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Abstract: This study aimed to use a data-driven approach to identify individualized speed thresholds
to characterize running demands and athlete workload during games and practices in skill and
linemen football players. Data were recorded from wearable sensors over 28 sessions from 30 male
Canadian varsity football athletes, resulting in a total of 287 performances analyzed, including
137 games and 150 practices, using a global positioning system. Speed zones were identified for
each performance by fitting a 5-dimensional Gaussian mixture model (GMM) corresponding to
5 running intensity zones from minimal (zone 1) to maximal (zone 5). Skill players had significantly
higher (p < 0.001) speed thresholds, percentage of time spent, and distance covered in maximal
intensity zones compared to linemen. The distance covered in game settings was significantly higher
(p < 0.001) compared to practices. This study highlighted the use of individualized speed thresholds
to determine running intensity and athlete workloads for American and Canadian football athletes, as
well as compare running performances between practice and game scenarios. This approach can be
used to monitor physical workload in athletes with respect to their tactical positions during practices
and games, and to ensure that athletes are adequately trained to meet in-game physical demands.

Keywords: wearable sensors; training; game; workload; physical performance; gaussian
mixture model

1. Introduction

North American football is a dynamic team sport consisting of short, high-intensity
intervals of work interspersed with longer periods of rest [1]. The intensity of physical
exertion in such team sports is frequently characterized by velocity or acceleration profiles
from running performances, which can be used to quantify the physical demands required
for competition [2–4]. Since understanding these demands is crucial for determining appro-
priate training and physical preparation protocols, the way running intensity is quantified
becomes critical, especially as North American football involves significant variations in
running performance according to tactical position [5]. Furthermore, a distinction should
be made between running performance and running intensity [6] in that the former is
simply a global indication of running speed while the latter signifies running speed in
relation to an athlete’s capability in terms of the speeds produced during performance.

To distinguish levels of physical performance, the previous literature has categorized
running speeds into discrete bins using different speed thresholds. In a recent paper [5],
researchers examined spatio-temporal variables (distance, velocity) and high velocity,
acceleration, and deceleration efforts to compare positional demands in NFL players
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during games. Their effort-based parameters only considered sprinting speeds, which were
established with an absolute speed threshold, potentially over- or underestimating the
amount of high-speed running performed by players based on their sprint speeds [7]. In
another paper [8], authors established their own speed zones as “Lo” (0–10 km/h), “Med”
(10–16 km/h), “Hi” (16–23 km/h), and “Sprint” (>23 km/h). This approach included being
stationary and walking at quite low speeds and should not be considered as a physiological
demand but rather as a recuperation period. Based on the previous literature [9–11], five
speed zones were selected (0–1, 1–6, 6–12, 12–16, and >16 km/h) that corresponded to
standing, walking, jogging, running, and sprinting [12]. The limit of the approach is that the
literature referenced to determine the zones were based on other team sports (soccer, Aussie
rules football, and rugby), and as such, did not consider the real distribution of speed for
selecting zones that will account for player positions in American football. Additionally,
Canadian varsity football follows a slightly different game structure and level of play than
professional American football, and as such, the characterization of running demands may
also differ and has not been explored.

Approaches to determining speed zones to date have been limited by a percentile-
based approach which assumes that running effort speeds are evenly spaced [5]. Fur-
thermore, percentile and percent of maximum velocity based approaches also suffer from
the arbitrary selection of percent values to define thresholds as absolute speed threshold
methods. By contrast, the data-driven approach proposed in this article is based on a
Gaussian mixture model (GMM) which could refine our understanding of overall running
performance by identifying clusters of running speeds within the overall running perfor-
mance. Additionally, since the GMM can be used to find custom speed zones in individual
performances, the resulting speed thresholds are truly reflective of running intensity rather
than simply running performance [6]. As such, the approach can be used to understand key
performance measures, like time spent or distance covered in high-intensity running [5,8],
while naturally considering player position and fitness level.

The purpose of this study is therefore to use a data-driven approach to identify speed
thresholds for running intensity in Canadian varsity football players, and to compare
the physical demands of different tactical positions relative to their respective physical
capacities.

2. Materials and Methods
2.1. Participants

A total of 30 male athletes were included in the study, with 19 skill players (age:
23.1 ± 1.6 years; height: 1.79 ± 0.06 m; weight: 85.6 ± 9.1 kg; 6 receivers, 10 defensive backs,
2 running backs, 1 linebacker) and 11 linemen (age: 22.9 ± 1.8 years; height: 1.88 ± 0.04 m;
weight: 120.4 ± 9.6 kg; 6 offensive linemen, 5 defensive linemen). All participants met the
eligibility criteria of being Canadian varsity football athletes who played in the 2021 season,
and provided written informed consent. The study was reviewed and received ethics
clearance through the Aging-Neuroimaging Research Ethics Committee of the CIUSSS
Centre-Sud-de-l’Île-de-Montréal Office of Research Ethics Committee (ethics no. MP-53-
2020-191).

2.2. Procedures

Data were collected over 28 sessions (16 games, 12 practices), for a collective total of
311 performances recorded (156 games, 155 practices). Sessions where athletes did not
complete the game or practice, either due to injury or tactical reasons, were excluded from
the analysis, resulting in 287 performances analyzed (137 games, 150 practices). Athletes
were assigned the same Catapult sensor (Vector S7, Catapult Sports, Melbourne, Australia)
for each session, which was embedded in tightly fitted vests (Figure 1) and collected activity
profiles from a global positioning system (GPS) and heart rate sensors at 10 Hz, as well as
inertial measurement units (IMU) at 100 Hz [13].
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Figure 1. Placement of the Catapult sensor. Each athlete wore a fitted vest with a sleeve housing the
catapult sensor on the upper torso (circled in red).

To identify speed zones, clusters of common running speeds were identified using a
GMM. Based on the concept that a probabilistic distribution of running speeds from an
athlete’s performance can be decomposed into a finite number of Gaussian distributions, in
this context, each component Gaussian would represent a cluster of speeds achieved by the
athlete (a speed “zone”). To fit the GMM, speeds below 5 km/h were first excluded from
the data to remove the effect of standing or slow walking dominating the detection of speed
clusters. The residual velocity data from the Catapult GPS units were binned (bin widths
of 0.5 km/h) and 1 to 10 dimensional GMMs were fit using the Gaussian mixture function
from scikit-learn [14]. The corresponding Bayesian information criterion (BIC) for each of
the 1 to 10 dimensional models were also computed to determine an appropriate level of
model complexity (i.e., how many zones to model). A dimensionality of 5 was selected
as higher dimensionality did not improve the BIC, and 5 zones generally corresponds to
previously identified speed zones [12], thereby translating to interpretable zones: minimal-
intensity standing/walking (zone 1), low-intensity running (zone 2), medium-intensity
running (zone 3), high-intensity running (zone 4), and maximal-intensity sprinting (zone 5).
An example of the speed distribution for a receiver and offensive linemen are shown in
Figure 2, along with the corresponding GMM.
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Figure 2. Gaussian mixture model speed zone detection. Distribution of running speeds during a
session for a receiver (left) and offensive lineman (right) with the corresponding Gaussian distri-
butions and speed thresholds overlaid for each zone: #1 (orange), #2 (green), #3 (red), #4 (purple),
#5 (brown), and overall GMM (black). For comparison, percentile-based thresholds are shown for
25th, 50th, 75th, and 90th percentile values separating zones, and percent max-based thresholds are
shown for 25%, 50%, 75%, and 90% of maximum velocity value separating zones.
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2.3. Statistical Analysis

The thresholds separating speed zones were computed as the average of the mean
plus or minus the standard deviation of the Gaussian distributions for two adjacent zones.
The threshold values separating each zone were statistically compared using a Kruskal–
Wallis test to determine the effect of athlete position on speed thresholds. Once zones were
established, the start and end of each session was determined by the first and last entry
into zone 4 (high-intensity running) and these were used to determine the session duration.

Using the threshold values, the time spent in each speed zone was computed by
counting the number of samples where velocity was within the speed range of a zone and
dividing by the sampling frequency; a percentage of time spent in each zone was then
obtained by dividing the absolute time spent by the session duration. The percentage of
time spent in each zone was compared using a Kruskal–Wallis test to determine the effect
of athlete position. Using the identified samples, the distance covered in each speed zone
was also computed by summing the velocities (in m/s) for those samples and dividing by
the sampling frequency. The distance covered was similarly compared across positions for
each speed zone using a Kruskal–Wallis test.

To compare running intensity across performance context, the speed thresholds, per-
centage of time spent in each zone, and distance covered in each zone were averaged for
every athlete based on performance context (game or practice). The average values were
then compared between contexts for each speed zone using a Wilcoxon rank-sum test for
each athlete group (skill players or linemen).

To explore the differences between extreme and average sprinting demands in-game,
the peak intensity period for each game performance was identified as the 5 min period
with the largest percentage of time spent in zone 5 (i.e., sprinting). The average sprinting
demands were computed from the rest of the session, excluding the peak intensity period
as well as any prolonged periods of only low-intensity running or standing, where no
sprints occurred for at least 5 min. Sprint efforts were identified as entries into zone 5 which
lasted for at least 1 s. The number of sprint efforts per minute, the average time of recovery
between sprints, and the average distance covered in a sprint were compared between peak
intensity and average periods using a Wilcoxon rank-sum test for each athlete group (skill
players or linemen).

All statistical comparisons were performed in R [15] with significance levels for all
tests set at p = 0.05, and Dunn’s test with Holm–Bonferroni correction was used as a
post hoc test for pairwise comparisons for the Kruskal–Wallis test. Wilcoxon effect sizes
were calculated with values of 0.3, 0.5, and 0.7 being threshold values for small, medium,
and large effect sizes, respectively. The median and interquartile range were used as
summary statistics.

3. Results

Speed threshold values were significantly different across athlete positions (Figure 3).
In particular, the Kruskal–Wallis test showed significant differences across positions for
speed thresholds between zones 3–4 (H(5) = 134, p < 0.001) and 4–5 (H(5) = 135, p < 0.001).
Pairwise comparisons between positions showed that receivers and defensive backs had
higher threshold speeds for zones 3/4/5 compared to all linemen (p < 0.01). Linebackers and
running backs only had higher speed threshold compared to offensive linemen (p < 0.05).

In general, the speed thresholds for skill players were higher than linemen, with maxi-
mal intensity running thresholds of 18.9 km/h (IQR: 2.6 km/h) or 5.2 m/s (IQR: 0.7 m/s)
for skill players and 14.3 km/h (IQR: 3.9 km/h) or 4.0 m/s (IQR: 1.1 m/s) for linemen.
Receivers, defensive backs, and linebackers had the highest thresholds (18.9–19.1 km/h or
5.2–5.3 m/s) while offensive linemen had the lowest thresholds (12.8 km/h or 3.6 m/s).
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Figure 3. Speed zone thresholds by athlete position. The median and interquartile range of the speed
thresholds for each speed zone, separated by athlete position.

The percentage of time spent, and the distance covered in each speed zone were
also significantly different across athlete positions (Figure 4) for all zones. Receivers and
defensive backs spent less percentage of time in zone 1 (minimal intensity) than all other
positions (p < 0.01), while also covering more distance compared to running backs and
linemen (p < 0.05). In all other speed zones, receivers and defensive backs spent more
percentage of time (p < 0.01) and covered more distance (p < 0.01) compared to running
backs and linemen. Receivers spent more percentage of time (p = 0.04) in zone 5 (maximal
intensity) compared to defensive backs, although there was no significant difference in
distance covered between the two. Within their respective speed zones, skill players
(primarily receivers and defensive backs) covered more distance (934 m, IQR: 318 m) and
spent a greater percentage of time (2.1%, IQR: 0.6%) in high-maximal intensity zones
compared to linemen (435 m, IQR: 219 m; 1.4%, IQR: 0.8%).
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range of the percentage of time spent (a) and distance covered (b) in each speed zone are plotted
separately for each tactical position and colored by athlete type.

Comparing game and practice contexts, the overall duration of game sessions (190 min,
IQR: 35 min) was greater than practice sessions (123 min, IQR: 14 min) and demonstrated
a large effect size (p < 0.001, r = 0.68). Wilcoxon rank-sum tests showed that for skill
players, detected speed thresholds were significantly lower in practice contexts compared
to game contexts only for the threshold between zones 2–3 (p < 0.01) and the effect size
for this difference was moderate (r = 0.44). Furthermore, the percentage of time spent in
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all zones for skill players showed no significant difference across contexts, although the
distance covered in all speed zones was significantly higher in game contexts (p < 0.001)
with moderate-to-large effect sizes (0.36 ≤ r ≤ 0.55). For linemen, there were no significant
differences in speed thresholds between game and practice contexts. The percentage of time
spent in all speed zones also showed no significant difference between game and practice
contexts for linemen, while the distance covered in all zones were also significantly higher
in game contexts (p < 0.001) with large effect sizes (0.50 ≤ r ≤ 0.84). Speed thresholds
for game and practice contexts are shown in Figure 5, and percentage of time spent and
distance covered in each zone are shown in Figure 6.
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The number of sprints per minute, the average recovery time between sprints, and
the average distance between sprints (Figure 7) were all significantly different between
the peak intensity and average running performance (p < 0.001), with moderate-to-large
effect sizes (0.40 ≤ r ≤ 0.71). For skill players, the sprint rate of 0.35 (IQR: 0.10) sprints
per minute on average increased to 0.80 (IQR: 0.4) sprints per minute, while for linemen,
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the average performance sprint rate of 0.30 (IQR: 0.14) increased to 0.60 (IQR: 0.40) sprints
per minute. Both athlete groups had shorter recovery times between sprints in the peak
intensity period compared to average, with skill players reducing recovery time from 90 s
(IQR: 31 s) to 58 s (IQR: 44 s) and linemen reducing recovery time from 84 s (IQR: 55 s) to
39 s (IQR: 56 s). Finally, skill players increased the average sprint distance covered in the
peak intensity period from 33 m (IQR: 5 m) to 39 m (IQR: 12 m), while linemen had an
increase from 28 m (IQR: 10 m) to 32 m (IQR: 15 m).
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4. Discussion

The heterogeneity in running speed distributions across tactical positions, as evi-
denced by the variance in detected speed thresholds, illustrates the need for individualized
thresholds for workload monitoring in American and Canadian football athletes. While
previously, only maximum velocities reached were reported across tactical positions [5]
(Sanchez et al., 2023), a similar result was found that offensive linemen had the lowest
velocity output, and the highest velocities were achieved by receivers and defensive backs.
Importantly, using thresholds being detected via GMM for each session independently,
a unified set of running performance was detected across all athletes and tactical posi-
tions. As indicated from Figure 2, the natural distribution of running speeds follows a
multi-modal trend with running performed at several clusters of speed values rather than
a uni-modal trend. Due to this multi-modal nature, percentile and percent of maximum
running velocity based approaches generate threshold values that divide a single speed
cluster unintuitively (e.g., the threshold between Zone #1 and #2 for the offensive lineman
in Figure 2). Furthermore, the selection of percentage values to define percentiles defining
speed zone ranges can become as arbitrary as defining absolute speed thresholds, as can
been noted with the varying use of 80th, 85th, or 90th percentile for sprinting [16] (Buchheit
et al., 2021). Additionally, the use of individualized running thresholds in soccer have
demonstrated reduced inter-match variability compared to generic speed thresholds when
evaluating high-speed running performances [17] (Carling et al., 2016), indicating an in-
creased robustness of such an approach in workload monitoring. The similarity in detected
thresholds for groups of playing positions (e.g., receivers, defensive backs, and linebackers)
may also indicate larger groupings of tactical positions in terms of physical preparation
beyond distinctions of skill players versus linemen, or offensive versus defensive players.
Future work may benefit from exploring the heterogeneity in the characterization of physi-
cal profiles in American football and extracting clusters of players, which may inform the
grouping of athletes during training or scouting.

When comparing running intensities across game and practice contexts, the distances
covered were much higher in game settings, which may be attributed to the longer du-
ration of games compared to practices. By contrast, the percentages of time in each zone
were nearly identical across contexts, highlighting a consistency in the composition of
running performances for each position. Additionally, the detected threshold values using
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the GMM method were generally consistent across game and practice contexts, despite
the large discrepancies in athlete play time across contexts. While previous studies in
American football have only looked at practice and game contexts separately, there was
less discrepancy between the distances covered in practice [12] (DeMartini et al., 2011)
and games [5] (Sanchez et al., 2023). This is particularly striking as the structure of games
and practices may differ quite dramatically, with practices not only simulating games (e.g.,
scrimmages) but also consisting of a variety of strength and conditioning drills. However,
discrepancies between game and practice intensity in both absolute demands (such as
distance covered) and relative demands (such as percentage of time) should be considered
to improve physical preparation to reach target demands during games.

Furthermore, the quantification of the running performance during peak-intensity
periods during game settings indicates the peak physical performance capacity required of
athletes. Notably, the average play clock (i.e., time allowed to elapse between the end of one
play and the start of another) in Canadian football is 25 s, which in peak-intensity periods
was close to the average recovery time between sprints for linemen, while for skill players
the average recovery time between sprints was closer to a minute. In American football, rest
times between plays have been quantified as about 29.6–36 s [18] (Plisk and Gambetta, 1997).
As such, even in peak intensity periods of a game, skill players do not perform maximal
intensity running in every play, while linemen do perform maximal intensity efforts every
play during peak intensity periods. While peak intensity periods in team sports typically
underestimate true physical capacity in athletes, the characterization of high-intensity work
performed during these periods may inform the evaluation of work completed in simulated
game scenarios during practice [19] (Weaving et al., 2022). In practice, the exposure of
athletes to bouts of running relative to their own maximum velocity has shown a reduction
in injury in Gaelic football [20] (Malone et al., 2017), indicating the practical application of
the characterization of the maximal intensity running in peak intensity periods presented
here towards the design of physical preparation protocols.

The present study on the application of GMMs to identify speed thresholds in football
players is limited by the small sample size in certain athlete positions as well as the
inclusion of only two teams over the course of a single season. As such, the lower threshold
values and distances covered for running backs may be due to the characteristics of the
single athlete collected in that position rather than reflective of the positional demands in
general. Further exploration including more athletes (running backs and linebackers in
particular), and across more seasons is warranted. The consideration of tactical factors such
as game context in terms of scores was also not factored into the analysis of thresholds,
although it may have an impact on the relative playing time and actions of offensive and
defensive players. While in general the playing time may not influence the threshold values
detected by GMMs, as demonstrated by the similarity in thresholds across practice and
game contexts, the actions and plays run by the athletes may be affected by the scoreline,
thus changing the overall running performance and threshold values. Furthermore, the
de-composition of practice sessions into individual positions or team-based drills, as well as
physical conditioning drills, may be of interest to explore relative running intensities across
practice and game components. Finally, the current study did not consider the overall team
performance of the two teams involved in terms of team ranking, which would be valuable
in assessing the qualities of athletes in high- versus low-performing teams.

5. Conclusions

The findings from this study demonstrate the utility of a data-driven approach us-
ing wearable sensors to identify speed thresholds in American and Canadian football to
appropriately define running intensity demands according to individual player capaci-
ties. Using such an approach, high-intensity running for linemen was characterized as
medium-intensity running for skill players, thus highlighting the need to distinguish phys-
ical outputs (in terms of pure speed) from physical demands (in terms of intensity). The
ability to characterize the intensity of physical workload performed relative to each athlete’s
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capacity rather than an absolute threshold may be of use when evaluating physiological
responses, such as heart rate, to gauge physical fatigue. Reporting of time spent and dis-
tances covered according to running intensity zones can provide insight into the workload
during a session and more accurately reflect the effects of fatigue experienced by an athlete.
Furthermore, this is the first study to use Gaussian mixture models to determine speed
thresholds in Canadian football, although the approach has also been used in other team
sports for speed zone identification [21] (Park et al., 2019). Further investigation of patterns
of fatigue in American football athletes would benefit from relating the running intensity
zones identified in this work to additional physiological measures, such as heart rate.
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