the motivation that leads to the stimulus memoriza-
tion. For the before relationship, the first (attention) sequence must start and end before the
second (memorization) sequence starts. The longer the interval between the two sequences,
the less likelihood that the second sequence is the result of the first sequence. We set a
threshold window indicating that the two sequences are related. If the interval between the
two sequences is within the threshold window, the two sequences are considered related.
Hence, its relationship level is the ending time of the first sequence plus the length of the
threshold window and then minus the starting time of the second sequence. An example
of the before relationship in our study between the attention sequence (FCz downward
trend) and the memorization sequence (P3 downward trend) can be presented in Figure 3.
It should be noted that the suitable threshold window length is unknown; it is another
parameter to be optimized later.
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For the contain relationship, the first sequence starts before the second sequence but
ends later than the ending of the second sequence. The relationship level of the contain
relationship is the length of the second sequence. Figure 4 shows an example of a contain
relationship. Lastly, in the overlap relationship, the first sequence must also start before the
second sequence. The first sequence ends after the second sequence starts but before the
second sequence ends. The relationship level of this overlap relationship is the ending time
of the first sequence minus the starting time of the second sequence. An example of the
overlap relationship is shown in Figure 5.

The discretized sequences of epoch data from the FCz and P3 electrodes are determined
for these temporal relationships. An epoch can comprise multiple temporal relationships.
Therefore, the influence of each of these relationships must be considered together. In
this study, the method based on the concept of TARM was used to analyze the cognitive
motivation effect through these relationships.
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2.2.3. The Application of Temporal Association Rule Mining Concept

Temporal Association Rule Mining (TARM) [19] is used to identify the pattern of
relationship among items that occurred within the data while considering the temporal
constraint. Several parameters are required to consider the confidence of the identified rule.
The support threshold is used to consider whether the item has occurred frequently enough
to be considered an item of interest. The temporal support threshold is used to consider
whether the relationship between two items occurred for sufficiently long enough to be
considered as having a relationship of interest. Lastly, the confidence of the relationship is
indicated by the confidence value.

In this study, we applied the TARM concept to identify the temporal relationships
between attention and memorization as the effect of motivation resulting in stimulus mem-
orization. The attention downward sequences and memorization downward sequences are
the items to which we direct interest. The alpha desynchronization trend should continue
for a sufficient duration to be considered a pattern. The support threshold is the minimum
length of the downward sequence that is considered a pattern; the sequence shorter than the
support threshold is discarded. To our knowledge, the suitable sequence length is unknown.
Because the suitable sequence length for attention could differ from that for memorization,
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we used 2 support thresholds to determine the FCz and P3 downward sequences separately;
they are called the attention and memorization pattern length thresholds, respectively.

The temporal support threshold is the sufficient period of time that the attention down-
ward sequences relating to memorization downward sequences are considered to have a
relationship; a higher relationship level than the temporal support threshold is counted
as a relationship. There are 3 temporal support thresholds, one for each of the temporal
relationships described in Section 2.2.2. They are called the before-relationship length
threshold, contain-relationship length threshold, and overlap-relationship length threshold.

Based on the TARM concept, this method has 5 threshold values to be designed. When
including the moving average parameter and the before-relationship window size, men-
tioned in Section 2.2.1, there are 7 parameters to design in order to identify the association
relationships between attention and memorization. Table 1 includes all 7 method parame-
ters and their descriptions. Figure 6 shows the processes at which the required parameters
of this method are located.

Table 1. The method parameters of cognitive motivation effect identification based on the TARM
concept.

Method Parameter Name Related Process Description

Moving average window Moving average process To smoothen the spectral perturbation and reveal the
potential hidden trend

Attention pattern length thresholds Pattern of interest identification To identify the attention sequence that has a
sufficient alpha desynchronization trend

Memorization pattern length thresholds Pattern of interest identification To identify the memorization sequence that has a
sufficient alpha desynchronization trend

Before-relationship window size Relationship identification To identify the before relationship and calculate the
before-relationship level

Before-relationship length thresholds Relationship identification
To identify the before relationship resulting from the
effect of motivation and leading to stimulus
memorization

Contain-relationship length thresholds Relationship identification
To identify the contain relationship resulting from
the effect of motivation and leading to stimulus
memorization

Overlap-relationship length thresholds Relationship identification
To identify the overlap relationship resulting from
the effect of motivation and leading to stimulus
memorization
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The method filters the discretized downward sequences from the FCz and P3 elec-
trodes to remove the sequences shorter than the attention and memorization pattern length
thresholds. The FCz downward sequence that is longer than the attention pattern length
threshold is considered an attention sequence. Likewise, the P3 downward sequence longer
than the memorization pattern length threshold is considered the memorization sequence.
Then, the temporal relationships of all attention and memorization sequences are analyzed.
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The relationship with a lower relationship level than the corresponding threshold is dis-
carded. Finally, the remaining relationships are considered temporal relationships between
attention and memorization resulting from being motivated.

Due to the complexity of the brain, it is anticipated that the combination of temporal
relationships will be involved in cognitive motivation. We introduced the use of a classifi-
cation model built from the “being motivated” epochs to evaluate how well the combination
of temporal relationships could accurately identify whether the motivation could lead to
stimulus memorization. We used 6 features as input for the classification model, includ-
ing the occurrence number and relationship level of before relationships, the occurrence
number and relationship level of contain relationships, and the occurrence number and
relationship level of overlap relationships. The relationship occurrence numbers are related
to how often that attention resulting in memorization occurred while being motivated. The
relationship level, as described in Section 2.2.2, indicates the likelihood that the relationship
is related to the motivation that leads to the stimulus memorization.

The classification model construction can be chosen from a variety of methods. In
this study, we demonstrated our method with Support Vector Machine (SVM) as an exam-
ple; the “templateSVM” MATLAB function with auto kernel scale Radial Basis Function
(RBF) kernel was used. The output classification model from the method can be used to
predict whether the EEG input data acquired while being motivated can lead to stimulus
memorization afterward.

2.2.4. Method Parameter and Model Optimization

The 7 method parameters could affect the accuracy of the identification method. To
find the suitable values of these parameters and the acceptable classification model, the
Artificial Bee Colony (ABC) algorithm was used. The ABC algorithm is a population-based
metaheuristic optimization algorithm introduced by Karaboga [22]. The method is known
for its simplicity and flexibility in implementation and combination with other algorithms.
With these advantages, ABC was used as an example of a metaheuristic algorithm for the
model construction part of our method. The ABC method was inspired by the intelligent
foraging behavior of honeybees. The employed bees search for the positions of food sources
while remembering the position for future foraging. Information on the food source is
shared with the onlooker bees waiting at the hive. The onlooker bee selects its target
according to the quality of the food source and searches for food sources in the target
direction. When the employed bees and onlooker bees cannot find a better food source,
they abandon the food source and become a scout exploring in a random direction for a
new food source. In the ABC algorithm, onlooker and employed bees perform the search
in the specific search space (exploitation), while scouts perform the wide exploration.

Figure 7 illustrates the processes to optimize the parameter set and obtain the opti-
mized classification model; the processes in Figure 7 are related to Figure 1A but show
more details of how ABC was incorporated. The search space for the bees is 7 dimen-
sions for 7 parameters. The employed bee positions are randomly initialized. Then, the
method proceeds to perform a set of ABC iterations and terminates when the number of
iterations exceeds the specified maximum iteration. For each iteration, the employed-bee,
onlooker-bee, and scout-bee phases were performed to find a good parameter set. The
TARM-based processes used the best parameter set to identify temporal relationships and
build an SVM classification model. The accuracy of the classification model was used as
the food source quality.

Anuar et al.’s study [29] performed the ABC colony size tests ranging from 4 to 200
and suggested that the colony size should be at least 24. This study used a colony size
of 28, which is 4 times the parameter numbers. The 28 bees comprised 14 employed and
14 onlooker bees. The maximum iteration number was set to 200. The range of each
parameter was set based on the knowledge of our previous study [16] as 0 to 9 for the
moving average window; 30 to 100 ms for attention and memorization pattern thresholds;
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150 to 200 ms for before window size; and 30 to 100 ms for before-, contain-, and overlap-
relationship length thresholds.
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In the employed-bee phase, each employed bee performs a search near its employed
food source. In the onlooker-bee phase, each onlooker bee selects an employed-bee food
source position (parameter set) as the reference position to explore nearby areas. The
selection is based on the probability function weighed on the quality (classification accuracy)
of each food source [22]. A better-quality food source probably attracts more bees to
exploit it. The employed and onlooker bees search for a nearby food source with the same
calculation as mentioned in [22] but with different ranges. This study used 1/5 and 1/3 of
the nearest neighboring food sources as the search range for employed and onlooker bees,
respectively. Cosine similarity was used to identify these nearest neighboring food sources.
If the quality of the new food source is better than the previous position, the bee position
is updated. After both the employed-bee and onlooker-bee phases are finished, the scout
phase is started. In the scout phase, the number of times each food source has been visited
was counted. If any food source is visited exceeding a specified threshold, the employed
bee will abandon its position and become a scout, randomly selecting a new position.

By applying the ABC algorithm, the optimized parameter set required for the identifi-
cation method was obtained. However, there could be a bias problem resulting from the
difference in the data of each stimulus category during the classification model-building
process. In this study, the numbers of epochs in two motivated cases (RR and RF) are
different. This situation is especially common when the experimental categories are based
on the participants’ preferences, which can be varied and cannot be controlled. Using the
unequal numbers of data from each category for training and testing of the SVM method
could lead to obtaining a biased classification model. To avoid this problem, an equal
number of data from each cognitive motivation case were randomly selected as the training
and testing set. A total of 200 training data were used in the model-building process: a
hundred from the RR epochs and another hundred from the RF epochs. Another 50 random
epochs were selected from the leftover data, 25 from each category, to be used as the test set.

Because there is no known knowledge about the temporal relationship between at-
tention and memorization, the objective value that determines the quality of an ABC food
source is the classification accuracy of the model from the test set. Nevertheless, the different
sampled training and test sets can result in different classification accuracy and food-source
quality. In turn, the resulting parameter set can be different from one repetition to another,
or the same parameter set can give different classification accuracy from one sample set to
another. This problem could lead to an inaccurate selection of the optimized parameter set.

To ensure that the optimized parameter set obtained from the method can be used ef-
fectively in real applications in the future, we applied the Central Limit Theorem (CLT) [23]
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to mitigate the problem of variant outputs due to sampling variation. The problem resulted
from the different sample sets when the sampling process was used in the optimization
search process. With CLT, the method can identify the mean of population accuracy as
the representative. CLT is a probability theory that states that “as the sampling number
increases, the mean sampling distribution will increasingly become closer to a Gaussian
distribution”. These Gaussian or normal distribution data are concentrated around the
mean. In other words, with sufficiently large unbiased sample numbers from the whole
population (with a finite level of variance), the mean of all samples from the same popula-
tion will be (approximately) equal to the mean of the whole population. In this situation,
the mean or median is suitable to be used as the representative of the overall sampling
data and can also be used in exchange. In CLT, it is not feasible to state the exact sample
size sufficient for a general approximation. However, at least 30 sample sizes are often
suggested to produce an approximately normal sampling distribution from a non-normal
parent distribution [30]. Additionally, in case the population is normally distributed, it is
believed that if sampling at least 10 times, the sampling mean is able to assume a normal
distribution [31,32]. In this study, the normal distribution cannot be assumed due to the
possibility of varying relationship numbers and their temporal periods in each epoch. For
our data, the number of relationships and their temporal period of a relationship could be
affected by the other relationships within a limited attention period of 3 s. The longer a rela-
tionship, the lesser the temporal period available for the others. From the results in [30] and
the suggestion in [31,32], the sample sizes of 10 and 50 are used as the comparison cases.

In this study, we applied the concept of CLT to identify the population median of the
classification accuracies as the representative of the food source in the ABC algorithm. The
CLT concept was applied through the implementation of the repeated sampling training and
test set within the model-building process. Each sampling has its own model and accuracy.
The median from all the repeated resulting accuracies was used as the representative quality
of the food source in the ABC search process. Any food source with a Median Absolute
Deviation (MAD) higher than 0.03 is regarded as an unstable food source and excluded
from the quality update of the search process.

3. Results

This section presents the performance of the TARM-based method to identify the
cognitive effect of motivation with only two electrodes, FCz and P3. The results of ABC
with SVM, ABC with 10 times repeated sampling SVM (ABC-10RSVM), and ABC with 50
times repeated sampling SVM (ABC-50RSVM) were compared to find the best parameter set
and cognitive motivation identification model. These parameters can be used as guidelines
to configure parameters in the preprocessing steps, preparing the data before the model
classification process. Then, the temporal relationship features were analyzed. Finally,
the generalization performance of the best model was demonstrated using the data of
individual participants. The accuracy of our result model is validated to be 74.5% on
average with individual tests.

3.1. Cognitive Motivation Effect Classification Model Results and Parameter Set Suggestion

A set of seven parameters is required to be optimized. These parameters could affect
the performance of the motivation effect identification model. These parameters include
the moving average (MA) window, attention, and memorization pattern thresholds, the
before-relationship window threshold, the before-relationship length threshold, the contain-
relationship length threshold, and the overlap-relationship length threshold. We tested
each of the three ABC-applied methods for 10 rounds to identify their average classification
accuracies. These average classification accuracies will then be used as their performance
representative. For the representative classification accuracy of the parameter set (from each
round of the optimization), the median accuracy from 1000 random train and test sets was
used. Since a large number of random samples (1000) were tested for each parameter set, the
distribution of the results for each parameter set can be assumed to be a normal distribution
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according to CLT. The median accuracy from the accuracy results of all sampling is then
suitable to be used as the representative accuracy for each of these parameter sets. These
median accuracies for 10 times ABC optimization are presented in Table 2. Additionally,
detailed information on the best model and parameter set of each method is presented in
Table 3.

Table 2. The median accuracy results of 1000 sampling test sets for each parameter set for motivation
effect identification method.

Methods
Classification Accuracy

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Average

ABC-SVM 73% 71% 66% 72% 70% 72% 71% 72% 72% 72% 70.8%
ABC-10RSVM 74% 76% 80% 78% 71% 75% 75% 73% 75% 78% 75.5%
ABC-50RSVM 74% 73% 76% 80% 75% 76% 74% 77% 77% 76% 75.8%

The bold number is the highest accuracy of the method.

Table 3. The detailed information on the best results from each parameter and optimization model.

Methods

Window Threshold (ms) Accuracy (%)

MA
(pts)

Before
(ms)

Pattern
A

Pattern
B

Relationship
Min Max SD Mean Med [Q1, Q3]

Before Contain Overlap

ABC-SVM
(Round 1) 2 200 30 90 50 100 40 58 86 4.35 72.93 73 [70, 76]

ABC-10RSVM
(Round 3) 4 190 50 30 50 30 30 66 91 3.99 79.8 80 [77, 82.5]

ABC-50RSVM
(Round 4) 4 190 50 30 50 60 30 69 91 3.96 80.39 80 [78, 83]

With the results in Table 2, the results of the ANOVA test, comparing the 10-round
median accuracies from 16-participant sampling data of ABC-SVM, ABC-10RSVM, and
ABC-50RSVM methods, suggested that the classification accuracy of the ABC-SVM method
is significantly different from both ABC-10RSVM and ABC-50RSVM, with a P-value lower
than 0.01. Additionally, the results between ABC-10RSM and ABC-50RSVM are not signifi-
cantly different (p-value = 0.7771). The standard deviation results are 5.38%, 5.30%, and
5.18% for ABC-SVM, ABC-10RSVM, and ABC-50RSVM, respectively. The ABC-50RSVM
method has the lowest variance among tested methods. All of the best model results for
each method have an accuracy variance lower than 5%, as presented in Table 3. Addition-
ally, the ANOVA test of the SD variance comparison among the methods resulted in no
significant difference. The suggested parameters from ABC-10RSVM and ABC-50RSVM
are almost the same except for the contain-relationship threshold parameter, as presented
in Table 3.

Our results suggest that applying CLT to the ABC-SVM method can help us mitigate
the problem of variant outputs due to sampling variation. This improvement can leverage
the accuracy of the motivation effect identification model from our ABC-SVM with the
TARM-based method. Additionally, with the lowest variance and highest classification
accuracy, we suggested ABC-50RSVM for the cognitive motivation effect identification
method. The best model has a confidence of 80% classification accuracy. Please also be
aware that the 50 sampling number is not the magic number, and the number could vary
depending on the data distribution. However, even with the lower mean classification
accuracy (75.5% vs. 75.8%) and higher variance (5.30% vs. 5.18%) of the ABC-10RSVM
to the ABC-50RSVM method, the difference in both cases is not statistically significant.
With these results, it can be suggested that ABC-10RSVM can be used in the case of limited
time constraints in which lowering model-building execution time is required and a slight
variance classification accuracy is acceptable. Lastly, our parameter set suggestion is based
on the results from 10 rounds of ABC for each method for the scenic stimulus, which may
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not represent the general use in real-world applications. With this problem, we suggested
applying the ABC-RSVM process to build the model and identify the suitable parameter
set before the application is used for the first time. A case of validation for the general use
of the best model will also be presented later in this study.

From Table 3, the suggested parameters from ABC-50RSVM are a moving average
window equal to 4, 50 ms for attention pattern length threshold (FCz downward), 30 ms
for memorization pattern length threshold (P3 downward), 190 ms for before window size
threshold, 50 ms for before-relationship length threshold, 60 ms for contain-relationship
length threshold, and 30 ms for overlap-relationship length threshold. From this parameter
set, we attempted to identify the potential relationship feature that is highly distinguished
by the effect of motivation. These relationships could lead to the improvement of prepro-
cessing steps and model building in the later study.

The results of our study also give evidence that motivation influences the activities
within the brain differently in “being-motivated-and-remembered” and “being-motivated-
but-forgot” cases. This influence is affecting the brain activities related to FCz and P3
electrodes, which are related to attention and memorization areas within the brain. From
the knowledge of previous studies [13–16], we assumed the relationships from the attention
sequence occurred before the memorization sequence. With this assumption, the results in
this study give evidence that the brain activities in the attention area lead to the activities
in the memorization area by a top-down process while being influenced by the effect of
cognitive motivation. Unfortunately, the specific difference between brain activities of RR
and RF cases cannot be known from the results of our method. The problem is due to our
classification model using a combination of features from the attention and memorization
sequences to identify the effect of motivation. Unlike linear SVM, which can summarize
data with a set of parameters with fixed size (the weight coefficient), the transformation of
SVM with RBF kernels is based on the pairwise distances between the training points resulting
in the number of parameters growing with the size of the support vector, which makes it a
non-parametric method. Therefore, the importance of each relationship characteristic (i.e., the
weight coefficient in SVM) cannot be directly identified. However, the study tries to explore
how motivation affects brain activities differently by identifying the importance of a specific
feature in differentiating RR and RF cases in the next section.

3.2. Potential Feature Suggestion

To identify the difference between brain activities of RR and RF cases, we performed
a statistical test comparing RR and RF cases of each suggested classification model input
feature from the previous section. Because the temporal period of one relationship could be
affected by the temporal period of other relationships within a limited 3 s temporal attention
period, for example, the longer period of an overlap relationship leads to the shorter
remaining temporal period available for other relationships. Therefore, the relationship
features were not in the normal distribution. The Wilcoxon signed-rank test was used.
The results of this test are presented in Table 4. Note that the average relationship-level
feature of each relationship is not the input feature of our classification model. The average
relationship levels represent the mean relationship level of the relationship for each epoch.
They were only used to statistically analyze the difference between RR and RF in this section.

From the observation of our SVM input data, the before relationship is the pattern
that is always found in motivated cases; from 200 epochs of each case, all 200 RR epochs
and 198 RF epochs have a before relationship. There are 143 RR epochs and 135 RF epochs
with the contain relationship. Lastly, there are 187 RR epochs and 174 RF epochs with an
overlap relationship. This study hypothesized that the effect of motivation is affected by
the combination of multiple relationships in each epoch. However, the fact that before-
relationship patterns are found in most epochs could suggest that the occurrence of the
before relationship could be highly influenced by the state of being more motivated than
other relationships. In concordance with this observation result, the results of Table 4 also
suggest that only the “average before-relationship level” is significantly different between
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RR and RF cases; the average before-relationship levels of RR cases are higher than those of
RF cases. These results suggest that the brain activities of the RR cases had a memorization
pattern that occurred following the ending of the attention pattern sooner than in the RF
cases. However, the difference is at a 0.1 significant level, with a p-value equal to 0.07,
so we suggested exploring the conditions that could affect this occurrence in more detail
before using this knowledge in future studies.

Table 4. Wilcoxon signed-rank test result between RR and RF cases of each feature.

Features Z Asymp. Sig.
(2-Tailed)

Before-relationship occurrence number −0.906 p 0.365
Before-relationship level −0.219 p 0.827

Average before-relationship level −1.809 n 0.070
Contain-relationship occurrence number −0.668 n 0.504

Contain-relationship level −1.71 p 0.864
Average contain-relationship level −1.206 p 0.228

Overlap relationship occurrence number −0.845 n 0.398
Overlap-relationship level −1.103 n 0.270

Average overlap-relationship level −0.311 p 0.756
p: Based on positive ranks, n: based on negative ranks.

As additional information, this study presents examples of before relationships in
RR and RF cases in Figure 8. The examples are in the form of alpha frequency trend
data (upward and downward) mapped onto all electrodes of the sequential temporal
period head models. In Figure 8, the square symbol (■) represents the focused electrodes
used in this study, which are FCz and P3. The pentagram symbol (⋆) represents the FCz
electrode while having an attention pattern of interest, which is an attention pattern that
leads to memorization. The triangle symbol (▲) represents the P3 electrode while having
a memorization pattern of interest, which is the memorization pattern resulting from
being motivated and having attention. The dotted red box during 190–310 ms for RR
or 240–380 ms for RF represents the period between the ending of the attention pattern
and the start of the memorization pattern mentioned in the previous paragraph. Since
the before-threshold window has a fixed constant value, the distance between these two
patterns is the counterpart of the before-relationship level. The higher before-relationship
level is equal to the lower distance between the patterns. Figure 8 also shows that the RR
case has a longer alpha desynchronization pattern than the RF case, as mentioned in the
results of our previous work [16].
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3.3. Model Validation

Lastly, we verified the generalization of the suggested model with the individual
participant data. Since the RF case usually has a low number of epochs, only participants
with RF epochs higher than 25 were tested. The model was tested with data from six
participants, each with 1000 test sets. A test set comprised 20 randomly selected epochs
from the RR and RF cases each. The results of this test are summarized and presented in
Table 5.

Table 5. The results of individual test sets with the best model from the ABC-50RSVM method.

Participant
Accuracy (%)

Median Mean SD

1 85 85.44 5.51
2 80 81.35 6.11
3 70 70.78 7.52
4 70 70.60 6.96
5 65 64.27 7.32
6 50 51.47 7.79

The results suggest that our model can use only FCz and P3 electrodes to identify
the effect of motivation with 70.65% classification accuracy on average. The model can
classify the effect of being motivated acceptably for most participants, except for participant
number 6, whose classification accuracy result is lower than the others. This may be due
to age; brain alpha frequency becomes higher with age [33]. Participant number 6 is
33 years old, while the others are in their 20s. We tested the model with the data of another
participant who is 37 years old but who has a number of RF epochs lower than 25; this
participant was excluded from the validation participants. Because the number of RF
epochs for this participant is very low, we used five RR epochs and five RF epochs for
the test set. A classification accuracy of 53.11 percent was returned. The results indicate
that the identification model can be used for users in their 20s; separate models should be
constructed for different age ranges. Considering only participants in the 20s age range, the
model resulting from the proposed method can be used to identify the effect of motivation
on the individual participants with 74.5% mean classification accuracy.

4. Discussion and Conclusions

With the random scene selection in the experiment, the motivation leading to memo-
rization could be the result of various motives. Some scenes may have objects that interest
the participant as the motive [1]. Some participants may have a motive to demonstrate their
competence to gain a higher score than others [2–4]. Other motives could be that the scenes
have a unique artistic value that piques the curiosity of the participant or looks complex and
makes the participant feel challenged to remember them [5]. Even for the same individual,
the motive could be different given the change in time and situations. These differences in
motives can affect the various brain areas [6–12], which, in turn, results in high numbers of
EEG electrodes being required to identify the effect of motivation. Table 6 concludes the
motives related to cognitive motivation and the affected electrodes resulting from existing
EEG studies in the literature. In total, 28 electrodes would be required to measure all
listed motives.

Instead of focusing on the motives, we proposed to shift the focus to the effect of
motivation; the idea could allow us to use a smaller number of electrodes to measure in
real education applications. The low number of electrodes can help lessen the burden
on users and improve flexibility when used in a real-world environment. We previously
found that motivation can affect both attention and memorization [13,16] and that attention
leads to memorization [14]. In this study, we investigated the effect of motivation through
the temporal relationship between the associated brain areas with two EEG electrodes
representing attention and memorization.
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Table 6. The affected EEG electrodes of motivation effect resulting from motives.

Motives Author/Year Affected
Electrodes

Affected
Electrode
Number

Reward Ven et al., 2016 [9] C3, Cz, C4, CP1, CP2, P3, Pz,
and P4 8

Challenge Ma et al., 2017 [10] F4, F6, F8, FC4, FC6, and FT8 6

Interest Jin et al., 2015 [11]
F1, Fz, F2, FC1, FCz, FC2, C1,
Cz, C2, CP1, CPz, CP2, P1, Pz,

and P2
15

Curiosity Brydevall et al., 2018 [12] Fpz, AFz, Fz, FCz, and Cz 5

All listed motives -

F1, F2, F4, F6, F8, FC4, FC6,
FT8, Fz, FC1, FCz, FC2, Fpz,

AFz, C1, C2, C3, C4, Cz, CP1,
CP2, CPz, Cz, P1, P2, P3, P4,

and Pz

28

Using the proposed method, the cognitive motivation identification model can identify
the effect of motivation related to the cognitive performance of participants with 74.5%
accuracy when validated with individual participant test sets. The model can be used
for users in the 20s age range. Due to the complexity of human brains, the sampling
process for data can lead to the problem of variant output values. This study used CLT to
address this problem. The CLT-applied ABC-RSVM model from this method returned the
acceptable parameter set in Table 3 for analyzing the temporal relationship patterns among
the associated brain areas. Based on the acceptable parameter set, the results indicate that
when the participant is motivated, attention precedes memorization, with a higher average
before-relationship level in the RR cases than in the RF cases.

The findings of this study can be applied to help complement studies on the char-
acteristics of visual stimuli that lead to motivation [34–39] for later use in educational
applications. In educational applications, teaching materials are usually intended not only
to motivate the student but also to make sure that their key points can later be remembered.
By applying our model for the stimulus that was found to motivate the participants, the
predicted results of whether the stimulus will likely be remembered afterward can be
used to evaluate and help improve the teaching material in the future. Additionally, the
conventional cognitive tests (e.g., Newcastle Spatial Memory Test [13]) used in education
studies are usually performed without brain activity measurement. There could be various
effects that influence the cognitive results of the participant (e.g., information missing due
to the passage of time). However, using our method to identify the cognitive results based
on brain signals at the learning event can help in evaluating the stimulus and teaching
materials more efficiently by reducing the other influences between the event and the
testing time. By applying the knowledge from this study, the learning application can
adjust the stimulus (e.g., teaching materials) at the time of learning to be more suitable for
personalized learning services.

There are some limitations to this study. The participants are sampled from Asian
populations, which may not represent the general populations of other races. The age of
the users could also influence the performance of the application due to the difference in
alpha frequency with age [33]. The effect of age range and population race (e.g., Asian,
African, and European) are also topics of interest for future in-depth studies to address
this limitation. When more data are collected to cover different races and age ranges, we
suggest applying our method to identify the suitable parameter set and to construct the
identification model. Note that as the method in this study intended to identify the effect
of motivation with reduced EEG electrode requirements, the method cannot identify the
motive of their motivation during their learning process. The method requires data from



Sensors 2024, 24, 2857 18 of 20

motivated participants as inputs to identify their cognitive performance. Therefore, the
motivation of the user has to be identified before the process of this study. The method is
suggested to be used with the stimulus that is known to motivate the participant.
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