
Citation: Kim, J.; Bang, J.; Lee, J.

Adaptive Dataset Management

Scheme for Lightweight Federated

Learning in Mobile Edge Computing.

Sensors 2024, 24, 2579. https://

doi.org/10.3390/s24082579

Academic Editor: Tian Wang

Received: 3 March 2024

Revised: 3 April 2024

Accepted: 10 April 2024

Published: 18 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Adaptive Dataset Management Scheme for Lightweight
Federated Learning in Mobile Edge Computing
Jingyeom Kim †,‡ , Juneseok Bang † and Joohyung Lee *

School of Computing, Gachon University, Seongnam 13120, Republic of Korea; kimo1113@gachon.ac.kr (J.K.);
dipsy1234@gachon.ac.kr (J.B.)
* Correspondence: j17.lee@gachon.ac.kr
† These authors contributed equally to this work as co-first authors.
‡ Current address: Advanced Research Team, NHN Cloud Corp, Seongnam 13487, Republic of Korea.

Abstract: Federated learning (FL) in mobile edge computing has emerged as a promising machine-
learning paradigm in the Internet of Things, enabling distributed training without exposing private
data. It allows multiple mobile devices (MDs) to collaboratively create a global model. FL not only
addresses the issue of private data exposure but also alleviates the burden on a centralized server,
which is common in conventional centralized learning. However, a critical issue in FL is the imposed
computing for local training on multiple MDs, which often have limited computing capabilities. This
limitation poses a challenge for MDs to actively contribute to the training process. To tackle this
problem, this paper proposes an adaptive dataset management (ADM) scheme, aiming to reduce
the burden of local training on MDs. Through an empirical study on the influence of dataset size on
accuracy improvement over communication rounds, we confirm that the amount of dataset has a
reduced impact on accuracy gain. Based on this finding, we introduce a discount factor that represents
the reduced impact of the size of the dataset on the accuracy gain over communication rounds. To
address the ADM problem, which involves determining how much the dataset should be reduced
over classes while considering both the proposed discounting factor and Kullback–Leibler divergence
(KLD), a theoretical framework is presented. The ADM problem is a non-convex optimization
problem. To solve it, we propose a greedy-based heuristic algorithm that determines a suboptimal
solution with low complexity. Simulation results demonstrate that our proposed scheme effectively
alleviates the training burden on MDs while maintaining acceptable training accuracy.

Keywords: federated learning; mobile edge computing; dataset management

1. Introduction

With the success of deep learning (DL) and the rich storage and computing capabilities
of mobile devices (MDs), many applications utilizing DL with the collected data from MDs,
such as face recognition, recommendation systems, and human activity recognition, have
become widely employed. Traditionally, the centralized learning method has been used for
training DL models, which requires collecting all raw data from MDs by sending raw data
to a remote cloud server. However, this approach raises concerns about MDs’ privacy and
potential data misuse [1]. To address these challenges, a promising distributed learning
framework called federated learning (FL) has emerged [2,3]. FL allows for the construction
of global DL models using only local model weights trained from MDs with their local
datasets. This approach helps alleviate privacy concerns and distributes the training burden
across multiple MDs at a centralized server. Nevertheless, efficient management of FL still
faces several challenging issues due to its distributed and heterogeneous nature. Specifically,
FL suffers from long transmission latency to a remote cloud server [4]. Additionally, the
varying qualities of each MD’s dataset can impact the accuracy of the global model, and
the local training burden may make MDs reluctant to participate in the FL process [5–7].

Sensors 2024, 24, 2579. https://doi.org/10.3390/s24082579 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24082579
https://doi.org/10.3390/s24082579
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7257-245X
https://orcid.org/0009-0005-0301-1308
https://orcid.org/0000-0003-1102-3905
https://doi.org/10.3390/s24082579
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24082579?type=check_update&version=1

Sensors 2024, 24, 2579 2 of 19

To tackle these challenges, researchers have explored the concept of mobile edge
computing (MEC)-assisted FL, which leverages the computing capabilities available at the
mobile network edge to facilitate intermediate aggregation and streamline the FL process
effectively [8]. The objective is to achieve optimal FL operations. In particular, there have
been active investigations into efficient FL participant selection, aggregation management,
and radio and computation resource management (such as CPU/GPU). In terms of radio
and computation resource management, given the constraints of limited communication
bandwidth and computational capacity, various approaches to joint edge association and
the allocation of radio and computation resources have been explored. These endeavors
aim to enhance the accuracy of the global model or improve the speed of convergence as
well as energy efficiency [6,9–19].

However, most existing research assumes that participating MDs fully utilize their
given datasets, considering the fact that more data generally leads to higher accuracy
in DL. In practice, however, MDs may have limited computing and battery capabilities,
making it burdensome for MDs if they have large datasets. The burden placed on MDs
due to the full utilization of their datasets in the FL process often leads to a reduction in
their participation, resulting in a decrease in global accuracy. Thus, this issue requires
careful management. Nevertheless, current studies tend to focus on providing incentives
to promote MD participation rather than addressing the burden on MDs [20–22]. Only
a few studies have considered dataset management for efficient data utilization. For in-
stance, Duan et al. [7] proposed the Astrea framework, which adaptively conducts data
augmentation and downsampling to address local data imbalance. Similarly, Ren et al. [9]
proposed a joint batch size selection and communication resource allocation algorithm
for both CPU and GPU resources, taking into account the trade-off between loss decay
and latency. Additionally, Kim et al. [6] proposed an energy-efficient joint dataset and
computation management scheme that utilizes dataset management to reduce the burden
on MDs, enabling energy-efficient FL with minimal accuracy loss. However, most of these
works assume that the value of the dataset remains constant throughout the FL process. In
non-independent and identically distributed (non-IID) cases, both the amount of data and
the class distribution across rounds can impact the global accuracy as mentioned in [23,24].
To the best of our knowledge, the careful consideration of dataset management for allevi-
ating the burden on MEC-assisted FL processes with minimal accuracy loss, specifically
addressing the diminishing effect of dataset size over rounds and class distribution, has
not been thoroughly explored in previous studies. This constraint highlights an area that
requires further attention and research.

In this article, we propose an adaptive dataset management (ADM) scheme to alleviate
the burden on MDs in the FL process while minimizing accuracy loss. The detailed
contributions of this article are as follows:

• Considering the diminishing effect of dataset size over rounds, as validated by our
empirical study, along with the distribution of classes, we design the proposed ADM
scheme. This scheme incorporates both the data size adjustment algorithm and the
class adjustment algorithm.

• To develop the proposed ADM scheme, we present rigorous analytical models to
estimate accuracy and end-to-end service latency concerning the dataset size, taking
into account the proposed discount factor. Subsequently, to balance between the
estimated accuracy and end-to-end service latency, we formulate the objective function
based on the ratio of these two factors.

• Regarding the dataset size adjustment problem, we determine the optimal dataset size
adjustment across clients by solving an optimization problem, initially a non-convex
problem due to the presence of a non-differentiable function. We employ several
mathematical techniques to transform it into a convex optimization problem and
provide the global optimum solution.

• In addressing the class adjustment problem, we establish the optimal dataset size
adjustment across classes for each client, considering the class distribution over MDs

Sensors 2024, 24, 2579 3 of 19

in the non-IID case. Here, we propose a greedy-based heuristic algorithm to reduce
the Kullback–Leibler Divergence (KLD) distance and derive a suboptimal solution
with low complexity.

• As a practical consideration, we also provide a detailed discussion on the implemen-
tation of the proposed ADM on a virtualization platform, along with a prototype of
the proposed framework. Finally, simulation results demonstrate the effectiveness
of the proposed scheme in reducing the training burden on MDs while maintaining
acceptable training accuracy.

The remainder of this paper is organized as follows. Section 2 summarizes the pre-
vious works related to resource management for MEC-assisted FL. Section 3 provides
the proposed system model of the ADM scheme. Section 4 provides our proposed ADM
scheme, which consists of (i) dataset size adjustment and (ii) class adjustment and detailed
discussions on its implementation. In Section 5 evaluates the performance of the proposed
system. Finally, Section 6 concludes the paper.

2. Related Work

Research on MEC-assisted FL has seen numerous approaches in the literature aimed
at achieving optimal dataset management of FL. It is important to note that effective
data management is essential for achieving optimal performance in Internet of Things
(IoT) systems. In particular, as FL has been extensively utilized in IoT systems, there is
a growing interest in addressing this issue to enhance FL performance [25]. In this brief
survey, we will specifically focus on recent advancements in dataset management for
MEC-assisted FL. The work by [9] focused on accelerating the training process in CPU and
GPU computation scenarios. They proposed a joint batch size selection and radio resource
allocation algorithm. This approach aimed to optimize the training process by effectively
utilizing both CPU and GPU resources. In [6], the authors developed an analytical model
to optimize learning efficiency and energy consumption. They proposed a joint dataset and
computation management approach to strike a balance between these two factors. In [26],
the authors proposed an adaptive batch size and learning rate selection algorithm. Their
objective was to mitigate the negative impact of the synchronization barrier in FL. The
authors of [27] proposed a detailed data selection method to enhance learning efficiency by
choosing only the data that contributes to the improvement of the model’s performance.
However, these studies did not take into account the distribution of data. Other research
has focused on considering the distribution of data, which can be classified into data
adjustment and client selection/scheduling approaches. In [7], the authors proposed a
self-balancing algorithm to alleviate data imbalance. This was achieved by augmenting the
minority class and downsampling the majority class on MDs. Additionally, they proposed
a mediator-based rescheduling algorithm to select MDs and distribute aggregated data
to achieve near-IID distribution. In [28], a data augmentation strategy using a generative
adversarial network (GAN) was employed. This strategy enabled each device to locally
reproduce the data samples of all MDs, therefore promoting an IID distribution of data.
The authors of [29] introduced FedSwap, a method that swaps models among the MDs in
each round to alleviate data diversity. This approach aimed to achieve a more consistent
data distribution across devices. In [30], the authors proposed the CSFedAvg algorithm,
which selects clients with a low degree of non-IID data by utilizing weight divergence.
Similarly, The authors of [31] employed DRL to identify clients relevant to the application
task, ensuring they have uniform data across a large dataset. These strategies are designed
to enhance the aggregation process by focusing on clients with similar data distributions.
However, these approaches, which focus on aligning IID data through data augmentation
or client selection, tend to overlook the learning efficiency of MDs. We propose ADM,
taking into consideration the aforementioned limitations. ADM accelerates the learning
process by adjusting the dataset in response to diminishing the effect of dataset size over
rounds while also adjusting the class distribution by considering non-IID data of MDs. We
present a list summary of related works in Table 1.

Sensors 2024, 24, 2579 4 of 19

Table 1. Summary of related works.

Related Works Topic Key Contributions

[6] Learning Efficiency Propose dataset and computation management strategy

[7] Data Distribution Management Augment the minority class and downsample the majority class

[9] Learning Efficiency Propose batch size selection and radio resource allocation algorithm

[26] Learning Efficiency Propose an adaptive batch size and learning rate selection algorithm

[27] Learning Efficiency Choose the data contributing to the improvement of the model

[28] Data Distribution Management Propose data augmentation strategy using GAN to promote IID data

[29] Data Distribution Management Swap models among the MDs to alleviate data distribution

[30] Data Distribution Management Select clients with a low degree of non-IID data using weight divergence

[31] Data Distribution Management Select clients relevant to the application task employing DRL

ADM
Learning Efficiency
Data Distribution Management

Balance accuracy and latency by adjusting dataset size
Propose a method for diminishing the effect of dataset size over rounds
Adjust class distribution on non-IID data

3. System Model
3.1. Motivating Example for Discounting Factor

It is well-established that the training accuracy of FL generally improves as the dataset
size per MD increases. However, the rate at which the accuracy increment, also known as
accuracy gain, tends to decrease as the communication rounds progress [6,18]. To further
investigate the impact of dataset size on accuracy improvement over communication
rounds, we conducted an empirical study, which led us to introduce a discount factor in
our proposed scheme.

Our simulations, as depicted in Figures 1 and 2, demonstrate the accuracy trend of the
global model in the FL framework when using the CIFAR-10 and MNIST datasets. Under
both the Independent and Identically Distributed (IID) and non-IID settings, we observed
that the accuracy increases with an increasing amount of dataset denoted as Dn, where n
represents the index of MDs at a specific communication round, as confirmed by previous
studies [6,18]. However, in this experiment, where the total number of MDs is 10, we
noted that the accuracy improvement from utilizing a larger dataset size, Dn, diminishes as
the communication rounds progress. Notably, the gap between Dn = 1000 and Dn = 2500
decreases consistently, supporting this observation. This trend becomes more evident
when we analyze the accuracy gain based on communication rounds with respect to Dn, as
illustrated in Figures 3 and 4. These demonstrate that a significant accuracy gain occurs in
the initial rounds, but after 40 rounds, the accuracy gain significantly decreases. The high
variance observed in the initial rounds reflects greater volatility in accuracy gain compared
to other rounds. This indicates a tendency for accuracy to increase significantly in the early
rounds. Based on these findings, we can conclude that to alleviate the training burden on
MDs, it is advisable to reduce the dataset size more aggressively as the communication
rounds evolve. To account for this trend in adaptive data management, we propose the
introduction of a discounting factor that considers the accuracy gained from the dataset in
relation to the communication rounds.

Sensors 2024, 24, 2579 5 of 19

(a) (b)

Figure 1. Accuracy based on communications rounds and Dn on IID setting (a) CIFAR-10 (b) MNIST.

(a) (b)

Figure 2. Accuracy based on communications rounds and Dn on Non-IID setting (a) CIFAR-10
(b) MNIST.

(a) (b)

Figure 3. Accuracy gain based on communications rounds and Dn on CIFAR-10 (a) IID (b) Non-IID.

(a) (b)

Figure 4. Accuracy gain based on communications rounds and Dn on MNIST (a) IID (b) Non-IID.

Sensors 2024, 24, 2579 6 of 19

3.2. Proposed System Model

For ease of reference, we present Table 2, which comprises a list of the key symbols
that we define and utilize in this paper.

Table 2. Summary of Major Symbols.

Symbol Definition

N Set of MDs

N Total number of MDs

Dn Dataset of MD n

Dn Total number of samples in MD n’s dataset

D′n Adjusted number of samples in MD n’s dataset

σ Discounting factor

A Accuracy estimation model

cn Number of CPU cycle of MD n required to process one samples

fn CPU frequency of MD n

Lc
n Local model computation latency

In Number of training local model iteration

B Available bandwidth at MEC server

Rn Transmission rate of MD n

Wn Size of the local model parameters of MD n

L End-to-end service latency of FL

vn Dataset adjustment vector

DKL Kullback–Leibler divergence distance

vn,k Class adjustment vector

As depicted in Figure 5, the proposed system architecture supports an FL framework
consisting of multiple MDs and a single MEC server where the MEC server is directly
connected to a single base station (BS) serving MDs. Here, we define N as the set of
MDs, where |N| = N denotes the total number of MDs. For each n ∈ N, MD n has local
dataset Dn = ((x1

n, y1
n), (x2

n, y2
n), (x3

n, y3
n), . . . , (xi

n, yi
n), . . . , (x|Dn |

n , y|Dn |
n)), where |Dn|=Dn

denotes the total number of samples, xi
n and yi

n is the i-th data sample and corresponding
ground-truth label, respectively.

In this context, the MEC server, acting as a centralized server, orchestrates the coor-
dination of FL tasks across multiple MDs. Each MD performs local training on its local
dataset and sends the local update to the MEC server. Subsequently, the MEC server
aggregates the local updates from the MDs to generate the global model. Throughout this
process, the MEC server employs an adaptive data management (ADM) scheme to adjust
the dataset size assigned to each MD, therefore achieving the lightweight FL process. The
entire procedure can be categorized into the following three steps:

• Step 1: In Step 1, the MEC server selects appropriate MDs as FL participants. Then,
the MEC server requests and receives the class distribution of the dataset from each
MD to conduct the ADM scheme, which will be explained in detail in Section IV.
Using the information obtained from the selected MDs, the data adjustment message
is calculated using the ADM scheme. Afterward, the MEC server initiates the task
by providing an initial shared global model, denoted as w0

G, and the data adjustment
message for local training to multiple MDs. The initial shared global model may
include a TensorFlow graph, weights, and instructions.

Sensors 2024, 24, 2579 7 of 19

• Step 2: Each MD n conducts local training on the adjusted dataset D′n among entire
local data Dn using the shared global model (i.e., w0

G in the initial round or wt
G in round

t). Specifically, by minimizing the loss function L(wn), the local model parameter wn
at MD n is given by

w∗n = arg min
wn
L(wn). (1)

Then, the updates are transferred to the MEC server.
• Step 3: The MEC server combines the local model updates from the MDs and gen-

erates a global model by solving an optimization problem that minimizes the global
loss function.

L(wt
G) =

1
N ∑i∈I L(wi). (2)

Then, the MEC server sends the updated global model parameters back to the MDs.

Figure 5. Proposed system architecture.

Multiple rounds of the FL process, which include Steps 2–3, are iterated until either
the global loss function at the MEC server converges to the termination condition or the
specified target accuracy is achieved. It should be noted that the FL process allows for
the selection of different types of ML models depending on the specific application of
the FL service. Additionally, in Step 3, the aggregation of the global model, an essential
component of FL, can be accomplished using various mechanisms such as the federated
averaging algorithm and secure aggregation algorithm [32].

3.3. Analytical Models

In this subsection, we represent analytical models by formulating (i) an accuracy
estimation model and (ii) an end-to-end service latency model, respectively.

3.3.1. Accuracy Estimation Model

In most of the literature [6,18], the estimated training accuracy in FL can be modeled
as either a concave or linear function, depending on the observation range. The concave
behavior of the accuracy can be approximated by piecewise linear approximation. To
simplify our proposed scheme and control the dataset size within specific ranges, as shown
in [6], we adopt a linear function in this paper. Furthermore, considering the impact
of dataset size on accuracy improvement over communication rounds, we introduce a
discounting factor (a number between 0–1), which provides a clever way to scale down the

Sensors 2024, 24, 2579 8 of 19

impact of accuracy improvement increasingly after each round evolves. Then, the proposed
accuracy estimation model A is given by

A = σr−1 ∑
n∈N

Dn, (3)

where σ is the discounting factor and r is a communication round index. It represents the
extent to which the accuracy improvement is discounted with respect to the dataset size of
MDs over communication rounds. If σn = 1, the accuracy improvement remains sustained
regardless of the communication rounds. However, when σn < 1, the impact of the dataset
size on accuracy improvement gradually diminishes as the number of communication
rounds increases.

3.3.2. End-to-End Service Latency Model

Following [6], the end-to-end service latency comprises two components: (i) com-
putation latency and (ii) transmission latency between MD n and the MEC server. The
computation latency includes the MD n’s local model computation latency, denoted as Lc

n,
and the MEC server’s computation latency for global model aggregation. Considering
that global model aggregation is typically a lighter task compared to local model training,
we assume that the latency associated with global model aggregation is negligible. This
assumption aligns with various studies [6] that assume the MEC server possesses sufficient
resources to handle this task. Let cn be the number of CPU cycles of MD n required to
process one sample, and fn is the CPU frequency. Then, the local model computation
latency, Lc

n, can be expressed as

Lc
n = In

cnDn

fn
, (4)

where the In denotes the number of training local model iterations.
The transmission latency, denoted as Lt

n, encompasses both the uploading of the local
model and the downloading of the global model. However, since the latency associated
with downloading the global model is negligible compared to uploading the local model,
we can disregard it in our analysis, as assumed in [6]. To formulate the transmission latency
Lt

n, we consider that the MEC server fairly assigns bandwidth to all MDs, with an available
bandwidth denoted as B. The transmission rate of MD n can be defined as:

Rn =
B
N

ln
(

1 +
hn pn

N0

)
, (5)

where hn, pn, and N0 represent the channel gain, transmission power of MD n, and the
background noise, respectively. The transmission latency for the local model parameters
wn from MD n to the MEC server can be formulated as:

Lt
n =

Wn

Rn
, (6)

where Wn denotes the size of the local model parameters of MD n.
Finally, the end-to-end service latency of each MD n is defined as Ln = Lc

n + Lt
n. In FL,

the global model aggregation is conducted when the MEC server receives all local models
from all MDs, so the total end-to-end service latency of FL, which is determined by the
slowest MD, is defined as

L = max
n∈N
{Lc

n + Lt
n}. (7)

4. Proposed ADM Scheme

In this section, we present a novel adaptive dataset management (ADM) scheme for
lightweight FL frameworks. The goal of this scheme is to determine the optimal dataset
adjustment vector vn, which represents the ratio between the amount of local dataset
used for local training and the total amount of local dataset. Additionally, we address the

Sensors 2024, 24, 2579 9 of 19

problem of determining which class of data should be reduced, taking into account the
class distribution.

4.1. Dataset Size Adjustment

To strike a balance between accuracy improvement and end-to-end service latency
with respect to the dataset size, we define an optimization problem aimed at maximizing
the ratio of accuracy estimation A to end-to-end service latency L in FL. In this formulation,
we replace Dn with the adjusted dataset D′n, where D′n = vnDn. Then, the problem can be
formulated as follows:

Prob.1 :
max
vn

A
L

(8a)

s.t. γd ≤ vn ≤ 1, ∀n ∈ N, (8b)

where the constraint (8b) specifies the range of vn with lower bound parameter γd for the
selected MEC MDs.

To convert Prob.1 into standard minimization form by plugging (3)–(7) into Prob.1,
the Prob.1 is newly defined as follows:

Prob.2:
min
vn

− σr−1 ∑n∈N vnDn

maxn∈N {In
cnvn Dn

fn
+ Wn

Rn
}

(9a)

s.t. γd ≤ vn ≤ 1, ∀n ∈ N, (9b)

However, since Prob.2 has the form max(.) in the objective function, which is not
differentiable, it is a non-convex optimization problem. Thus, we convert max(.) into an
affine function by introducing an additional variable t and letting

t = max
n∈N

In
cnvnDn

fn
+

Wn

Rn
. (10)

This new variable t induces an additional constraint:

In
cnvnDn

fn
+

Wn

rn
≤ t, ∀n ∈ N. (11)

Using this additional constraint with the new variable t, we can rewrite Prob.2, which
is a problem equivalent to

Prob.3:
min
vn, t

− σr−1 ∑n∈N vnDn

t
(12a)

s.t. γd ≤ vn ≤ 1, ∀n ∈ N, (12b)

In
cnvnDn

fn
+

Wn

Rn
≤ t, ∀n ∈ N. (12c)

Lemma 1. Prob. 3 is a linear programming (LP) problem with respect to optimization variables
(vn).

Proof. First, the objective function is linear with respect to vn. Moreover, the inequality con-
straints (12b) and (12c) are affine in terms of the optimization variables (vn). Consequently,
since both the objective function and the inequality constraints are affine, the problem is an
LP problem in terms of the optimization variables (vn).

Lemma 2. The Prob. 3 is a strictly increasing function with respect to optimization variable (t),
and t∗ should be at the lower bound of constraint (12c).

Sensors 2024, 24, 2579 10 of 19

Proof. As Prob.3 includes the term − 1
t in the objective function, it is evident that the

objective function is strictly increasing with respect to t. Consequently, the optimal value of
t (t∗) resides at the lower bound of (12c).

Lemmas 1 and 2 form the basis for solving Prob.3 using the block coordinate descent
method [33]. In this method, given a fixed value of t, we can readily solve for the optimal
values of vn using the Simplex algorithm (SA). Subsequently, t∗ and (vn) are obtained
iteratively by mutually fixing each other until the cost function converges, following
the block coordinate descent approach. The algorithmic procedure is summarized in
Algorithm 1.

Lemma 3. Algorithm 1 performs a sublinear convergence rate.

Proof. The block coordinate descent method demonstrates a sublinear convergence rate,
as proved in [34]. Based on Lemmas 1 and 2, the proposed algorithm is designed using the
block coordinate descent method. Consequently, Algorithm 1 has a sublinear convergence
rate.

Algorithm 1 ADM scheme—data size adjustment
Input : Dn, r, σ, Wn, cn, fn, In, Rn, θc
Initialize : vn and t are randomly initialized within the constraints.
Output : Optimal v∗nDn = D′∗n

1: while True do
2: vn ←solving Prob.3 via SA
3: t←maxn∈N In

cnvnDn
fn

+ Wn
Rn

4: Ci ←(12a)
5: if |Ci − Ci−1| < θc then
6: break
7: end if
8: i = i + 1
9: end while

10: v∗n ← vn
11: D′∗n ← bv∗nDnc

4.2. Class Adjustment

After obtaining D′n from the previous Algorithm 1, under the assumption of an IID
case, it is obvious that all MDs can reduce their entire class of dataset evenly to achieve D′∗n
which is smaller than Dn. However, in non-IID cases, we should carefully determine which
class of data should be reduced, taking into account the class distribution. Specifically,
during data reduction, the proposed ADM aims to achieve a uniform distribution of a class
of entire datasets across MDs, known as an IID. This approach minimizes the accuracy
loss resulting from data adjustment while reducing the training burden on MDs. Here,
we define K as the set of classes in the dataset, where |K| = K denotes the total number
of classes. To accomplish this, we utilize the Kullback–Leibler divergence (KLD) distance
to quantify the proximity between the class distribution of the dataset and the uniform
distribution, which is formulated by

DKL(PN||Pu) = ∑
k∈K

PN(k) ln(
PN(k)

Pu
), (13)

where the Pu is the uniform distribution and PN is the class distribution of the entire dataset
from all MDs.

Sensors 2024, 24, 2579 11 of 19

For each n ∈ N, consider that local dataset of MD n Dn has disjoint subset Dn,k,
which satisfies

Dn =
⋃

k∈K

Dn,k, (14)

where K is the set of class in the dataset, and |Dn,k| = Dn,k denotes the total number of
samples of class k in the MD n’s dataset.

As depicted in Figure 6, the overall procedure can be categorized into the following
three steps:

• Step 1: Each MD n calculate and send their class distribution vector [Dn,1, Dn,2, . . . , Dn,K]
to the MEC server, where Dn,k is the number of the samples with label k of MD n.

• Step 2: The MEC server executes the proposed ADM scheme. As step 2-1, using
Algorithm 1, dataset size adjustment D′∗n including v∗n is determined. After that, to
minimize the DKL(PN||Pu) for making the class distribution of aggregated dataset
close to the IID, as step 2-2, class adjustment is conducted. By aggregating such class
distribution vector over MDs, the MEC server can calculate the adjustment of data for
each class, which is given by

reductionn,k = Dn,k − reductionlevel , ∀n ∈ N, ∀k ∈ K. (15)

where reductionn,k represents the reduction applied to each class dataset of MD n,
and reductionlevel denotes the target dataset size to be retained across all classes. In
this scenario, if (15) yields a value less than 0, it implies that the class size is already
below the target dataset size, reductionlevel . Thus, reductionn,k should be set to 0. The
process continues until the condition ∑K

k=1 Dn,k − reductionn,k = v∗n · Dn is satisfied.
During this process, reductionlevel is gradually decreased by subtracting a constant
∆ iteratively. Finally, the optimal class distribution vector is updated according to
the equation:

D∗n,k = dDn,k − reductionn,ke, ∀n ∈ N, ∀k ∈ K. (16)

• Step 3: Finally, as step 3, updated class distribution vector [D∗n,1, D∗n,2, . . . , D∗n,K] is
delivered to the MDs.

Figure 6. The overall process of the ADM scheme.

The class adjustment algorithm is summarized in Algorithm 2. Here, it is obvious
that the time complexity is O(NK), which is simple and easily deployable in the real world
with the limited number of MDs and classes, where N is the number of MDs and K is the
number of unique labels.

Sensors 2024, 24, 2579 12 of 19

Algorithm 2 ADM scheme—class adjustment
Input : [Dn,1, Dn,2, . . . , Dn,K], v∗n
Output : Optimal D∗n,k

1: for each MD n ∈ N do
2: Dmax = max{Dn,1, Dn,2, . . . , Dn,K}
3: reductionlevel = Dmax − ∆
4: while ∑K

k=1 Dn,k − reductionn,k 6= v∗n · Dn do

5: reductionn,k =

{
Dn,k − reductionlevel , if Dn,k − reductionlevel ≥ 0
0 , otherwise

, k ∈ K

6: reductionlevel = reductionlevel − ∆
7: end while
8: for k ∈ K do
9: D∗n,k = dDn,k − reductionn,ke

10: end for
11: end for

4.3. Discussion on Implementation of the Proposed ADM on Virtualization Platform: Kubernetes

For practical considerations, this subsection provides a discussion on the implemen-
tation of the proposed ADM on Docker-based Kubernetes platforms. As in our previous
study [35], the proposed ADM can easily be implemented on a Kubernetes platform con-
sisting of a master and several nodes.

Figure 7 illustrates the implementation architecture of the proposed ADM on the
Kubernetes platform. In this example scenario, as depicted in Figure 7, we consider that the
architecture comprises one master and two nodes. Specifically, the master is responsible
for managing the two nodes using Kubernetes and aggregating the global model for FL.
The nodes, on the other hand, are responsible for running pods. Within each pod, there is a
container that contains the FL framework received from the master. Consequently, the pod
performs local training for the FL by executing the FL framework within the container. To
incorporate the ADM scheme into this platform, we also developed the necessary signaling
messages for data adjustment (https://github.com/juneseokBang/FL_K8S, accessed on 1
March 2024).

Figure 7. Implementation of the proposed ADM on a virtualization platform.

Furthermore, we also implemented a GUI platform that allows users to select FL
parameters and compare the trained results using graphical representations (https://
github.com/juneseokBang/FL_GUI, accessed on 1 March 2024). Figure 8 illustrates the
workflow of the GUI platform. When a user selects a parameter on the web interface, the
value is transmitted to the FL server (as shown in Figure 9a,b). The server performs FL using
the received parameter value. Once the training is completed, the web interface displays the
learning results graphically (as depicted in Figure 9c). Additionally, the platform retains a

https://github.com/juneseokBang/FL_K8S
https://github.com/juneseokBang/FL_GUI
https://github.com/juneseokBang/FL_GUI

Sensors 2024, 24, 2579 13 of 19

history of past training results, enabling easy graph comparisons. Although FedAvg is now
implemented as a basic algorithm, we can add new parameters or new algorithms to the
platform, ensuring its scalability and adaptability to evolving research requirements. This
capability empowers researchers to explore a wider range of experimental configurations
and evaluate their impact on model performance easily.

Figure 8. GUI Platform Workflow.

(a)

(b)

Figure 9. Cont.

Sensors 2024, 24, 2579 14 of 19

(c)

Figure 9. GUI platform. (a) entry of FL hyperparameters (b) training progress (c) training result
comparison.

5. Performance Evaluation

In this section, we present simulation results to validate the effectiveness of the
proposed ADM scheme compared to two benchmarks. Benchmark 1 (B1) represents
FedAvg applied without any dataset management method, utilizing all training data [1].
Benchmark 2 (B2) represents FedAvg with heuristic dataset management (HDM) [36].
HDM employs a strategy to reduce the size of the training dataset by 20% every 20 rounds
without accounting for unbalanced class distribution. We evaluated ADM by training
popular CNN models on two datasets. (1) MNIST, a dataset that has 60 K 28 × 28 training
images of 10 classes; (2) CIFAR-10, a dataset that contains 50 K 32 × 32 colored images of
10 classes. In the simulated environment, we assume that the computational capacity fi of
each MD is 3 GHz, which is fairly assigned to all MDs. Other simulation parameters and
hyperparameters are listed in Table 3.

Table 3. Simulation Parameters.

Parameter Value

Number of CPU cycles (cn) 30 cycles/sample
Computation capacity (fn) 3 GHz

Noise power (N0) −114 dBm
Size of local model (Wn) 100 Kbits

Gamma (γd) 0.4
Number of MDs (N) 20

Discounting factor (σ) 0.9 ×10−8

5.1. Numerical Analysis—Dataset Size Adjustment

In this subsection, we demonstrate how ADM adjusts dataset size considering Prob.3
(12a). We assume all MDs have 2500 local datasets and IID data. As shown in Figure 10a,b,
vn decreases when the objective function converges (near round 40). In Figure 10a, the
objective function converges to zero as the round passes due to discounting factor σ in
(3). Near round 40, vn drops the dataset to 65% because the influence of the dataset on

Sensors 2024, 24, 2579 15 of 19

the accuracy gain significantly diminishes. Consequently, not all datasets are required to
update the global model.

(a) (b)

Figure 10. Objective function (a) and the average dataset adjustment vn (b) over rounds.

5.2. Simulation Analysis—Dataset Size Adjustment: IID Case

We assume the initial number of training data samples for each MD is 2500 for CIFAR-
10 and 3000 for MNIST (i.e., |Dn| = 2500 and 3000, respectively), and N is 20, with the data
being IID. Table 4 shows the accuracy of ADM and two benchmarks. Data management
methods (HDM and ADM) ensure accuracy while reducing the training data, highlighting
a significant diminishing effect of dataset size as the rounds progress. However, when the
number of MDs is large, and the dataset size is small, the performance of HDM significantly
decreases. For CIFAR10, the accuracy of HDM is 50.54%, which is a 6.19% decrease
compared to FedAvg. In contrast, ADM achieves an accuracy of 53.73%, demonstrating
robustness in scenarios with small datasets. The reduction in HDM’s performance is
attributed to its lack of consideration for dataset size, whereas ADM adaptively manages
the dataset by taking into account the dataset size of each MD.

Table 4. Test Accuracy.

Method Data Distribution MNIST
(N = 20, Dn = 3000)

CIFAR-10
(N = 20, Dn = 2500)

MNIST
(N = 50, Dn = 1250)

CIFAR-10
(N = 50, Dn = 1000)

FedAvg (B1) IID 99.32% 54.80% 98.83% 53.88%
Non-IID (β = 0.8) 98.98% 49.63% 98.48% 49.54%

HDM (B2) IID 99.20% 54.20% 98.54% 50.54%
Non-IID (β = 0.8) 98.86% 49.59% 98.04% 48.53%

ADM IID 99.25% 54.65% 98.68% 53.73%
Non-IID (β = 0.8) 98.92% 49.54% 98.35% 49.25%

As shown in Table 5, when training with all datasets (i.e., B1) for MNIST, it takes
about 40.19 s per round, whereas ADM reduces this to approximately 26.88 s per round,
representing a 33.1% reduction. Similarly, for CIFAR-10, the time decreases from 35.61 s
to 26.71 s, marking a 24.99% reduction. This significantly accelerates the training process.
Although HDM reduces the training time more than ADM does, ADM achieves an accuracy
comparable to FedAvg (B1), whereas HDM does not guarantee this accuracy. Figure 11
illustrates how ADM adjusts data considering the dataset size. We conducted a total of
100 rounds and averaged every 10 rounds to represent the mean value of vn in each round.
If each MD has 1000 data samples, the data reduction rate is not significantly reduced as
rounds progress, whereas, with 3000 data samples, the reduction rate drops to 60%. This
indicates that the vn is influenced by the dataset size, as outlined in (12a). For Dn = 3000
and Dn = 2000, volatility increases notably in the 30 s and 40 s rounds, respectively. This

Sensors 2024, 24, 2579 16 of 19

suggests that these points are where significant adjustments to vn occur. Therefore, ADM
maintains the performance of the local model even with smaller datasets.

Table 5. Average Training Time when N = 50 on IID case.

Second/Round
(Average)

MNIST
(Dn = 1250)

CIFAR-10
(Dn = 1000)

FedAvg (B1) 40.19 s 35.61 s

HDM (B2) 24.34 s 22.14 s

ADM 26.88 s 26.71 s

Figure 11. Average Data Reduction Rate per 10 Rounds for Different Datasets with ADM.

5.3. Simulation Analysis—Class Adjustment: Non-IID Case

We use β to denote the non-IID level. If β = 0, it indicates that data on each MD
uniformly belong to labels. Otherwise, if β = 0.8, it means that 80% of the data belongs to
one label, and the remaining 20% of the data belongs to other labels. As shown in Table 4,
although HDM guarantees accuracy in non-IID settings when each MD has a large dataset,
accuracy significantly decreases with smaller datasets. In contrast, ADM considers class
distribution at all dataset sizes, reducing larger classes to achieve near-IID conditions and
ensuring accuracy. Figure 12a,b demonstrate how ADM adjusts data based on varying
data sizes and class distribution across MDs, respectively. MDs 1–10 have 1000 datasets
each, while MDs 11–20 have 3000 datasets each. All MDs have non-IID data with β = 0.8.
As depicted in Figure 12a, MDs with 1000 datasets reduced to 67% of the existing dataset
(represented by the blue bars), while MDs with 3000 datasets decreased even further to 48%
of the existing dataset (represented by the green bars). These reductions occurred because
ADM adjusts dataset sizes based on the individual sizes of each MD’s dataset. Figure 12b
illustrates the number of data for each label within the MD with 1000 datasets. Instead of
reducing the dataset size for labels with smaller datasets, our approach balances the dataset
size with the IID by reducing the data for labels with larger datasets. In conclusion, our
proposed ADM effectively adjusts datasets in both IID and non-IID scenarios, alleviating
the burden of local training on MDs.

Sensors 2024, 24, 2579 17 of 19

(a) (b)

Figure 12. (a) Dataset Reduction based on MD’s Dataset Size, (b) Dataset Reduction based on Class
Distribution.

6. Conclusions

In this study, we explored the impact of dataset size on accuracy gain as the commu-
nication round evolves. Based on this insight, to alleviate the burden on local training on
MDs for FL, we introduced a novel ADM scheme. We incorporated a discount factor to
quantify the diminished influence of dataset size on accuracy gain across communication
rounds. Specifically, the proposed ADM scheme includes both dataset size adjustment and
class adjustment to optimize how dataset reduction is applied across different classes. This
optimization takes into account both the discount factor and the KLD. Our experimental
results show that our ADM scheme significantly reduces the training burden on MDs
while maintaining acceptable training accuracy. In our future work, given that FL remains
susceptible to privacy attacks wherein adversaries could potentially retrieve raw data by
inspecting local model updates, it is imperative to integrate robust privacy protection
mechanisms into our framework (i.e., differential privacy, etc.). Additionally, malicious FL
participants pose a significant threat, as they may attempt to inject poisoned or noisy mod-
els into an FL server. To mitigate this risk, deploying the proposed scheme on a blockchain
platform could be advantageous. Leveraging the inherent integrity of blockchain records
ensures that any malicious activities by FL participants can be traced back, as the records
remain untampered.

Author Contributions: J.K. and J.B. came up with the ideas and wrote this paper. He developed
the suggested ideas and conducted performance evaluations as the first author. Additionally, J.L.
supervised the research and assisted with the project as a corresponding author. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean government (MSIT) (No. 2021R1F1A1048098) and in part by the Gachon
University research fund of 2022 (GCU- 202300680001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A.Y. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the Artificial Intelligence and Statistics, PMLR, Fort Lauderdale, FL, USA, 20–22 April 2017;
pp. 1273–1282.

2. Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Ingerman, A.; Ivanov, V.; Kiddon, C.; Konečnỳ, J.; Mazzocchi, S.; McMahan,
B.; et al. Towards federated learning at scale: System design. Proc. Mach. Learn. Syst. 2019, 1, 374–388.

Sensors 2024, 24, 2579 18 of 19

3. Lee, J.; Kim, D.; Niyato, D. Market Analysis of Distributed Learning Resource Management for Internet of Things: A Game-
Theoretic Approach. IEEE Internet Things J. 2020, 7, 8430–8439. [CrossRef]

4. Li, H.; Ota, K.; Dong, M. Learning IoT in edge: Deep learning for the Internet of Things with edge computing. IEEE Netw. 2018,
32, 96–101. [CrossRef]

5. Lee, J.; Kim, D.; Niyato, D. A Novel Joint Dataset and Incentive Management Mechanism for Federated Learning over MEC.
IEEE Access 2022, 10, 30026–30038. [CrossRef]

6. Kim, J.; Kim, D.; Lee, J.; Hwang, J. A Novel Joint Dataset and Computation Management Scheme for Energy-Efficient Federated
Learning in Mobile Edge Computing. IEEE Wirel. Commun. Lett. 2022, 11, 898–902. [CrossRef]

7. Duan, M.; Liu, D.; Chen, X.; Liu, R.; Tan, Y.; Liang, L. Self-balancing federated learning with global imbalanced data in mobile
systems. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 59–71. [CrossRef]

8. Zhu, G.; Liu, D.; Du, Y.; You, C.; Zhang, J.; Huang, K. Toward an intelligent edge: Wireless communication meets machine
learning. IEEE Commun. Mag. 2020, 58, 19–25. [CrossRef]

9. Ren, J.; Yu, G.; Ding, G. Accelerating DNN training in wireless federated edge learning systems. IEEE J. Sel. Areas Commun. 2020,
39, 219–232. [CrossRef]

10. Chen, M.; Yang, Z.; Saad, W.; Yin, C.; Poor, H.V.; Cui, S. A joint learning and communications framework for federated learning
over wireless networks. IEEE Trans. Wirel. Commun. 2020, 20, 269–283. [CrossRef]

11. Amiri, M.M.; Gündüz, D. Federated learning over wireless fading channels. IEEE Trans. Wirel. Commun. 2020, 19, 3546–3557.
[CrossRef]

12. Ko, H.; Lee, J.; Seo, S.; Pack, S.; Leung, V.C. Joint Client Selection and Bandwidth Allocation Algorithm for Federated Learning.
IEEE Trans. Mob. Comput. 2021, 22, 3380–3390. [CrossRef]

13. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. Proc.
Mach. Learn. Syst. 2020, 2, 429–450.

14. Deng, Y.; Lyu, F.; Ren, J.; Zhang, Y.; Zhou, Y.; Zhang, Y.; Yang, Y. SHARE: Shaping data distribution at edge for communication-
efficient hierarchical federated learning. In Proceedings of the 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS), Washington, DC, USA, 7–10 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 24–34.

15. Wang, H.; Kaplan, Z.; Niu, D.; Li, B. Optimizing Federated Learning on Non-IID Data with Reinforcement Learning. In
Proceedings of the IEEE INFOCOM 2020, Virtual, 6–9 July 2020.

16. Yang, K.; Jiang, T.; Shi, Y.; Ding, Z. Federated Learning via Over-the-Air Computation. IEEE Trans. Wirel. Commun. 2020,
19, 2022–2035. [CrossRef]

17. Zeng, Q.; Du, Y.; Huang, K.; Leung, K.K. Energy-efficient radio resource allocation for federated edge learning. In Proceedings of
the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 1–6.

18. Luo, S.; Chen, X.; Wu, Q.; Zhou, Z.; Yu, S. HFEL: Joint edge association and resource allocation for cost-efficient hierarchical
federated edge learning. IEEE Trans. Wirel. Commun. 2020, 19, 6535–6548. [CrossRef]

19. Khan, L.U.; Alsenwi, M.; Yaqoob, I.; Imran, M.; Han, Z.; Hong, C.S. Resource optimized federated learning-enabled cognitive
internet of things for smart industries. IEEE Access 2020, 8, 168854–168864. [CrossRef]

20. Kang, J.; Xiong, Z.; Niyato, D.; Xie, S.; Zhang, J. Incentive mechanism for reliable federated learning: A joint optimization
approach to combining reputation and contract theory. IEEE Internet Things J. 2019, 6, 10700–10714. [CrossRef]

21. Ye, D.; Yu, R.; Pan, M.; Han, Z. Federated learning in vehicular edge computing: A selective model aggregation approach. IEEE
Access 2020, 8, 23920–23935. [CrossRef]

22. Lim, W.Y.B.; Xiong, Z.; Miao, C.; Niyato, D.; Yang, Q.; Leung, C.; Poor, H.V. Hierarchical incentive mechanism design for federated
machine learning in mobile networks. IEEE Internet Things J. 2020, 7, 9575–9588. [CrossRef]

23. Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; Chandra, V. Federated learning with non-iid data. arXiv 2018, arXiv:1806.00582.
24. Yeganeh, Y.; Farshad, A.; Navab, N.; Albarqouni, S. Inverse distance aggregation for federated learning with non-iid data. In

Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning; Springer: Berlin/Heidelberg, Germany,
2020; pp. 150–159.

25. Shirvanian, N.; Shams, M.; Rahmani, A.M. Internet of Things Data Management: A Systematic Literature Review, Vision, and
Future Trends. Int. J. Commun. Syst. 2022, 35, e5267. [CrossRef]

26. Wang, S.; Tuor, T.; Salonidis, T.; Leung, K.K.; Makaya, C.; He, T.; Chan, K. Adaptive federated learning in resource constrained
edge computing systems. IEEE J. Sel. Areas Commun. 2019, 37, 1205–1221. [CrossRef]

27. Albaseer, A.; Abdallah, M.; Al-Fuqaha, A.; Erbad, A. Fine-Grained Data Selection for Improved Energy Efficiency of Federated
Edge Learning. IEEE Trans. Netw. Sci. Eng. 2021, 9, 3258–3271. [CrossRef]

28. Jeong, E.; Oh, S.; Kim, H.; Park, J.; Bennis, M.; Kim, S.L. Communication-efficient on-device machine learning: Federated
distillation and augmentation under non-iid private data. arXiv 2018, arXiv:1811.11479.

29. Chiu, T.C.; Shih, Y.Y.; Pang, A.C.; Wang, C.S.; Weng, W.; Chou, C.T. Semisupervised distributed learning with non-IID data for
AIoT service platform. IEEE Internet Things J. 2020, 7, 9266–9277. [CrossRef]

30. Zhang, W.; Wang, X.; Zhou, P.; Wu, W.; Zhang, X. Client selection for federated learning with non-iid data in mobile edge
computing. IEEE Access 2021, 9, 24462–24474. [CrossRef]

http://doi.org/10.1109/JIOT.2020.2991725
http://dx.doi.org/10.1109/MNET.2018.1700202
http://dx.doi.org/10.1109/ACCESS.2022.3156045
http://dx.doi.org/10.1109/LWC.2022.3147236
http://dx.doi.org/10.1109/TPDS.2020.3009406
http://dx.doi.org/10.1109/MCOM.001.1900103
http://dx.doi.org/10.1109/JSAC.2020.3036971
http://dx.doi.org/10.1109/TWC.2020.3024629
http://dx.doi.org/10.1109/TWC.2020.2974748
http://dx.doi.org/10.1109/TMC.2021.3136611
http://dx.doi.org/10.1109/TWC.2019.2961673
http://dx.doi.org/10.1109/TWC.2020.3003744
http://dx.doi.org/10.1109/ACCESS.2020.3023940
http://dx.doi.org/10.1109/JIOT.2019.2940820
http://dx.doi.org/10.1109/ACCESS.2020.2968399
http://dx.doi.org/10.1109/JIOT.2020.2985694
http://dx.doi.org/10.1002/dac.5267
http://dx.doi.org/10.1109/JSAC.2019.2904348
http://dx.doi.org/10.1109/TNSE.2021.3100805
http://dx.doi.org/10.1109/JIOT.2020.2995162
http://dx.doi.org/10.1109/ACCESS.2021.3056919

Sensors 2024, 24, 2579 19 of 19

31. Zhang, P.; Wang, C.; Jiang, C.; Han, Z. Deep Reinforcement Learning Assisted Federated Learning Algorithm for Data
Management of IIoT. IEEE Trans. Ind. Inform. 2021, 17, 8475–8484. [CrossRef]

32. Lim, W.Y.B.; Luong, N.C.; Hoang, D.T.; Jiao, Y.; Liang, Y.; Yang, Q.; Niyato, D.; Miao, C. Federated Learning in Mobile Edge
Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 2031–2063. [CrossRef]

33. Grippo, L.; Sciandrone, M. On the Convergence of the Block Nonlinear Gauss–Seidel Method under Convex Constraints.
Operations Research Letters 2000, 26, 127–136. [CrossRef]

34. Beck, A.; Tetruashvili, L. On the Convergence of Block Coordinate Descent Type Methods. SIAM J. Optim. 2013, 23, 2037–2060.
[CrossRef]

35. Kim, J.; Kim, D.; Lee, J. Design and Implementation of Kubernetes Enabled Federated Learning Platform. In Proceedings of the
2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of
Korea, 20–22 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 410–412.

36. Shah, A.K.; Oppenheimer, D.M. Heuristics Made Easy: An Effort-Reduction Framework. Psychol. Bull. 2008, 134, 207. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TII.2021.3064351
http://dx.doi.org/10.1109/COMST.2020.2986024
http://dx.doi.org/10.1016/S0167-6377(99)00074-7
http://dx.doi.org/10.1137/120887679
http://dx.doi.org/10.1037/0033-2909.134.2.207
http://www.ncbi.nlm.nih.gov/pubmed/18298269

	Introduction
	Related Work
	System Model
	Motivating Example for Discounting Factor
	Proposed System Model
	Analytical Models
	Accuracy Estimation Model
	End-to-End Service Latency Model

	Proposed ADM Scheme
	Dataset Size Adjustment
	Class Adjustment
	Discussion on Implementation of the Proposed ADM on Virtualization Platform: Kubernetes

	Performance Evaluation
	Numerical Analysis—Dataset Size Adjustment
	Simulation Analysis—Dataset Size Adjustment: IID Case
	Simulation Analysis—Class Adjustment: Non-IID Case

	Conclusions
	References

