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Abstract: Surface defect detection of strip steel is an important guarantee for improving the produc-
tion quality of strip steel. However, due to the diverse types, scales, and texture structures of surface
defects on strip steel, as well as the irregular distribution of defects, it is difficult to achieve rapid
and accurate detection of strip steel surface defects with existing methods. This article proposes
a real-time and high-precision surface defect detection algorithm for strip steel based on YOLOv7.
Firstly, Partial Conv is used to replace the conventional convolution blocks of the backbone network to
reduce the size of the network model and improve the speed of detection; Secondly, The CA attention
mechanism module is added to the ELAN module to enhance the ability of the network to extract
detect features and improve the effectiveness of detect detection in complex environments; Finally,
The SPD convolution module is introduced at the output end to improve the detection performance of
small targets with surface defects on steel. The experimental results on the NEU-DET dataset indicate
that the mean average accuracy (mAP@IoU = 0.5) is 80.4%, which is 4.0% higher than the baseline
network. The number of parameters is reduced by 8.9%, and the computational load is reduced by
21.9% (GFLOPs). The detection speed reaches 90.9 FPS, which can well meet the requirements of
real-time detection.

Keywords: defect detection; attention mechanism; YOLOv7; PConv; SPD

1. Introduction

Strip steel is one of the core products in the steel industry and has become an impor-
tant raw material in industries such as automotive, mechanical manufacturing, chemical
equipment, and aerospace. With the booming development of high-end industries such
as aerospace, automotive, and precision machinery manufacturing, the industry has put
forward higher requirements for the quality of strip steel products. However, the pro-
duction process of strip steel is inevitably affected by various factors, resulting in defects
such as scratches, cracks, and oxidation on its surface, seriously affecting the production
efficiency and product quality of strip steel. Therefore, improving the ability to detect
surface defects on strip steel and helping to detect defective products in the production
process early is of great practical significance for improving product quality and improving
work efficiency [1,2].

In recent years, domestic and foreign scholars have conducted extensive research on
defect detection in computer vision technology, with two main research methods: machine
learning and deep learning. The surface defect detection technology of industrial products
based on machine vision has become mature, mainly divided into four types of detection
methods: statistical methods, spectral methods, model-based methods, and learning-based
methods. Significant histogram features [3] and local binary patterns [4] are popular
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techniques in statistical methods, but these methods have obvious drawbacks: they often
require defect features to be strength-separable and highly sensitive to noise. Spectral
methods use Fourier transform [5], wavelet transform [6] and Gabor filter [7] to transform
signals from the spatial domain to the frequency domain for defect recognition. The classic
model-based methods in defect detection include Markov random field models [8] and
autoregressive models [9], which are not satisfactory in terms of detection accuracy and
are only suitable for defect detection in local images, often consuming more resources.
Learning-based methods use support vector machines (SVMs) [10] and K-nearest neighbors
(K-NNs) [11], which consider the statistical changes of defects in the image to discover
the expected defects. One of the main drawbacks of this method is that it requires the
development of precise models to discover patterns within defects, and they may still
be less robust to changes in texture, lighting, complexity of defects, etc. The traditional
machine vision methods mentioned above usually require a manual design to describe the
characteristics of the defects. Therefore, based on human subjectivity, the characteristics of
the manual design make it difficult to distinguish defects on industrial surfaces. Faced with
unknown and diverse types of defects, detection methods often exhibit poor generalization
ability. Therefore, when faced with more complex and irregular defects, traditional methods
are difficult to apply in practical industrial application scenarios.

With the comprehensive intelligent development of the manufacturing industry, higher
efficiency, shorter time consumption, higher accuracy, and lower cost requirements have
been put forward for the defect detection of industrial products. Ultimately, surface defect
detection based on deep learning has entered people’s vision. The methods based on
deep learning mainly include one-stage YOLO [12], SSD [13], and two-stage Faster R-
CNN [14], Mask R-CNN [15] algorithms. Two-stage object detection algorithms achieve
target recognition through two core steps: Firstly, generating potential target regions
(region proposals), a process which often involves extensive pre-screening operations such
as using a region proposal network (RPN). Subsequently, these candidate regions undergo
meticulous classification judgments and precise localization refinements. However, this
segmented workflow inherently leads to compromises in computational efficiency and
decreases in processing speed, attributes that render such algorithms less suitable for
real-time demanding applications. Furthermore, two-stage detection methods require
significantly higher system resources during operation, particularly when handling high-
resolution images or large datasets, where memory usage can spike, creating a performance
bottleneck. Moreover, their complex network architecture designs pose greater challenges in
training and optimization, necessitating more time and computational resources compared
to single-stage algorithms to attain optimal performance. In 2024, Fu et al. [16] developed
an automatic detection and pixel-level quantification model based on the joint Mask R-CNN
and TransUNet. The Mask RCNN model demonstrated an AP50 of 0.989 and AP75 of 0.864
for the image dataset of microcrack damage.

Compared to two-stage detection algorithms, one-stage algorithms are usually de-
signed to be more concise and efficient. Through a single forward propagation, they can
directly predict the category and corresponding bounding box coordinates of each position
in the image, without the need to go through the process of selecting candidate regions for
classification and regression, greatly improving processing speed and meeting the needs
of real-time or high-speed scenes. In 2016, Redmon et al. [12] proposed an end-to-end
object detection algorithm YOLOv1 (you only look once), which unified the object detection
problem into a regression problem, ensuring a certain level of accuracy and speed in object
detection. Subsequently, the Yolo series of algorithms were successively proposed, and cor-
responding progress was also made in the field of defect detection. In 2018, YOLOv3 [17],
proposed by Redmon et al., borrowed the residual idea of ResNet, further improving its
speed and accuracy. Zehao Zheng et al. [18] proposed an improved YOLOv3 model that
includes a bottleneck attention network (BNA Net), an attention mechanism, a defect local-
ization subnet, and a large-sized output feature branch. It achieved a 16.31% improvement
compared to the original network on the bearing cover defect dataset, solving the problem
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of insensitivity of the original algorithm to medium- and large-sized targets. In 2021, Glenn
Jocher et al. [19] proposed a new model YOLOv5, which uses k-means clustering to adap-
tively calculate anchor boxes during training. At the same time, the neck network adopts
the CSP2 structure designed by CSPNet, further enhancing the network’s feature fusion
ability. These methods significantly improve the detection speed of the network while
maintaining detection accuracy. Jiacheng Fan et al. [20] proposed an ACD-YOLO model
based on the YOLOv5 detection algorithm, which combines anchor box optimization, a
context enhancement module, and an efficient convolution operator. The improved model
achieved a 5.7% improvement in mAP on the NEU-DET strip defect dataset, reaching 79.3%
and a frame rate of 72 FPS. Zhang et al. [21] proposed a novel SEM-based YOLOv5 model
and combined it with the OMF segmentation algorithm for ceramic micro defect detec-
tion. The experimental results show that this method can effectively detect surface defects,
namely defects and cracks, with a precision of 98% and an average detection time of 0.05 s.
Zhang et al. [22] proposed an improved PP-YOLOE-m network to detect surface defects on
strip steel. The improved network achieved an AP50 of 80.3% on the NEU-DET dataset
and can run at a speed of 95 FPS on a single Tesla V100 GPU. Wang et al. [23] proposed the
YOLOv7 algorithm, which effectively improves the detection efficiency of the algorithm
through an efficient long-range aggregation network (ELAN) and a cascading-based model
scaling strategy. However, missed detections are still inevitable in the process of detecting
small target defect features. Gao et al. [24] proposed the CDN-YOLOv7 model based on the
YOLOv7 algorithm. This model incorporates a CARAFE lightweight up-sampling operator,
designs a detection head network that integrates the cascaded attention mechanism and
decoupling head, and proposes NF-EIoU to replace the CIoU loss function in the original
network based on the Focal EIoU loss function. The final mAP on the NEU-DET strip
defect dataset reached 80.3%, with a frame rate of 73.4 FPS. From this, it can be seen that
although there are various algorithms applied to strip the defect detection, most algorithms
find it difficult to balance detection accuracy and detection speed. Therefore, researching
high-precision real-time defect detection algorithms is of great practical significance.

This article addresses the problem of insufficient feature extraction ability and low
model detection accuracy in current surface defect detection algorithms for steel strips.
Based on the YOLOv7 series, the YOLOv7 algorithm is improved to improve the efficiency
of steel surface defect detection. Firstly, a lightweight Partial Conv (PConv) [25] is used to
replace some conventional convolutional blocks in the backbone network ELAN module, in
order to reduce the size of the network model and improve the detection speed; Secondly,
a Coordinate Attention (CA) [26] mechanism is added to the last convolution layer of the
middle two ELAN modules to enhance the network’s ability to extract image features
and improve the effectiveness of object detection in complex environments; Finally, an
SPD convolution module [27] is introduced at the output end to improve the detection
performance of small targets with surface defects on steel. The specific structure is shown
in Figure 1. The improved YOLOv7 algorithm proposed in this article was tested on
the NEU-DET dataset, and the experiments showed that the method has good detection
performance in surface defect detection tasks of strip steel, which can further meet industrial
deployment requirements.
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Figure 1. Improved YOLOv7 network structure.

2. Methodology
2.1. Baseline Networks

The YOLOv7 algorithm adopts the extended efficient long range attention network
(E-ELAN), a cascaded model-based scaling and re-parameterized convolutional layer (REP-
Conv) strategy, achieving a good balance between detection efficiency and accuracy. The
YOLOv7 network structure consists of four modules: input, backbone, neck, and head.
The input end uses Mosaic technology to improve the training speed and reduce the
memory consumption. The image undergoes a series of preprocessing operations such
as cropping and scaling at the input end to unify the pixels and meet the requirements
of the feature extraction network. Backbone consists of modules such as CBS, E-ELAN,
and MP, which are used to extract feature information of input objects. The neck section is
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mainly responsible for feature fusion, achieving the fusion of resolution and high semantic
information. The head section consists of three detection heads, mainly responsible for
achieving target prediction.

2.2. Partial Conv (PConv)

In the industrial production of strip steel, the defect characteristics require real-time
detection and differentiation, which puts high demands on the running speed of the
detection network. Introducing Partial Convolution (PConv) in the backbone network to
replace the original convolution can reduce redundant calculations and memory access,
and more effectively extract spatial features. PConv is different from the previous approach
adopted by many scholars to improve the computational speed of neural networks by
reducing computational complexity. PConv solves the problem of low computational
speed (FLOPS) caused by frequent memory access by reducing computational redundancy
and memory access, ensuring high FLOPS while reducing FLOPs. The working principle
of PConv is shown in the Figure 2: applying conventional Conv on a part of the input
channel for spatial feature extraction, while keeping the remaining channels unchanged. For
continuous or regular memory access, the first or last continuous xi channel is considered
as a representative of the entire feature map for calculation, and each filter slides on one xi
channel. Generally, it is considered that the input and output feature maps have the same
number of channels. So, the FLOPs of PConv are

h × w × m2 × x2
i (1)

Sensors 2024, 24, x FOR PEER REVIEW 5 of 16 
 

 

mainly responsible for feature fusion, achieving the fusion of resolution and high seman-

tic information. The head section consists of three detection heads, mainly responsible for 

achieving target prediction. 

2.2. Partial Conv (PConv) 

In the industrial production of strip steel, the defect characteristics require real-time 

detection and differentiation, which puts high demands on the running speed of the de-

tection network. Introducing Partial Convolution (PConv) in the backbone network to re-

place the original convolution can reduce redundant calculations and memory access, and 

more effectively extract spatial features. PConv is different from the previous approach 

adopted by many scholars to improve the computational speed of neural networks by 

reducing computational complexity. PConv solves the problem of low computational 

speed (FLOPS) caused by frequent memory access by reducing computational redun-

dancy and memory access, ensuring high FLOPS while reducing FLOPs. The working 

principle of PConv is shown in the Figure 2: applying conventional Conv on a part of the 

input channel for spatial feature extraction, while keeping the remaining channels un-

changed. For continuous or regular memory access, the first or last continuous xi channel 

is considered as a representative of the entire feature map for calculation, and each filter 

slides on one xi channel. Generally, it is considered that the input and output feature maps 

have the same number of channels. So, the FLOPs of PConv are 

2 2
iw m xh    (1) 

With a typical partial ratio 𝑟 =
𝑥𝑖

𝑥
= 1/4, the FLOPs of a PConv is only 1/16 of a reg-

ular Conv. Besides, PConv has a smaller amount of memory access, i.e., 

2 22 2i i ixh w x m h w x+      (2) 

which is only 1/4 of a regular Conv for r = 1/4. 

 

Figure 2. Working principle of PConv. ∗ denotes spatial feature extraction. 

2.3. Coordinate Attention (CA) 

The detection ability of existing surface defect detection algorithms is limited when 

facing complex and diverse surface defects of strip steel. At the same time, the detection 

effect is easily affected by factors such as image background noise and the irregular dis-

tribution of defect features, resulting in insufficient learning of surface defect features of 

strip steel by the detection network and making it difficult to obtain accurate defect fea-

ture positions. Therefore, how to enhance the location information of defect features and 

improve the network’s attention to defects is also one of the problems. In recent years, 

attention mechanisms have developed rapidly due to their plug-and-play characteristics 

and the advantages of effectively improving network detection performance, and have 

also been widely applied in the field of image defect detection. Here, we choose to intro-

duce a coordinate attention mechanism (CA) at the last convolution of the middle two 

ELAN modules in the backbone network and the SPPCSPC module in the feature fusion 

Figure 2. Working principle of PConv. ∗ denotes spatial feature extraction.

With a typical partial ratio r = xi
x = 1/4, the FLOPs of a PConv is only 1/16 of a

regular Conv. Besides, PConv has a smaller amount of memory access, i.e.,

h × w × 2xi + m2 × x2
i ≈ h × w × 2xi (2)

which is only 1/4 of a regular Conv for r = 1/4.

2.3. Coordinate Attention (CA)

The detection ability of existing surface defect detection algorithms is limited when
facing complex and diverse surface defects of strip steel. At the same time, the detec-
tion effect is easily affected by factors such as image background noise and the irregular
distribution of defect features, resulting in insufficient learning of surface defect features
of strip steel by the detection network and making it difficult to obtain accurate defect
feature positions. Therefore, how to enhance the location information of defect features
and improve the network’s attention to defects is also one of the problems. In recent years,
attention mechanisms have developed rapidly due to their plug-and-play characteristics
and the advantages of effectively improving network detection performance, and have also
been widely applied in the field of image defect detection. Here, we choose to introduce
a coordinate attention mechanism (CA) at the last convolution of the middle two ELAN
modules in the backbone network and the SPPCSPC module in the feature fusion layer.
The specific structure of the CA module is shown in Figure 3. Compared to other types of
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channel attention mechanisms, it decomposes channel attention into two one-dimensional
feature encoding processes, aggregating features along two spatial directions. Through this
approach, precise positional information can be retained along one spatial direction, while
long-distance dependencies can be captured along another spatial direction. The specific
operations are divided into coordinate information embedding and coordinate attention
generation. Therefore, the introduced network retains both the location information of
defects and further enhances the feature information of defect features.
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The structure of the CA module can be defined as:

yc =
1

H × W

H

∑
i=1

W

∑
j=1

xc(i, j) (3)

yc is the output associated with the c-th channel, x is the input convolutional layer,
and xc(i, j) is the position x of the (i, j) input in the c-th channel convolutional layer.
In attention mechanisms, global pooling is commonly used to globally encode spatial
information, compressing it into channel descriptors and making it difficult to preserve
positional information, which is crucial for the spatial structure in visual detection tasks. In
order to enable the attention module to capture remote spatial interactions with precise
positional information, the CA attention mechanism decomposes global pooling into a pair
of one-dimensional feature-encoding operations. Specifically, given the input x, we use the
two spatial ranges (H, 1) or (1, W) of the pooling kernel to encode each channel along the
horizontal and vertical coordinates, respectively. Therefore, the output of the c-th channel
at height H can be formulated as:

yh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (4)

Similarly, the output of the c-th channel at width W can be formulated as:

yw
c (w) =

1
H ∑

0≤i<H
xc(j, W) (5)

Coordinate attention generation utilizes the above two equations, while fully utilizing
the captured positional information, to focus on the relationships between channels. The
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specific operation is to combine the two equations and send them to the shared 1 × 1
convolutional transformation function F1, obtaining:

f = λ(F1([zh, zw])) (6)

[zh, zw] represents cascading operations along spatial dimensions, γ is a non-linear
activation function, where f ∈ RC/r×(H+W) is an intermediate feature map that encodes
spatial information in both horizontal and vertical directions. To reduce the complexity of
the model, an appropriate reduction ratio r is usually used to reduce the number of channels
in f . Then, we split f into two independent tensors, f h ∈ RC/r×H and f w ∈ RC/r×W , along
the spatial dimension. The other two 1 × 1 convolutional transformations, Fh and Fw, are
used to transform Fh and Fw into tensors with the same number of channels as input X,
respectively, to obtain:

gh = η(Fh( f h)) (7)

gw = η(Fw( f w)) (8)

η is a sigmoid function. At this point, the CA module has completed both vertical and
horizontal attention. The CA model formula is defined as:

yc(i, j) = xc(i, j)× ηh
c (i)× ηw

c (j) (9)

It decomposes global pooling into a pair of one-dimensional feature-encoding opera-
tions. Then, two one-dimensional global pooling operations are performed to aggregate
the input features into two independent directional perception feature maps along the
vertical and horizontal directions. The long-range dependencies of the feature maps are
dynamically captured through the transformation of features in space, and weights are
assigned to the spatial positions of defect features to enhance the detection network’s
attention to defects. This enables the detection network to more accurately locate objects of
interest, thereby helping the entire model to better recognize defect features.

2.4. SPD

To improve the detection effect of small defects such as pitting, scratches, and plaques
on the surface of steel, a convolutional building block SPD is introduced at the output end
to detect low resolution and small objects. The SPD convolution building block consists of
spatial to depth layers (SPD layers) and non-stepped convolution layers. The SPD layer
utilizes image conversion technology to down-sample the original feature map into an
intermediate feature map with feature discrimination information. Its working principle is
shown in the following Figure 4:
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Figure 4. Working principle of SPD convolution module. (a) denotes the original feature map;
(b) denotes the spatial-to-depth transformation; (c) denotes channel concatenation; (d) denotes an
addition operation; (e) represents non-strided convolution.
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Firstly, given any original feature map X, its sub feature maps fx,y are composed of all
entries X(i, j), where i + x and i + y can be divided by a scale factor, and each sub feature
map is down-sampling according to the scale factor. As shown in the figure, when scale = 2,
four sub feature maps, f0,0, f1,0, f0,1, f1,1, can be obtained. The shape of each sub map

is
(

S
2 , S

2 , C1

)
, which is equivalent to double down-sampling the original feature map X.

Subsequently, the obtained sub feature maps are concatenated along the channel dimension
to obtain the intermediate feature map X′, where the spatial dimension of X′ is reduced by
twice and the channel dimension is increased by twice. At this point, SPD transforms the
original feature map X(S, S, C1) into an intermediate feature map X′

(
S

scale , S
scale , scale2C1

)
with feature discrimination information. Finally, by adding a non-stride (stride = 1) con-
volutional layer with a C2 filter, the intermediate feature layer X′

(
S

scale , S
scale , scale2C1

)
is

further transformed into the final feature layer X′′
(

S
scale , S

scale , scale2C2

)
while preserving

as much feature discrimination information as possible.
When adding the SPD module to the YOLOv7 defect detection network, the SPD

convolutional layer first splits the small or low-resolution defect feature maps on the steel
surface into sub feature maps, then concatenates the sub feature maps into intermediate
feature maps to extract feature identification information. Finally, the extracted feature
identification information is filtered and learned through a filter. The above work makes
the recognition of small targets and low-resolution defect features by the detection head
more accurate, which can effectively improve the detection performance of the algorithm.

2.5. EIoU

In the original YOLOv7 baseline network, CIoU Loss [28] is used as the bounding box
loss function, and its expression is as follows:

LCIoU = 1 − IoU +
ρ2(b, bgt

)
c2 + αυ (10)

where IoU represents the ratio of the overlapping area of the predicted and target borders
to the overall area occupied, while b and bgt represent the center points of the predicted and
target borders. Respectively, ρ represents the Euclidean distance of the center point, and c
represents the diagonal distance between the predicted bounding box and the minimum

rectangle outside the target bounding box; υ = 4
π2

(
arctan wgt

hgt
− arctan w

h

)2
, w, h, and wgt,

hgt respectively represent the predicted border and target border widths and heights, which
are used to characterize the consistency of length and width. α = υ

(1−IoU)+υ
is the regulatory

factor. υ The gradient calculation related to u for w and h is as follows:

∂υ

∂w
=

8
π

(
arctan

wgt

hgt − arctan
w
h

)
× h

w2 + h2 (11)

∂υ

∂h
= − 8

π

(
arctan

wgt

hgt − arctan
w
h

)
× w

w2 + h2 (12)

According to Formulas (11) and (12), it can be inferred that the ∂υ
∂w = − ∂υ

∂h ×
h
w gradient

sign is opposite. Therefore, both variables will inevitably increase and decrease during
the optimization process. In addition, when the width and height of the prediction box
satisfy

{(
w = kwgt, h = khgt)|k ∈ R+

}
, υ = 0, the relative width to height ratio of the

supplementary item will lose its effect. Due to the above two factors, the convergence
speed of the CIoU loss has slowed down.

In order to compensate for the shortcomings of the CIoU loss function, this paper re-
places it with the EIoU loss function [29], which minimizes the width and height differences
between the target box and the prediction box. This not only accelerates the convergence
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speed of the detection network training process, but also improves the accuracy of regres-
sion. The EIoU loss function formula is defined as:

LEIoU = LIoU + Ldis + Lasp = 1 − IoU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

cw2 +
ρ2(h, hgt)

ch
2 (13)

where cw and ch are the width and height of the minimum rectangle outside the predicted
and target bounding boxes, respectively. The EIoU loss function enhances the network’s
regression ability for defect positions by minimizing the difference in width and height
between the target and predicted boxes, further improving the predictive performance of
the detection network.

3. Results and Discussion

Training and testing on the NEU-DET strip defect dataset to verify the effectiveness of
the improved algorithm.

3.1. Experimental Preparation
3.1.1. Dataset

The NEU-DET steel defect dataset contains 1800 grayscale images, including 1440 in
the training set, 180 in the testing set, and 180 in the validation set, all with a resolution of
200 × 200 pixels. According to the common surface defects of steel, they are divided into
six categories: crazing (Cr), inclusion (In), patches (Pa), pitted surface (Ps), rolled in scale
(Rs), and scratches (Sc). The defect characteristics are shown in Figure 5. We conducted
ablation experiments and comparative experiments on this dataset to train and validate the
effectiveness of the improved module and algorithm.
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Figure 5. Six defects in NEU-DET dataset.

3.1.2. Experimental Environment and Parameter Setting

The hardware configuration for the experiment is Intel Core i512400F@2.5 GHz (Intel
Corporation, Santa Clara, CA, USA). The processor and graphics card are NVIDIA GeForce
RTX 3070 8 GB (Nvidia Corporation, Santa Clara, CA, USA). The software environment is
CUDA10 2 and cuDNN8 2.1. The operating system is Windows 11(Microsoft Corporation,
Redmond, WA, USA). The network model is built based on the Python framework, with
Python version 3.9 and Python version 1.12.1. In the experiment, the batch size was set to 8,
the epoch was set to 200, and the learning rate was set to 0.005.
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3.1.3. Object Detection Evaluation

The experiment uses six evaluation indicators: mAP, precision, recall, FPS, Params,
and FLOPs, which are introduced as follows:

• mAP: The average recognition accuracy of all categories is reflected, and the calculation
formula is:

mAP =
1
c

c

∑
i=1

APi (14)

• Among them, c represents the total number of categories in the image, i represents
the number of detections, and AP represents the average recognition accuracy of a
single category. mAP@0.5 refers to the average value obtained by adding the average
recognition accuracy AP of each category when IoU is set to 0.5.

• Precision: It reflects the accuracy of model detection, calculated using the formula:

Precision =
TP

TP + FP
(15)

• where TP is the true case and FP is the false certificate case.
• Recall: It represents the proportion of correctly predicted positive examples:

Recall =
TP

TP + FN
(16)

• where FN represents data that were mistakenly identified by the model as negative
examples but were actually positive examples.

• FPS represents the number of image frames processed within one second, and the
calculation formula is:

FPS =
1

Processing time per f rame
(17)

• where Processing time per frame represents the processing time of each frame, including
the image preprocessing time, the model inference time, and the post-processing time.

• Params reflect the number of parameters occupied by the model’s memory.
• FLOPs reflect the computational complexity of the model.

3.2. Ablation Experiment

In order to verify the effectiveness of improving YOLOv7, this paper conducted
progressive performance tests on each improvement point, including PConv, CA, and
SPD modules, using YOLOv7 as the benchmark network. Table 1 shows the results of
the ablation experiment. From the experimental results in Table 1, it can be seen that:
firstly, the improved network model reduced the number of parameters by 12.1%, the
computational complexity by 19.3%, the detection speed by 6.4 FPS, and the mAP of
six types of defect features increased by 2.2% compared to the baseline network after
using PConv convolution blocks instead of some conventional convolution modules in
the backbone network. This is because the PConv introduced by the improved model
effectively reduces redundant calculations and memory access in the process of extracting
defect feature information. We enabled the model to fully utilize the computing power of
hardware devices. Meanwhile, the reduction in parameter and computational complexity
also makes the improved model easier to deploy in actual industrial production. Secondly,
after introducing the CA attention mechanism block, the feature extraction ability of the
backbone network was improved, and mAP was further improved by 0.7%. Finally, the
SPD module introduced in the detection head further improved the recognition ability for
small targets and low-resolution defects, with an mAP increase of 80.4%. At the same time,
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the detection speed can reach up to 90.9 FPS, which can well meet the requirements of
real-time detection.

Table 1. Results of Ablation Experiment.

Base PConv CA SPD mAP (%) FPS Par (Mb) GLOPs
√ 1 76.4 92.6 37.2 105.2√ √

78.6 99.0 32.7 84.9√ √ √
79.3 95.2 32.9 85.3√ √ √ √
80.4 90.9 33.9 82.2

1 √
signifies the utilization of this algorithm.

3.3. Comparative Experiment
3.3.1. Comparison Experiment of Improvement Effect

In order to ensure fairness in the comparison of models, under the condition that all
parameter settings remain unchanged, we trained both the original YOLOv7 algorithm and
the improved version separately. The training results are depicted in Figure 6.
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From the above data comparison, it can be seen that the improved YOLOv7 algorithm’s
mAP value has increased from 76.4% to 80.4%, an increase of 4.0 percentage points. The
AP value of Cr defects increased by 7.1 percentage points from 45.0% to 52.1%; The AP
value of In defects increased by 2.6 percentage points from 86.1% to 88.7%; The AP value
of the Pa defect increased by 0.4 percentage points from 94.2% to 94.6%; The AP value of
the Ps defects increased by 4.6 percentage points from 91.1% to 95.7%; The AP value of the
Rs defects increased by 7.3 percentage points from 54.7% to 62.0%; The AP value of the Sc
defects increased by 2.3 percentage points from 86.9% to 89.2%, and the AP values detected
for all six types of defects improved.

The comparison of improvement algorithms for six types of defects is shown in
Figure 7. Various types of defect features are identified using rectangular boxes of different
colors, and confidence is indicated in the upper left corner of each rectangular box. It can
be seen that the improved YOLOv7 model has a positive impact on all six types of defects,
especially on the detection of small and low-resolution target defect features, which reduces
the risk of false positives and missed detections to a certain extent.
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3.3.2. Comparisons of Different Attention Mechanism Modules

To verify that the CA attention mechanism module selected in this article has the best
detection performance, we used YOLOv7 as the baseline network and inserted SE [30],
CBAM [31], and CA attention mechanism modules at the same position for comparison.
The detection results of each module on the NEU-DET steel defect dataset are shown in
Table 2. The comparison results show that the detection network using the SE module
has the best detection performance on In and Pa types of defects, with AP values reach-
ing 87.8% and 96.2%, respectively; The overall performance of the network using CBAM
modules in detecting various defects is moderate. The network using the CA module has
the best detection performance for Cr and Sc defects, with AP values of 49.7% and 91.2%,
respectively. This fully demonstrates that adding the attention mechanism module to the
YOLOv7 network for defect detection is an effective solution. Compared with the original
YOLOv7 network, the detection network using the CA module significantly improved
the detection performance of Cr, Rs, and Sc defects, with an AP improvement of 4.7%,
2.9%, and 4.3%, respectively. Compared with the other two networks using the SE and
CBAM attention mechanism modules, the network using the CA module also achieved the
best detection performance, with a highest mAP value of 78.1%. This is because SE only
considers attention in the channel dimension and lacks the acquisition of defect feature in-
formation in the spatial dimension. The CBAM attention mechanism introduces positional
information through global pooling on the channel, but this approach can only capture
local information and cannot obtain long-range dependent information. On the other hand,
the CA attention mechanism decomposes channel attention into vertical and horizontal
directions, effectively integrating spatial coordinate information into the generated atten-
tion map. Then, we aggregated them into two separate directional perception feature maps.
This approach can fully preserve the integrity of feature map position information and
dynamically assign weights to the spatial positions of defect features, effectively improving
the utilization of spatial defect information and the attention of the detection network
to defects.
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Table 2. Comparison of detection effects of different attention mechanism modules.

Algorithm mAP (%) Cr (%) In (%) Pa (%) Ps (%) Rs (%) Sc (%)

Yolov7 76.4 45.0 86.1 94.2 91.1 54.7 86.9
Yolov7 + SE 77.1 46.5 87.8 96.2 90.1 52.7 89.5

Yolov7 + CBAM 77.8 49.2 86.0 94.6 90.5 57.4 89.4
Yolov7 + CA 78.1 49.7 85.8 95.1 89.4 57.6 91.2

3.3.3. Comparisons of Different IoU Loss Functions

To verify the effectiveness of the EIoU loss function used in this article in strip defect
detection, CIoU, SIoU, and WIoU were compared on the improved network. The specific
results are shown in Table 3. CIoU is a loss function used in the YOLOv7 original network,
which has a maximum AP value of 62.9% when detecting Rs defects, but performs poorly
in detecting Sc defects: only 85.5%. The overall detection performance is the worst among
the four types of loss functions, with an mAP value of 79.3%. The detection performance of
SIoU on Cr defects reached the highest AP value of 59.1%, but its detection performance
on Ps and Rs defects was poor, at 89.8% and 58.3%, respectively. The performance of
the WIoU loss function is relatively balanced, with a performance of 79.5% on mAP. Our
work performed the best when using EIoU, and compared to the CIoU loss function
used in the baseline network, the overall mAP value increased by 1.1%, to 80.4%. We
achieved an improvement in AP in the detection of In, Pa, Ps, and Sc defects, which were
0.7%, 1.0%, 2.1%, and 3.7%, respectively. This is because CIoU did not consider the true
difference between the anchor box width and height and their confidence, which affected
the network’s localization of surface defect feature positions on the strip steel, resulting
in the network being unable to capture complete defect features. However, the EIoU can
effectively avoid this problem in this article, which enhances the network’s extraction of the
spatial position information of surface defect features on the strip steel, and thus achieves
the best detection performance.

Table 3. Comparison of detection effects of different IoU.

Algorithm mAP (%) Cr (%) In (%) Pa (%) Ps (%) Rs (%) Sc (%)

OurWork + CIoU 79.3 52.4 88.0 93.6 93.6 62.9 85.5
OurWork + SIoU 79.6 59.1 88.5 93.5 89.8 58.3 88.0
OurWork + WIoU 79.5 57.0 88.5 95.3 91.9 58.2 86.1
OurWork + EIoU 80.4 52.1 88.7 94.6 95.7 62.0 89.2

4. Conclusions

A high-precision real-time defect detection algorithm based on YOLOv7 is proposed to
address the issue of low accuracy in the surface defect detection of strip steel. This improved
algorithm replaces the original convolution module with PConv convolution blocks in
the backbone network, which not only reduces the model’s parameter and computational
complexity, but also improves the detection accuracy and speed. It introduces the CA
coordinate attention mechanism to enhance the network’s ability to extract image features.
The use of SPD convolution modules at the output end improves the detection effect on
small defects. The experimental results show that the detection speed of the improved
algorithm is 90.9 FPS, and the mAP is 80.4%, proving that the improved algorithm can
demonstrate good comprehensive performance in the surface defect detection of strip
steel. Although the improved algorithm proposed in this article has achieved certain
improvements in the accuracy of strip defect detection, its performance in dealing with
complex texture defect features is still unsatisfactory, and a large amount of background
noise seriously affects the detection effect. Therefore, further improving the detection
accuracy of the model should still be the focus of subsequent research. In addition, although
the parameter quantity of the improved network proposed in this article is reduced by
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8.9% compared to the baseline network, due to the large number of parameters in YOLOv7
itself, further reducing the model’s parameter count to enable its deployment in actual
production remains a top priority for subsequent research.
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