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Abstract: Sub-Nyquist synthetic aperture radar (SAR) based on pseudo-random time–space modula-
tion has been proposed to increase the swath width while preserving the azimuthal resolution. Due to
the sub-Nyquist sampling, the scene can be recovered by an optimization-based algorithm. However,
these methods suffer from some issues, e.g., manually tuning difficulty and the pre-definition of
optimization parameters, and a low signal–noise ratio (SNR) resistance. To address these issues, a
reweighted optimization algorithm, named pseudo-L0-norm optimization algorithm, is proposed
for the sub-Nyquist SAR system in this paper. A modified regularization model is first built by
applying the scene prior information to nearly acquire the number of nonzero elements based on
Bayesian estimation, and then this model is solved by the Cauchy–Newton method. Additionally,
an error correction method combined with our proposed pseudo-L0-norm optimization algorithm
is also present to eliminate defocusing in the motion-induced model. Finally, experiments with
simulated signals and strip-map TerraSAR-X images are carried out to demonstrate the effectiveness
and superiority of our proposed algorithm.

Keywords: sub-Nyquist synthetic aperture radar (SAR) imaging; error correction; optimization-based
algorithm; Bayesian estimation

1. Introduction

High-resolution wide-swath (HRWS) synthetic aperture radar (SAR) provides a short
repeat cycle so that it has a high-efficiency acquisition capability [1,2]. Although the
azimuthal multi-channel SAR [3] and multi-input multi-output (MIMO) SAR [4] can achieve
a high azimuthal resolution and wide-range swath, it has a large amount of data and a
large antenna. As the compressive sensing (CS) theorem posits [5–7], an innovative system
concept called sub-Nyquist SAR based on pseudo-random time–space modulation breaks
the limitation of the Nyquist sampling theorem with a single channel [8]. Simultaneously,
the spatial and temporal phase modulation based on the optimization-based algorithm
guarantees azimuthal resolution and wide-swath coverage mosaicked by several range
sub-swaths. It adopts sub-Nyquist sampling along the azimuthal dimension, and the
observed scene is recovered by sub-Nyquist SAR imaging [8].

In spite of the sub-Nyquist SAR achieving the above merits, sub-Nyquist SAR imaging
still has two limitations, as follows:

• Under the assumption of satisfying restricted isometry property (RIP) [9], CS algo-
rithms are vital to sub-Nyquist SAR imaging and include greedy algorithms [10,11],
the L1-norm optimization algorithms [12,13], and Bayesian-based methods [14–16],
where the L1-norm optimization algorithm has a better performance in terms of the
recovered error evaluated by the mean square error (MSE) [17–19]. Although the
L1-norm optimization algorithm has achieved a better-recovered performance, these
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methods still suffer from some problems, i.e., manually tuning difficulty and the
pre-definition of optimization parameters (e.g., regularization parameter and thresh-
olding parameter), and a low signal–noise ratio (SNR) resistance. However, these
CS methods do not take full advantage of the scene prior information that we may
hold, and sparse property is imposed uniformly and independently on each variable.
Some low signal–noise ratio (SNR) targets in the sparse scene cannot be accurately
recovered and it often yields false targets by the L1-based method. Although some
reweighted optimization-based algorithm has already been proposed [20,21], there
is still no knowledge of how and why to select an approximately fair rule in sub-
Nyquist SAR imaging to further mitigate the impact of empirical parameter setting on
reconstructed performance.

• In addition, the imaging process requires the knowledge of motion parameters, e.g.,
radar position and radar equivalent velocity [5]. However, the radar platform may
deviate from the pre-defined track, and the equivalent velocity is estimated by the
curve-fitting method or approximate expression in a practical application [22]; un-
certainties and errors may be introduced into the motion-induced model so that the
recovered scene may defocus to decrease the image quality [23–26]. A technology
called auto-focusing removes these phase errors [27]. In recent years, many sparsity-
driven algorithms [28–34] have been proposed to solve the defocusing problem and
achieve an effective performance. However, the references [28–33] do not fully for-
mulate the motion error and adopt an approximate expression so that the error is not
removed. The reference [34] integrated the deep SAR imaging algorithm to remove
the motion error.

In this paper, we propose a pseudo-L0-norm optimization algorithm based on Bayesian
estimation to further improve the sub-Nyquist SAR imaging performance. The proposed
algorithm penalizes the regularization item with the scene prior information, i.e., the
reciprocal of its previous solution, to nearly acquire the number of nonzero values. Since
this method approximates a L0-based algorithm, which needs to be minimized in the
sparse recovery, we named it a pseudo-L0-norm optimization algorithm. Sub-Nyquist SAR
imaging includes three steps: range compression, range cell migration correction (RCMC),
and azimuth compression [5]. The traditional matched filtering (MF) method is adopted
for range compression. After RCMC, a pseudo-L0-norm optimization algorithm is adapted
to achieve azimuth compression. This method not only takes advantage of the scene prior
information but also establishes an approximately fair penalized rule so that it can recover
low SNR targets and remove false targets compared to the L1-norm optimization algorithm.
In addition, an error correction method integrated with a pseudo-L0-norm optimization
algorithm eliminates the influence of phase error and improves the image quality. This
method includes two steps: scene recovery based on a pseudo-L0-norm optimization
algorithm and error estimation by minimizing the least-squares target function. The
two steps are successively iterative and the recovered matrix is updated according to the
estimated error. For the exact expression of error is not fully formulated, we use the random
phase error regardless of the error expression. The numerical simulation results are detailed
in the following sections to make an evident advantage of the proposed algorithm.

The rest of this paper is organized as follows. In Section 2, the observation model for
the sub-Nyquist SAR based on the pseudo-random time–space modulation is first described.
Then, we build a pseudo-L0-norm regularization model based on Bayesian estimation, and
this regularization model can be solved by the Cauchy–Newton method. Additionally,
an error correction method integrated with a pseudo-L0-norm optimization algorithm is
proposed to remove errors and eliminate defocusing. Simulation experiments and data
experiments with real TerraSAR-X images confirm the effectiveness and superiority of
our proposed method, presented in Section 3. In Section 4, the discussion shows the
performance and advantages of our proposed algorithm. Section 5 concludes this paper.
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2. Materials and Methods

In this section, the observation model of the sub-Nyquist SAR based on the pseudo-
random time–space modulation is described. To further improve the sub-Nyquist SAR
imaging performance, a pseudo-L0-norm regularization model is built and solved by the
Cauchy–Newton method to obtain a pseudo-L0-norm optimization algorithm. In addition,
an error correction method integrated with our proposed pseudo-L0-norm optimization
algorithm is proposed to eliminate the effect of the phase error and achieve autofocusing.

2.1. Sub-Nyquist SAR Imaging and Error Correction Signal Models Based on Pseudo-Random
Time–Space Modulation
2.1.1. Sub-Nyquist SAR Imaging Model

For traditional HRWS systems, e.g., the azimuthal multi-channel SAR [3] and MIMO
SAR [4], the equivalent sampling still satisfies the Nyquist theorem. To lower the amount
of data and break the conflict between high resolution and wide swath, the sub-Nyquist
SAR based on pseudo-random time–space modulation has been proposed [8]. The imaging
geometry of the sub-Nyquist SAR is shown in Figure 1, where η is slow time along the
azimuth and Ri(η) represents the range between the radar and the point target located at
the coordinate (xi, yi, 0) at the azimuth time η. xi and yi denote the azimuth and range
coordinates, respectively. Because a two-dimensional image, i.e., azimuth and range, is
considered, the coordinate (xi, yi, 0) is simplified as (xi, yi).
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strates the real azimuthal samples chosen uniformly from Nyquist samples in the sub-Nyquist SAR
system based on the pseudo-random time–space modulation.

Similarly to the traditional SAR system, the raw data in the sub-Nyquist SAR for many
point targets can be written as:

sc(τ, η) = ∑
xi ,yi

σiWi(τ, η) exp
{

jπKr[τ − 2Ri(η)/c]2
}
· exp{−j4πRi(η)/λ} · exp{jφi(η)}+ n(τ, η) (1)

where τ is the fast time along the range dimension, i.e., the sampling moment during
one pulse width. η is the slow time along the azimuth dimension, i.e., the moment of the
transmitting pulse. σi and Wi(τ, η) are the backscattering coefficient and the weighting
pattern corresponding to the i-th target at (xi, yi), respectively. φi(η) is the random phase
based on the pseudo-random time–space modulation corresponding to the target (xi, yi).
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Kr denotes the chirp rate of the linear frequency-modulated (LFM) signal, c is the light
speed, λ is the wavelength, and n(τ, η) is the system noise.

To relieve the inherent contradiction in the HRWS system, sub-Nyquist sampling in the
sub-Nyquist SAR is implied along the azimuthal dimension, and the sampling method is
as shown in Figure 1. The sub-Nyquist SAR system only adopts the traditional MF method
to not recover the scene exactly [5]. Accordingly, sub-Nyquist SAR imaging includes three
steps: (1) range compression based on MF; (2) range cell migration correction (RCMC):
interpolate by zero padding every azimuthal signal after range compression and then sum
up all the range-compressed signal of grids on the same range cell to the pre-defined grid;
and (3) azimuth reconstruction with sub-Nyquist samples based on the CS algorithm. After
implementing range compression and RCMC to Equation (1), the signal at a certain range
cell is represented by:

sc(τ0, η)

= ∑
xi ,yi

σiWi(τ0, η)Tr sin c
{

KrTr

(
τ0 − 2 Ri(η−ηci)

c

)}
· exp

{
−j4π

Ri(η−ηci)
λ

}
· exp{jφi(η)}+ n(τ0, η) (2)

where ηci is the beam center crossing time for the target (xi, yi). Tr is the pulse width and
sin c(·) denotes the sinc function.

Let σ = [σ1, σ2, · · · , σM]T be the vectorized backscattering cross-sections of targets
on the same range cell, and sN×1 = [sc(τ0, η1), sc(τ0, η2), · · · , sc(τ0, ηN)]

T be the vectored
signal after range compression and RCMC; then,

sN×1=DN×MσM×1+nN×1 (3)

where N is the sampling number on the azimuthal dimension and M is the number of res-
olution cells at the certain range cell in the observed scene. DN×M = {Di(τ0, ηn)}N,M

n=1,i=1 de-
notes the mapping relation between the received signal and the scene, and
Di(τ0, ηn) = Wi(τ0, ηn) · Tr · exp{−j4πRi(ηn − ηci)/λ} · exp{jφi(η)} nN×1 = [n(τ0, η1),
n(τ0, η2), · · · , n(τ0, ηN)]

T is the noise.

2.1.2. Motion Error Model

The recovered scene σM×1 can be estimated by Equation (3), while the recovered
matrix DN×M can exactly reflect the relation between the raw data and the recovered
scene. However, uncertainties and errors exist in the matrix DN×M, and the inaccuracy
of the motion-induced model leads to the phase error [22]. If the preset matrix DN×M in
Equation (3) is still used to recover the scene σM×1 without extra processing steps, it may
cause the defocusing of the reconstructed scene. A technology called autofocusing removes
these phase errors.

To solve the problem of error correction, it is important to establish the exact mapping
model so that we need to discern the uncertain factors. We mainly considered the position
error and velocity error leading to the phase error in this paper. The SAR satellite is affected
by different perturbations during on-orbit flying; so, it may cause the position error, as
demonstrated in the following Figure 2, and the velocity error of the satellite. Firstly,
we analyzed the position errors. The position error is mainly the deviation between the
realistic position and the hypothetical position on the x-axis and z-axis. In Figure 2a, the
solid line denotes the realistic track, and the dashed line denotes the hypothetical track.
The hypothetical slant range between the radar and target without position error is:

R(η, ζR) =

√(
H

cos ζR

)2
+ (Veη − Veη0)

2 ≈ H
cos ζR

+
Ve

2 cos ζR
2H

(η − η0)
2 (4)

where Ve is the radar velocity. η0, the Doppler center moment, is the azimuthal moment
when the radar is the nearest to the target.
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Figure 2. The imaging geometry with the position error. The solid line denotes the realistic track,
and the dashed line denotes the hypothetical track. R(η, ζR) and RE(η, ζR) are the hypothetical slant
range and real slant range with the position error, respectively. ζR is the pitch angle. P is the target
point. H is the orbital height. Figure (b) is the projection of target point P on the XOZ plane. ∆x(η)
and ∆z(η) are the range between the realistic position and the hypothetical position on the x-axis and
z-axis, respectively.

When a position error exists, the real slant range Rξ(η, ζR) between the radar and
target is:

Rξ(η, ζR) =
√
(H tan ζR − ∆x(η))2 + (Veη − Veη0)

2 + (H + ∆z(η))2

≈ H
cos ζR

+ Ve
2 cos ζR
2H (η − η0)

2 + ∆z(η) · cos ζR − ∆x(η) · sin ζR

≈ R(η, ζR) + ∆Rξ(η, ζR)

(5)

∆Rξ(η, ζR) = ∆z(η) · cos ζR − ∆x(η) · sin ζR is the position error. Regardless of the
weight Wi(τ0, ηn) · Tr in Equation (2), the realistic echo signal serror(η, ζR) of target point P
at a certain range cell after range compression and RCMC is denoted as

serror(η, ζR) = σP · exp
{
−j 4π

λ Rξ(η, ζR)
}

= σP · exp
{
−j 4π

λ

(
R(η, ζR) + ∆Rξ(η, ζR)

)}
= s0(η, ζR) · H∆R(η, ζR)

(6)

where s0(η, ζR) = σP · exp{−j4πR(η, ζR)/λ} is the raw signal without the position error.
H∆R(η, ζR) is the position error signal.

Secondly, we analyzed the mathematical model for the velocity error. Regardless of
the weight Wi(τ0, ηn) · Tr in Equation (2), the realistic echo signal serror(η, VEe) of target
point P at a certain range cell after range compression and RCMC is:

serror(η, VEe) = σP · exp
{
−j

4πRξ(η, VEe)

λ

}
(7)

where VEe is the equivalent velocity. The raw signal is approximate to the linear frequency
modulation signal and is written as:

serror(η, VEe) = exp
{

fdη + fr(VEe)η
2
}

(8)
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where fd is the Doppler center frequency and the Doppler modulated rate is
fr(VEe) = 2VEe

2 cos3 ζA/λR, and ζA is the squint angle on the azimuthal dimension.
When the hypothetical equivalent velocity VE exists, fr(VEe) is unfolded at VEe = VE:

fr(VEe) = fr(VE) + fr
′(VE)(VEe − VE) +

1
2!

fr
′′ (VE)(VEe − VE)

2 + · · ·+ 1
n!

fr
(n)(VE)(VEe − VE)

n + · · · (9)

If the error caused by the equivalent velocity is small, the above equation besides the
first item fr(VE) is also small and is denoted as or(VEe):

or(VEe) = fr
′(VE)(VEe − VE) +

1
2!

fr
′′ (VE)(VEe − VE)

2 + · · ·+ 1
n!

fr
(n)(VE)(VEe − VE)

n + · · · (10)

Substituting (24) and (25) into (23),

serror(η, VEe) = exp
{

fdη + fr(VEe)η
2} = exp

{
fdη + fr(VE)η

2 + or(VEe)η
2}

= exp
{

fdη + fr(VE)η
2} · exp

{
or(VEe)η

2}
= s0(η, VE) · exp

{
or(VEe)η

2} = s0(η, VE) · HVEe(η)

(11)

where s0(η, VE) = exp
(

fdη + fr(VE)η
2) = exp{−j4πR(η, ζR)/λ} is the azimuthal signal

without error and HVEe(η) = exp(or(VEe)η
2) is the error signal caused by the equivalent

velocity VEe.
According to Equations (21) and (26), the azimuthal signal with the error can be written

as the multiplication between the azimuthal signal without the error and the phase error.
Considering the above phase error, the received raw data without the weight Wi(τ0, ηn) · Tr
in Equation (2) after range compression and RCMC at a certain range cell is approximately
denoted as:

serror(τ0, η) =
M

∑
i=1

σi exp
{
−j4π

Ri(η)

λ

}
· exp{jϑ}+ n(τ0, η) (12)

where ϑ is the error phase variation with the azimuthal sampling moment. Similarly to
Equation (3), the vector matrix form of the raw signal (27) with an error along the azimuthal
sampling moment η is:

serror
N×1 = EN×NDN×MσM×1 + nN×1 (13)

where EN×N = diag(exp(jϑ1), exp(jϑ2), · · · , exp(jϑN)). A different error has a different ex-
pression form of the error matrix EN×N , and the motion error has been not fully formulated
yet due to some approximations in the models. Therefore, we assigned an error matrix
EN×N random phase in the following simulation.

2.2. Sub-Nyquist SAR Imaging and Error Correction Based on the Pseudo-L0-Norm
Optimization Algorithm

In this subsection, the CS theorem is first briefly introduced. Then, a pseudo-L0-norm
regularization model is presented and solved by the Cauchy–Newton method in detail.
Finally, sub-Nyquist SAR imaging and error correction based on pseudo-random space-time
modulation are proposed based on our proposed pseudo-L0-norm optimization algorithm.

2.2.1. CS Theorem

The key to the CS theorem is the effective recovered algorithm. While RIP is satis-
fied, there are three recovered algorithms, i.e., greedy algorithm, L1-norm optimization
algorithm, and sparse Bayesian learning method. The L1-norm optimization algorithm
is robust in the sense that it can effectively recover nearly sparse signals with/without
measurement noise from remarkably few measurements, and its application is so wide that
it broadly could be considered the modern least squares [12,13]. The L1-norm optimization
algorithm has a better-recovered performance in terms of the recovered error evaluated by
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MSE [17]. Its optimization equation is to solve the underdetermined problem (3) without
a subscript:

σ̂ = argmin
σ

{
∥s − Dσ∥2

2 + α∥σ∥1

}
(14)

where α is the regularization parameter. The first item ∥s − Dσ∥2
2 ensures the recovery error,

and the second item ∥σ∥1 guarantees the sparsity of the recovered scene. The parameter
α balances between the recovered error and the sparsity, and is empirically chosen by
minimizing the recovered error of the whole scene.

Even though the L1-norm optimization algorithm achieved a good recovered per-
formance, some low SNR targets cannot be accurately recovered, and it often yields false
targets for an unfair penalization rule. The further optimization of the regularization
model contributes to the recovered scene so that false targets can be removed, and then
we carried out research about the optimization model. Is there an alternative to the L1-
norm regularization model to achieve a better-recovered performance? The problem of
further improving the optimization algorithm is thus brought up. To solve this problem,
a reweighted L1-based algorithm has been already proposed to improve the recovered
performance [20,21]. However, how to select an approximately fair regularization rule still
does not have a theoretical analysis.

2.2.2. Sub-Nyquist SAR Imaging Based on the Pseudo-L0-Norm Optimization Algorithm

For a sparse undetermined equation, the L0-norm optimization algorithm should
have the best recovered performance, but this optimization equation is a non-polynomial
hard (NP-hard) problem [12]. Based on the idea of adaptive least absolute shrinkage and
selection operator (Lasso) technique that is a popular technique for simultaneous estimation
and variable selection [21], this paper penalized the regularization item to be close to the
L0-norm to achieve a better performance of the L0-based algorithm, and the regularization
model can be solved by the Cauchy–Newton method. Since it is closer to the L0-based
method in some sense, we named it a pseudo-L0-norm optimization algorithm. In the
following, we adopted Bayesian estimation to analyze and deduct a pseudo-L0-norm
regularization model by making full use of the scene prior information. The rule was
deducted as follows: Usually, the noise nN×1 is assumed to be a Gaussian distribution
with zero mean and variance σn

2 [14]. For simplicity, all the following matrixes/vectors
omit subscripts.

pn(n) = ps/σ(s/σ) =
(

1√
2πσn

)N
exp

{
−∥s − Dσ∥2

2
2σn2

}
(15)

Laplace distribution forces most coefficients to be small so that it can describe the
sparse scene [35]. We assume:

p(σi) =

(
ξi
2

)
exp{−ξi∥σi∥1} (16)

where ξi is the scale parameter of Laplace distribution and ξi > 0. Then, the probability
distribution of the vector σM×1 is:

pσ(σ) =
M

∏
i=1

{(
ξi
2

)
exp{−ξi∥σi∥1}

}
=

M

∏
i=1

{(
ξi
2

)}
exp

{
−

M

∑
i=1

ξi∥σi∥1

}
(17)

Based on the Bayesian rule in the information theory, the maximum posterior (MAP)
probability of the vector σM×1 is:

σ̂ = argmax[pσ/s(σ/s)] = argmax[ps/σ(s/σ) · pσ(σ)] (18)
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We took the logarithm of the above Formula (18):

σ̂ = argmax
σ

[log[ps/σ(s/σ)] + log[pσ(σ)]]

= argmax
[
− 1

2σn2 ∥s − Dσ∥2
2 − ∥ξ ·σ∥1

]
= argmin

[
∥s − Dσ∥2

2 + β∥ξ ·σ∥1

] (19)

where the reweighting matrix ξ is the diagonal matrix with {ξ1, ξ2, · · · , ξM} on the diagonal
and zeros elsewhere. Similarly to α in Equation (4), β is the regularization parameter. After
the above deduction, the regularization model (19) is the modification to the L1-norm
penalization rule.

Additionally, the matrix ξ is first calculated to solve Equation (19). The logarithm
function of the vector σM×1 is:

log{pσ(σ)} = log
{

M
∏
i=1

{(
ξi
2

)
exp{−ξi∥σi∥1}

}}
= log

{
M
∏
i=1

(
ξi
2

)}
+ log

{
exp

{
−

M
∑

i=1
ξi∥σi∥1

}}
=

M
∑

i=1
log

(
ξi
2

)
−

M
∑

i=1
ξi|σi|1

(20)

Let the partial derivative function of Formula (10) with respect to ξi be equal to zero,
and the estimation of the scale parameter ξi is:

∂ log[pσ(σ)]
∂ξi

=
1
ξi

− ∥σi∥1 = 0 (21)

ξi =
1
|σi|

(22)

In the case that σi = 0, Formula (12) makes no sense. Formula (12) is modified as:

ξi =
1

|σi|+ ι
(23)

where ι > 0 is a very small positive constant.
The above deduction explains the prior distribution, e.g., Laplace distribution in the

sub-Nyquist SAR confirms the penalization rule and this method makes full use of the
data prior information to achieve a good performance. Certainly, different probability
distributions confirm different penalization rules. In the scenario of not knowing the
variables themselves, using the iteratively updated method to establish an approximately
fair penalization rule allows for the successively better estimation of nonzero variables.
According to the optimization Equations (19) and (23), we know that the regularized item
is iteratively penalized by itself to nearly acquire the number of nonzero values, and the
large coefficients are more heavily penalized to discourage their effects compared to that
with a small coefficient and is more likely to be identified as nonzero. Once the nonzero
locations are identified, their influence attenuates to allow more sensitivity to identify the
remaining small but nonzero elements. It means this algorithm can more accurately recover
low SNR targets.

To solve the pseudo-L0-norm regularization equation, the algorithm in Equation (19)
is essentially a L1 penalization method so that it is convex and can be solved by the Cauchy–
Newton method [36,37]. The solving method is as follows: L1 norm is not differentiable,
while σi = 0. Firstly, the smoothing approximation is introduced:

∥σ∥1 =
N

∑
i=1

√(
|σi|2 + ς

)
(24)



Sensors 2024, 24, 2840 9 of 21

where ς > 0 is a very small positive constant. Equation (19) can be expressed as:

σ̂ = argmin
¯
σ

{
∥s − Dσ∥2

2 + β
M

∑
i=1

ξi

√(
|σi|2 + ς

)}
(25)

where f (σ̂) = ∥s − Dσ∥2
2 + β

M
∑

i=1
ξi

√(
|σi|2 + ς

)
. The conjugate gradient function is writ-

ten as:
∇σ̂ f (σ̂) = 2DHDσ+ βU(σ̂) · ξσ− 2DHs = H(σ̂)σ− 2DHs (26)

where H(σ̂) = 2DHD + βU(σ̂)ξ, U(σ̂) = diag
{

1
/(√

|σi|2 + ς

)}
, i = 1, 2, · · · , M. DH

is the conjugate transpose of the observed matrix D.
According to the Newton method [36,37], the iterative equation of the reconstructed

result σ is:
H
(
σ̂(g)

)
σ̂(g+1) = (1 − γ)H

(
σ̂(g)

)
σ̂(g) + 2γDHs (27)

where γ is the step size of the iteration. When γ = 1, Equation (27) is simplified as:

σ̂(g+1) = 2H(σ̂g)−1DHs (28)

Until the iteration terminates, σ̂ is the recovered result. Normally, the MSE, the
iterative number, etc., can be taken as the iterative criterion [23]. After the above deduction,
the flow chart is concluded as follows:

(1) Initialization: the iterative step g = 1, σ̂1 = DHs;
(2) Updating of the weighting matrix ξ and the matrix H(σ̂): ξ(g) = diag( 1

|σ1|+ι
, 1
|σ2|+ι

,

· · · , 1
|σM |+ι

), H(σ̂)(g) = 2DHD + βU(σ̂)ξ(g);

(3) Calculation: σ̂(g+1) = 2
(

H(σ̂)(g)
)−1

DHs;

(4) g = g + 1;
(5) Loop;
(6) Stopping iteration according to the iterative criterion.

During the deduction of the pseudo-L0-norm optimization algorithm, there are four
undetermined parameters, i.e., the regularization factor β, the parameter ι, the parameter
ς, and the iterative criterion. Similarly to the regularization α, β is also an empirical
value and is chosen by minimizing the recovered error [12]. In the simulation section, the
iterative criterion selects the preset iterative number and this number is chosen empirically.
Although the reference [23] demonstrates how to choose the parameter ι and ς, the pseudo-
L0-norm optimization algorithm has a good robustness and the reconstructed scene does
have not the strictly sparse property; so, the proposed algorithm sets the parameters ι and
ς as 10−3 and 10−6, respectively.

2.2.3. Error Correction Based on the Pseudo-L0-Norm Optimization Algorithm

Based on the observation model of Equation (13), we propose an error correction
method integrated with the pseudo-L0-norm optimization algorithm. This method consid-
ers the phase error as the model error and removes it during the scene reconstruction, and it
enables our method to correct more artifacts due to the robustness of the pseudo-L0-norm
optimization algorithm. This error correction method is an update and iteration algorithm,
and it includes the scene reconstruction and the error estimation during each iteration. In
the first step of every iteration, the cost function is minimized with the scene based on
the reweighted L1-norm optimization algorithm, and in the second step, the phase error
is estimated given the scene estimate. According to the estimated error, the error matrix
EN×N in (13) is updated and delivered to the next iteration. The procedure is as follows:

(1) The scene reconstruction
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Based on the pseudo-L0-norm optimization algorithm, the optimization equation of
(13) without subscripts is:

σ̂ = argmin
σ

[
∥serror − EDσ∥2

2 + β∥ξσ∥1

]
(29)

The flow chart in Section 2.2.2 can resolve this optimization equation.

(2) The error estimation

To estimate the phase error, the cost function should minimize the MSE of the recon-
structed result since the error exists at each sampling moment, and each element can be
handled separately. The cost function at each sampling moment is:

Ên(g + 1) = argmin
En

∥∥∥serror
n − En

(
D(g)σ(g+1)

)
n

∥∥∥
2

2
, n ∈ {1, 2, · · · , N} (30)

where Ên(g + 1) is the n-th diagonal element of the error matrix Ê(g+1) at the (g + 1)-th
iteration. In the following, the cost function is unfolded for analysis:

∥∥∥serror
n − En

(
D(g)σ(g+1)

)
n

∥∥∥
2

2
=

(
serror

n − En

(
D(g)σ(g+1)

)
n

)H
·
(

serror
n − En

(
D(g)σ(g+1)

)
n

)
= (serror

n )H · serror
n +

(
D(g)σ(g+1)

)
n

H
·
(

D(g)σ(g+1)
)

n
− 2 cos(ϑn) · Re

{
(serror

n )H ·
(

D(g)σ(g+1)
)

n

}
+ 2 sin(ϑn) · Im

{
(serror

n )H ·
(

D(g)σ(g+1)
)

n

} (31)

where Re{·} and Im{·} are the real part and the imaginary part of a complex signal, respectively.
Assuming that ρ = Re

{
(serror

n )H ·
(

D(g)σ(g+1)
)

n

}
and υ = Im

{
(serror

n )H ·
(

D(g)σ(g+1)
)

n

}
,

the above equation can be written as:

∥∥∥serror
n − En

(
D(g)σ(g+1)

)
n

∥∥∥
2

2
= (serror

n )H · serror
n +

(
D(g)σ(g+1)

)
n

H
·
(

D(g)σ(g+1)
)

n
− 2

√
ρ2 + υ2 · cos

(
ϑn − arctan

(
υ
ρ

))
(32)

Estimating ϑn is equal to minimizing the above cost function (32); so, ϑ̂n satisfies:

ϑ̂n = ∠(serror
n )H ·

(
D(g)σ(g+1)

)
n

(33)

After the above deduction, the detailed flow chart is as follows:

(1) Initialization: g = 0, E = I;

(2) Recovering the scene: σ̂(g) = argmin
σ

∥∥∥serror − E(g)Dσ(g)
∥∥∥

2
+ β

∥∥∥ξ(g)σ(g)
∥∥∥

1
;

(3) Estimating the error matrix: Ê(g)
= argmin

E

∥∥∥serror − E(g)Dσ(g)
∥∥∥

2
;

(4) Updating E(g);
(5) g = g + 1;
(6) Loop;
(7) Stopping iteration according to the iterative criterion.

where σ̂(g) and Ê(g) denote the recovered result and the estimated error matrix in
the g-th iteration, respectively. During each iteration, the cost function focuses part of the
defocused scene to generate a relatively accurate error matrix so that a relatively accurate
model can lead to a better reconstruction result. The iterative criterion was mentioned in
Section 2.2.2 and is not repeated in this section.

2.2.4. Analysis of the Computational Complexity

In order to obtain the total computational complexity of the proposed method, we
first analyzed the time complexity per iteration quantitatively. As the notations used above,
the total computational cost of the proposed method is in the order of o(G · NM log(NM)),
where G is the required number of iterations to recover the result in one range cell. The
value of G is difficult to confirm accurately through theoretical analysis, but in practice,
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the running time of the proposed method is affordable. As for the memory cost of the
proposed method, we only need to store the input, the output, and the parameter matrices.
In summary, the memory cost is in the order of o(NM).

3. Experiment

In this section, simulation experiments and data experiments verify the effectiveness
and superiority of sub-Nyquist SAR imaging and error correction integrated with a pseudo-
L0-norm optimization algorithm.

3.1. Data Description

To verify the validity and effectiveness of sub-Nyquist SAR imaging and error cor-
rection based on the pseudo-L0-norm optimization algorithm, we selected real strip-map
TerraSAR-X images for the experiments. The reflectivity functions of images were used
to simulate raw data according to the simulated parameters, and then the raw data were
uniformly received, as shown in Figure 1. During the error correction, the error is added at
each sampling moment and the error adopts the random distribution.

Figure 3 features a sea–land interface scene. This scene is more complex and used
to verify the performance of our proposed algorithm in the sub-Nyquist SAR imaging
compared with the L1-norm optimization algorithm. Figure 4 is a sea containing sev-
eral boats to verify the availability of error corrections based on the pseudo-L0-norm
optimization algorithm.
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3.2. The Simulation of the Pseudo-L0-Norm Optimization Algorithm

We used a one-dimensional simulation of point targets to verify the superiority of
our proposed algorithm compared with the L1-norm optimization algorithm. For a given
under-recovered signal, σ, the recovered performance can be evaluated by the normalized
MSE (NMSE):

NMSE =
∥σ̂−σ∥2

2

∥σ∥2
2

(34)

where σ̂ is the recovered result.
The following one-dimensional simulation illustrates that the pseudo-L0-norm algo-

rithm has a better performance compared with the L1-norm optimization algorithm. The
simulated parameters are as follows. It selects a sparse signal, σ, of length M = 256, with
∥σ∥0 = S. The S nonzero spike positions are selected randomly, and the amplitude of
nonzero elements obeys a zero-mean unit-variance Gaussian distribution. This simulation
selects the measured number and a N × M random matrix, D, with independent identically
distributed (i.i.d.) Gaussian elements. The noise vector, n, is drawn from the i.i.d. zero-
mean Gaussian function with ∥n∥2 = 0.5, so that SNR = 10log10(∥σ∥2

2/∥n∥2
2) = 21dB. To

recover the signal, σ, it adopts two algorithms, the L1-norm optimization algorithm and
pseudo-L0-norm algorithm, to compare the recovered performance. The NMSE of the two
algorithms and the recovered results are compared in Figures 5 and 6.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 22 
 

 

2

2

2

2

ˆ
NMSE

−
=
σ σ

σ
 

(34) 

where σ̂  is the recovered result. 

The following one-dimensional simulation illustrates that the pseudo-0-norm algo-

rithm has a better performance compared with the 1-norm optimization algorithm. The 

simulated parameters are as follows. It selects a sparse signal, σ , of length 256M = , with

0
S=σ . The S  nonzero spike positions are selected randomly, and the amplitude of non-

zero elements obeys a zero-mean unit-variance Gaussian distribution. This simulation se-

lects the measured number and a N M  random matrix, D , with independent identi-

cally distributed (i.i.d.) Gaussian elements. The noise vector, n , is drawn from the i.i.d. 

zero-mean Gaussian function with 
2

0.5=n  , so that 
2 2

2 2
10 10( ) 21SNR log dB= =σ n  . To re-

cover the signal, σ , it adopts two algorithms, the 1-norm optimization algorithm and 

pseudo-0-norm algorithm, to compare the recovered performance. The NMSE of the two 

algorithms and the recovered results are compared in Figures 5 and 6. 

Figure 5 demonstrates that the pseudo-0-norm optimization algorithm can achieve 

the smallest recovered error, although this proposed algorithm has a slower rate of con-

vergence. Our proposed method is sensitive to low SNR targets that are not easy to iden-

tify, so the convergence rate is slow. Figure 6 shows the recovered results under different 

algorithms. In the red circle, ①, the results for the 1-norm optimization algorithm have 

weak false targets, but two other algorithms do not. In circles ② and ④, the weak target 

can be recovered under the optimization algorithm, while the 1-norm optimization algo-

rithm cannot recover it. In circle ③, the amplitude of targets can be exactly recovered by 

the proposed algorithm. It demonstrates that our proposed algorithm is more friendly to 

the low SNR target and removes false targets to achieve a good recovered performance. 

 

Figure 5. NMSE vs. the iterative number under different algorithms. 

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

The iterative number

N
M

S
E

NMSE v.s. the iterative number under different algorithms

 

 
pseudo-L0-norm optimization algorithm

L1-norm optimization algorithm

Figure 5. NMSE vs. the iterative number under different algorithms.

Figure 5 demonstrates that the pseudo-L0-norm optimization algorithm can achieve
the smallest recovered error, although this proposed algorithm has a slower rate of conver-
gence. Our proposed method is sensitive to low SNR targets that are not easy to identify,
so the convergence rate is slow. Figure 6 shows the recovered results under different
algorithms. In the red circle, 1⃝, the results for the L1-norm optimization algorithm have
weak false targets, but two other algorithms do not. In circles 2⃝ and 4⃝, the weak target can
be recovered under the optimization algorithm, while the L1-norm optimization algorithm
cannot recover it. In circle 3⃝, the amplitude of targets can be exactly recovered by the
proposed algorithm. It demonstrates that our proposed algorithm is more friendly to the
low SNR target and removes false targets to achieve a good recovered performance.
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3.3. The Simulation of Sub-Nyquist SAR Imaging

We used a simulation based on the real strip-map TerraSAR-X image in Figure 3 to
verify the validity of our proposed algorithm for sub-Nyquist SAR imaging. The SAR image
is over the sea–land interface scene. The simulated parameters are shown in Table 1, and the
raw data were randomly received, as shown in Figure 1. In the simulation, the interfaced
land is recovered without the loss of details under the proposed algorithm. According to
the simulated result in Figure 7 and MSE in Table 2, this simulation also demonstrates that
the pseudo-L0-norm optimization algorithm can achieve a better recovered performance
compared with the L1-norm optimization algorithm.

Table 1. Simulated parameters.

Parameter Data

Average PRF (Hz) 893
Range sampling frequency (MHz) 55

Referred slant range (km) 870
Chirp rate (Hz/s) 1012

Doppler bandwidth (Hz) 2438
Wavelength (mm) 5.55

Velocity (m/s) 7513
Height (km) 693

Squint angle (◦) 0
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Table 2. MSE under different algorithms.

pseudo-L0-norm optimization algorithm L1-norm optimization algorithm

MSE 0.114 0.874

3.4. Simulation of the Error Correction

The error correction mainly solves image defocusing for the phase error. As we all
know, the better the focusing performance is, the smaller the image entropy is. We adopted
image entropy H(σ) to evaluate the reconstruction result.

H(σ) = −∑
i

|σi|2

∑
i
|σi|2

log2
|σi|2

∑
i
|σi|2

(35)

Firstly, we simulated point targets to illustrate the effectiveness of our method. The
simulated parameters are shown in Table 3. When the elements of the error matrix are
uniformly distributed [0, 17/18π], the simulated results are presented in Figure 8. Figure 8a
is the original image, (b) is the reconstructed scene without an error correction in the
traditional SAR, (c) is the reconstructed scene with an error correction in the sub-Nyquist
SAR based on the L1–norm optimization algorithm, and (d) is the reconstructed scene with
the error correction in the sub-Nyquist SAR based on the pseudo-L0-norm optimization
algorithm. When the phase error exists, the reconstructed scene without an error correction
is defocused (Figure 8b). Although it can also remove errors and focus the scene based
on the L1-norm optimization algorithm, there are false targets and lost targets in the red
circle (Figure 8c). Our method almost removes errors and recovers the scene based on
the pseudo-L0-norm optimization algorithm (Figure 8d). From the quantitative analysis,
Table 4 illustrates that the image entropy based on our method achieves the nearly same
image entropy as the original image.

The simulation in Figure 9 is based on a strip-map TerraSAR-X image, i.e., sea contain-
ing several boats in Figure 4. The reflectivity function of the image was used to simulate raw
data, and the simulated parameters are shown in Table 3. The elements of the error matrix
are uniformly distributed, [0, π/2]. Figure 9a is the recovered result in the traditional SAR,
but is defocused for the phase error. The error is partly removed from the Sub-Nyquist
SAR with an error correction method based on the L1-norm optimization algorithm in
Figure 9b. Based on the pseudo-L0-norm optimization algorithm, it almost removes the
error and focuses the scene in Figure 9c. The image entropy in Table 5 illustrates that the
image recovered by our method can achieve a similar performance to the original image.
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Table 3. Simulated parameters.

Parameter Data

Average PRF (Hz) in the sub-Nyquist SAR 155
PRF (Hz) in the traditional SAR 1907

Range sampling frequency (MHz) 120
Referred slant range (km) 888

Pulse width (us) 50
Doppler bandwidth (Hz) 1401

Wavelength (mm) 5.55
Velocity (m/s) 7513
Height (km) 693

Squint angle (◦) 0
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Table 4. Image entropy under different algorithms.

The
original image

The
reconstructed

scene without an
error correction

The
reconstructed
scene with an

error correction
based on the
L1-norm

optimization
algorithm

The
reconstructed
scene with an

error correction
based on the
pseudo-L0-

norm
optimization

algorithm

Image entropy
(bit) 4.00 5.90 3.08 3.99

Table 5. Image entropy under different algorithms.

The
original image

The
reconstructed

scene without an
error correction

The
reconstructed
scene with an

error correction
based on the
L1-norm

optimization
algorithm

The
reconstructed
scene with an

error correction
based on the
pseudo-L0-

norm
optimization

algorithm

Image entropy
(bit) 7.81 12.16 8.35 7.80
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Figure 9. The reconstructed result. (a) The scene reconstruction without error correction; (b) the scene
reconstruction with error correction based on the L1-norm optimization algorithm; and (c) the scene
reconstruction with error correction based on the pseudo-L0-norm optimization algorithm.

4. Discussion

HRWS SAR imaging has always been the goal of spaceborne SAR systems in remote
sensing applications [2]. Since a high resolution and wide swath are inherently conflict-
ing requirements, the HRWS SAR system creates new difficulties and challenges. These
requirements are simultaneously satisfied by advanced observing modes, e.g., azimuthal
multi-channel SAR [3] and MIMO SAR [4], and these observing modes both have the
characteristics of large amounts of data and long antenna. As the CS theorem develops, a
novel imaging mode named sub-Nyquist SAR based on the pseudo-random space–time
modulation has been proposed without large data and long antenna, and sub-Nyquist SAR
imaging based on the CS algorithms can recover the scene [8].

Although the L1-norm optimization algorithm has achieved a quite good performance,
some low SNR targets are not accurately recovered and it yields false targets. To further
improve the recovered performance of sub-Nyquist SAR, we present a pseudo-L0-norm
optimization algorithm based on the Bayesian estimation. This algorithm penalizes the
regularization item with the reciprocal of its previous solution to acquire nonzero values
so that the rule is fair and makes full use of the data prior information. This proposed
algorithm essentially adopts the idea of the adaptive Lasso technique [20,21], and the
L1-norm optimization algorithm is the Lasso variable selection method [13]. The Lasso
variable selection is consistent with satisfying a necessary condition; sometimes Lasso is not
consistent and does not have predictive properties. Adaptive Lasso is the modified version
of the Lasso system with important differences. The modification is data-dependent and
reasonably selected so that adaptive Lasso has predictive properties [20,21]. Our proposed
algorithm is better in terms of consistency. For the recovered error, we deducted the
expression of MSE in the following way. Assume that FN×S is the submatrix constructed
by taking S columns from the recovered matrix, DN×M, which are specified by the index
vector, Λ, and each element in Λ satisfies the following:

σΛl ̸= 0, (l = 1, 2, · · · , S) (36)

The estimated covariance matrix for the nonzero components, σl , is

C =
(

FN×S
HFN×S + γ2Σ

(
σΛl

))−1
FN×S

HFN×S

(
FN×S

HFN×S + γ2Σ
(
σΛl

))−1
(37)

where Σ
(
σΛl

)
= diag

(
ξΛ1 /σΛ1 , ξΛ2 /σΛ2 , · · · , ξΛS /σΛS

)
is a diagonal matrix. The esti-

mated error is the trace of the covariance matrix, C:
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∥σ̂Λ −σΛ∥2
2 = σn

2trace(C)

= σn
2trace

((
FN×S

HFN×S + γ2Σ
(
σΛl

))−1FN×S
HFN×S

(
FN×S

HFN×S + γ2Σ
(
σΛl

))−1
)

= σn
2trace

(((
FN×S

HFN×S + γ2Σ
(
σΛl

))−1
)2

FN×S
HFN×S

)
≥ σn

2
[
2trace

((
FN×S

HFN×S + γ2Σ
(
σΛl

))−1
)
− trace

((
FN×S

HFN×S
)−1

)]
(38)

Assuming that A = FN×S
HFN×S, B = FN×S

HFN×S + γ2Σ
(
σΛl

)
, and their eigenvalues

are λ1, λ2, · · · , λS and α1, α2, · · · , αS, respectively. Based on the structure form of the recov-
ered matrix, DN×M, the L2-norm of each column is nearly equal and assumes ∥Dl∥2

2 ≈ L,
where L is the number of samples in one aperture time [8]. Formula (38) is simplified as:

∥σ̂Λ −σΛ∥2
2 ≥ σn

2
[
2trace

(
B−1

)
− trace

(
A−1

)]
(39)

Gail’s circle theorem [38] indicates that

|λl − L| ≤ (S − 1) · u · L
(1 − (S − 1) · u) · L ≤ λl ≤ (1 + (S − 1) · u) · L

1
(1+(S−1)·u)·L ≤ λl

−1 ≤ 1
(1−(S−1)·u)·L

S
(1+(S−1)·u)·L ≤

S
∑

l=1
λl

−1 ≤ S
(1−(S−1)·u)·L

S
(1+(S−1)·u)·L ≤ trace

(
A−1

)
≤ S

(1−(S−1)·u)·L

(40)

∣∣∣αl −
(

L +
γ2·ξΛl

σΛ l

)∣∣∣ ≤ (S − 1) · u · L
σΛl

·[1−(S−1)·u]·L+γ2·ξΛl
σΛl

≤ αl ≤
σΛl

·[1+(S−1)·u]·L+γ2·ξΛl
σΛlσΛl

σΛl
·[1+(S−1)·u]·L+γ2·ξΛl

≤ αl
−1 ≤ σΛl

σΛl
·[1−(S−1)·u]·L+γ2·ξΛl

S

[1+(S−1)·u]·L+γ2·max
(

ξΛl

/
σΛl

) ≤
S
∑

l=1
αl

−1 ≤ S

[1−(S−1)·u]·L+γ2·min
(

ξΛl

/
σΛl

)
S

[1+(S−1)·u]·L+γ2·max
(

ξΛl

/
σΛl

) ≤ trace
(
B−1) ≤ S

[1−(S−1)·u]·L+γ2·min
(

ξΛl

/
σΛl

)

(41)

where u = max
1≤m1 ̸=m2≤M

|⟨Dm1 , Dm2⟩|
/(

∥Dm1∥2 · ∥Dm2∥2
)

is the mutual coherence coeffi-

cient that reflects the maximum similarity between any two different columns, m1, m2, in
the recovered matrix, DN×M. Combine Formulas (40) and (41):

2S

[1+(S−1)·u]·L+γ2·max
(

ξΛl
σΛl

) − S
(1−(S−1)·u)·L ≤ 2trace

(
B−1)− trace

(
A−1

)
≤ 2S

[1−(S−1)·u]·L+γ2·min
(

ξΛl
σΛl

) − S
(1+(S−1)·u)·L (42)

So, we have the MSE of the proposed algorithm:

∥σ̂Λ −σΛ∥2
2 ≥ σn

2
[
2trace

(
B−1)− trace

(
A−1

)]
≥ σn

2

 2S

[1+(S−1)·u]·L+γ2·max
(

ξΛl

/
σΛl

) − S
(1−(S−1)·u)·L

 (43)

Similarly, the MSE of the L1-norm optimization algorithm is:

∥∥σ̂l1 −σΛ
∥∥2

2 ≥ σn
2
[
2trace

(
B−1)− trace

(
A−1

)]
≥ σn

2

 2S

[1+(S−1)·u]·L+γ1·max
(

1
/

σΛl

) − S
[1−(S−1)·u]·L

 (44)

From the above deduction, we can see the optimal performance is achieved by the two
above algorithms. By comparing (43) and (44), it can be observed that the difference is in
the dashed block. The pseudo-L0-norm optimization algorithm is more sensitive to small
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coefficients. For the low SNR targets, i.e., ξΛl = 1/
(
σΛl + ι

)
≻ 1, our proposed algorithm

performs better and it can more accurately recover low SNR targets. For example, in the
one-dimensional simulation, our algorithm recovers the weak target, and the amplitude of
the target is more accurately recovered in Figure 6.

Sub-Nyquist SAR imaging includes three steps: range compression, range cell migra-
tion correction (RCMC), and azimuth compression. After range compression and RCMC, a
pseudo-L0-norm optimization algorithm is employed to achieve the azimuth compression.
Simulation experiments in Figures 5 and 6, and data experiments based on a real TerraSAR-
X image in Figure 7, demonstrate that the algorithm can achieve smaller recovered errors
and remove false targets compared to that of the L1-norm optimization algorithm. Ad-
ditionally, considering that CS algorithms themselves have a certain capacity to remove
phase errors, an error correction method integrated with a pseudo-L0-norm optimization
algorithm eliminates the influence of phase errors and removes defocusing. Different from
autofocusing technology as a post-processing method in a traditional SAR system, this
method includes two steps: scene reconstruction based on a pseudo-L0-norm optimization
algorithm and error estimation by minimizing the least-square target function. These
two steps are successively iterative and the recovered matrix is updated to the estimated
error. Since the exact expression of the error is not fully formulated, we propose the error
matrix with a random phase, whatever the expression for the error. The simulations in the
Figures 8 and 9 explain the advantages of our proposed algorithm.

The potential applications of the pseudo-L0-norm optimization algorithm can recover
more low SNR targets, e.g., the sea–land interface in the above experiment, so that it is not
limited to high SNR targets, e.g., the boats on the sea. This algorithm can also be applied to
the traditional HRWS system, e.g., the azimuthal multi-channel SAR and MIMO SAR, to
lower the amount of data to relieve the pressure on data storage.

5. Conclusions

In this paper, we propose a signal processing algorithm for an innovative single-
channel HRWS system called sub-Nyquist SAR based on a pseudo-random space–time
modulation. To further improve sub-Nyquist SAR imaging performance, a pseudo-L0-
norm optimization algorithm is proposed. Firstly, the Bayesian estimation explains how to
take a more democratic approach with data prior information to acquire nonzero variables,
so that it can more accurately recover low SNR targets and remove false targets compared
with the prevalent L1-norm optimization algorithm. Then we present an error correction
method integrated with a pseudo-L0-norm optimization algorithm to eliminate the effect
of phase errors and achieve autofocusing. Finally, the simulated experiments demonstrate
the effectiveness of the proposed algorithm.
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