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Abstract: Sprinting is a decisive action in soccer that is considerably taxing from a neuromuscular
and energetic perspective. This study compared different calculation methods for the metabolic
power (MP) and energy cost (EC) of sprinting using global positioning system (GPS) metrics and
electromyography (EMG), with the aim of identifying potential differences in performance markers.
Sixteen elite U17 male soccer players (age: 16.4 ± 0.5 years; body mass: 64.6 ± 4.4 kg; and height:
177.4 ± 4.3 cm) participated in the study and completed four different submaximal constant running
efforts followed by sprinting actions while using portable GPS-IMU units and surface EMG. GPS-
derived MP was determined based on GPS velocity, and the EMG-MP and EC were calculated based
on individual profiles plotting the MP of the GPS and all EMG signals acquired. The goodness of
fit of the linear regressions was assessed by the coefficient of determination (R2), and a repeated
measures ANOVA was used to detect changes. A linear trend was found in EMG activity during
submaximal speed runs (R2 = 1), but when the sprint effort was considered, the trend became
exponential (R2 = 0.89). The EMG/force ratio displayed two different trends: linear up to a 30 m
sprint (R2 = 0.99) and polynomial up to a 50 m sprint (R2 = 0.96). Statistically significant differences
between the GPS and EMG were observed for MP splits at 0–5 m, 5–10 m, 25–30 m, 30–35 m, and
35–40 m and for EC splits at 5–10 m, 25–30 m, 30–35 m, and 35–40 m (p ≤ 0.05). Therefore, the
determination of the MP and EC based on GPS technology underestimated the neuromuscular and
metabolic engagement during the sprinting efforts. Thus, the EMG-derived method seems to be more
accurate for calculating the MP and EC in this type of action.

Keywords: football; maximum velocity; maximal running; GPS; EMG/force ratio

1. Introduction

The energy cost (EC) and kinematics of various forms of locomotion (e.g., running)
have been analyzed in numerous investigations [1–7] with the aim of elucidating the
main mechanisms of different movements. These studies have practical applications
and allow for evaluating the metabolic energy expenditure or predicting the “ideal” per-
formance [8–14] based on the relationship between mechanics and energetics [7,15–19],
which is one of the most crucial and extensively researched domains of human move-
ment [3,4,16,20–27].

For example, di Prampero et al. [22] estimated the EC of the first 30 m of a sprint
running from a standing position to overcome the challenges of directly measuring effort
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during dynamic actions. In brief, the method relied on the equivalence between acceler-
ation on flat ground and ascent at constant speed, with an equivalent slope defined by
forward acceleration. Since the EC of constant speed on a varied range of slopes is well
known [1–3,5,13,28], estimating the EC of the run is possible when the equivalence between
forward acceleration and the slope is known. Therefore, di Prampero et al.’s [22] model
has been suggested to redefine the concept of “high intensity”. Nevertheless, despite the
new possibilities that arise from this approach [22] in terms of workload quantification
and physical performance evaluation during training and competition [18,29–34], more
evidence is still needed to determine the feasibility of EC estimation in applied scenarios.

Some researchers tried to evaluate neuromuscular and metabolic engagement during
training and match events by using portable technology to understand muscle activation
thresholds. A first attempt to characterize the profile of neuromuscular activation during
a soccer match was proposed by Montini et al. [35], with the intention to integrate, in
competition, more traditional laboratory-based approaches (e.g., electromyography [EMG])
to help better understand the physiological demands of competitive soccer. The authors
analyzed different intensity zones to create a relative performance model and suggested
that this approach could be used to improve the understanding of the physiological require-
ments of competitive soccer [35]. However, the EC and metabolic power (MP) calculated
by EMG were not determined; thus, additional research is still necessary to consolidate
measurements of economy and neuromuscular activation during performance activities
that involve high-intensity running. This type of methodological approach is important
for practitioners since, by using portable technologies, it is possible to collect data on more
ecologically valid conditions than in laboratory settings.

The literature has explored the behavior of EMG during sprints and submaximal runs
since Mero & Komi [36]; however, to the authors’ knowledge, it has not been utilized
for the calculation of the MP and EC until Colli’s work (unpublished data retrieved from
laltrametodologia.com). Thus, this remains a topic that needs further investigation to better
understand the main mechanistic–energetic needs and, consequently, make meaningful
methodological choices. Currently, there are numerous existing studies evaluating MP and
energy expenditure, utilizing global positioning systems (GPS) and inertial measurement
units (IMU) [24,32,33,37–43], but there is a complete absence of studies calculating these
parameters from EMG technology. Analyzing submaximal and maximal sprint behavior
with the aim of determining the MP and EC calculated by EMG and the EMG and force
relationship could help clarify actual metabolic and neuromuscular engagement during
linear running actions. The comparison of two distinct technologies (i.e., EMG and GPS-
IMU) has the potential to provide precise estimates of relative effort for actions such as
sprints, yielding hypothetical benefits.

Therefore, the aims of this study were to (1) analyze submaximal running efforts at
various constant speeds to investigate possible differing mechanical–energetic demands
when compared to sprinting; (2) examine the behavior of the EMG activity-to-force ratio
(EMG/F) in linear sprints over 30 m and 50 m and their corresponding 5 m sections; and
(3) determine the EC and MP of sprinting assessed by GPS-IMU and EMG by creating an
ad hoc neuromuscular profile utilizing muscle activation patterns. The present study may
have significant implications for the establishment and structuring of training objectives.

2. Materials and Methods
2.1. Study Design

A cross-sectional study design was used (Figure 1). Data were collected during the
2020/2021 competitive season, during the months of September through November, with
players from the under-17 (U17) age category of a professional soccer club academy. To
avoid a potential source of bias, de-identified data were analyzed by a researcher not
directly involved in data collection. After a careful theoretical explanation accompanied by
a practical demonstration, players completed four different submaximal constant running
efforts followed by sprinting actions while using portable GPS-IMU units and surface



Sensors 2024, 24, 2577 3 of 12

EMG. All athlete measures were taken in a single testing session for each player during
the pre-season period. The warm-up included mobility and running-based exercises for a
duration of ~15 min. All warm-up exercises had been previously used by all the players, as
they were applied in daily training.
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Figure 1. Overview of the study design.

2.2. Participants

A convenience sample of sixteen U17 football players (age: 16.4 ± 0.5 years; body
mass: 64.6 ± 4.4 kg; height: 177.4 ± 4.3 cm; and BMI: 20.5 ± 1.3) of the “Elite Italian
Championship” volunteered to participate in this study. A normal team practice and
competition schedule, consisting of at least four training sessions and one match per week,
was maintained during the investigation period. Only players who were free from recent
injuries or medical conditions that could limit their maximum effort were included in the
study. Detailed information regarding all testing and training procedures was provided to
the subjects and their legal guardians before the latter signed a written informed consent.
The Local Human Subjects Ethics Committee approved the study in compliance with the
Declaration of Helsinki.

2.3. Procedures
2.3.1. Constant Running and Sprint Testing

Four incremental constant (C1,2,3,4) running speeds (over 50 m, at theoretical required
times of ~22.5, ~15, ~11.3, and ~9 s in “C1”, “C2”, “C3”, and “C4”, respectively) and a
sprint effort (where only the split of the maximum speed phase was taken) were used
for the construction of an individual profile (detailed below; coded with “S5”). Timing
adherence was manually controlled using stopwatches during the constant runs in the
trials. All tests were conducted on the training and match field, and each player was given
the appropriate technical clothing to maintain their running characteristics (ecological
field test). As mentioned, the players started by performing the constant runs with the
objective of having an approximate constant difference between runs rather than a set
datum (impossible for a field test that does not take place on an ergometer); thus, they were
asked to maintain the same running characteristics during each trial. After the constant
runs and a rest period (2 min), the players performed a total of three all-out sprints over
50 m. To establish the zone of maximum sprinting speed, a plateau with a delta of no more
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than 3 km·h−1 in the GPS data was selected to objectively determine when athletes reached
their peak speed. A 5 min passive rest period was provided between trials to minimize
fatigue effects on performance. Participants were encouraged to perform each sprint trial
as fast as possible.

2.3.2. Electromyography Recording and Analysis

During the trials, EMG shorts equipped with textile electrodes (Myonear Pro, Myontec,
Kuopio, Finland) were used to collect muscle activation data (Figure 2). The conductive
electrodes and the associated wires were integrated into the fabric. These electrodes cov-
ered three main muscle groups, bilaterally, with 6 differential EMG biosignal channels:
quadriceps, hamstrings, and glutes. Two sizes of shorts were available (medium and large),
and the best fit was chosen for each participant. The proper size of the shorts is essential
to establish necessary contact between electrodes and skin and to minimize or avoid any
movement artifacts during dynamic activities [44]. Additionally, a small amount of water
was applied to the electrodes before the participant put on the shorts to ensure adequate
signal conduction, as previously recommended [45]. EMG signals were transmitted to a
laptop and analyzed and collected at 1000 Hz with the Myontec ‘’Muscle Monitor” software
version 3.1.0.4 (Myontec Ltd., Kuopio, Finland). Textile electrodes embedded in shorts
appeared to provide comparable lower limb muscle activation data to traditional surface
EMG [44]. Each trial was firstly filtered with a second-order Butterworth band pass (a
bandwidth of 40–200 Hz, derived through an exploration of the frequency domain with
a signal voltage and −3 dB cutoff frequency) filter, before being rectified and averaged
over 100 Hz. In accordance with Kyröläinen et al. [46], who criticized the use of voluntary
maximum isometric contractions (MVICs) for evaluating neuromuscular activation during
running, the EMG data were normalized using the peak EMG activity (EMGpeak) detected
during the sprint, thus allowing for greater repeatability of the measurements. In addition,
the EMG signals during the runs were segmented into subphases to enable a detailed
analysis not only of the overall trend (total EMG recording [EMGTOT_ecf], comprehensive
of ground contact, eccentric and concentric, and of the flight phases) but also of the charac-
teristics of each phase (i.e., eccentric [EMGe], concentric [EMGc], and flight phase) utilizing
the LagalaColli software (version 1.0.2.218, Spinitalia S.R.L., Rome, Italy). The EMG/F ratio
was determined with an arbitrary unit, consisting of the ratio of the normalized EMG signal
with peak values and expressing it as a percentage and the resulting force (in N·kg−1),
which was calculated by integrating the accelerations from the three axes (x, y, and z) using
IMU technology.

Sensors 2024, 24, 2577 5 of 14 
 

 

 
Figure 2. (a) Back view of the sensor placement; (b) GPS unit; (c) EMG shorts equipped with textile 
electrodes with 6 differential EMG biosignal channels. 

2.3.3. Ad Hoc Profiling and Metabolic Power Calculation 
Prior to the sprint analysis, an individual linear profile (including slope and inter-

cept) was constructed for each athlete by plotting the MP of the GPS and muscle load (ML) 
from all the EMG signals acquired. The profile was individualized and made it possible 
to recalculate the MP from the EMG by a simple method that consisted of multiplying by 
the slope and then adding intercept (Equation (1)). Then, the EC was calculated by divid-
ing the obtained value of MP by the speed achieved (Equation (2)). 

<!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 
2.0 (no namespace)@ --> 

<math><mrow><msub><mrow><mtext>MP</mtext></mrow><mrow><mtex
t>EMG</mtext></mrow></msub><mtext>=(</mtext><msub><mrow><mtext
>ML</mtext></mrow><mrow><mtext>EMG</mtext></mrow></msub><mte
xt>·</mtext><mtext>SLOPE</mtext><mtext>)+I</mtext><mtext>NTERCEP
T</mtext></mrow></math> 

<!-- MathType@End@5@5@ --> 

 

(1)

<!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 
2.0 (no namespace)@ --> 

<math><mrow><msub><mrow><mtext>EC</mtext></mrow><mrow><mtex
t>EMG</mtext></mrow></msub><mtext>=</mtext><mfrac><mrow><msub
><mrow><mtext>MP</mtext></mrow><mrow><mtext>EMG</mtext></mro
w></msub></mrow><mrow><msub><mrow><mtext>SPEED</mtext></mro
w><mrow><mtext>IMU</mtext></mrow></msub></mrow></mfrac></mro
w></math> 

<!-- MathType@End@5@5@ --> 

 

(2)

The EMG data were integrated with GPS-IMU signals to permit us to temporally and 
kinematically differentiate phases. Sprint analyses were conducted utilizing personalized 

Figure 2. (a) Back view of the sensor placement; (b) GPS unit; (c) EMG shorts equipped with textile
electrodes with 6 differential EMG biosignal channels.



Sensors 2024, 24, 2577 5 of 12

2.3.3. Ad Hoc Profiling and Metabolic Power Calculation

Prior to the sprint analysis, an individual linear profile (including slope and intercept)
was constructed for each athlete by plotting the MP of the GPS and muscle load (ML)
from all the EMG signals acquired. The profile was individualized and made it possible to
recalculate the MP from the EMG by a simple method that consisted of multiplying by the
slope and then adding intercept (Equation (1)). Then, the EC was calculated by dividing
the obtained value of MP by the speed achieved (Equation (2)).

MPEMG= (MLEMG·SLOPE) + INTERCEPT (1)

ECEMG =
MPEMG

SPEEDIMU
(2)

The EMG data were integrated with GPS-IMU signals to permit us to temporally and
kinematically differentiate phases. Sprint analyses were conducted utilizing personalized
spreadsheets. The GPS MP was based on the GPS velocity, and the integrated GPS-IMU
velocity was utilized to determine the EMG MP. The GPS data were recorded at 50 Hz and
the IMU at 100 Hz in accordance with the manufacturer’s instructions.

2.4. Statistical Analysis

Statistical analyses were conducted using the Statistical Package for Social Sciences
(SPSS) software, version 25.0 (Chicago, IL, USA), Microsoft Excel 2019 (Redmond, WA,
USA), and the free Statistical Software Jamovi 2.3.28. Data are presented as means and
standard deviations. The goodness of fit of the linear regressions was assessed by the coef-
ficient of determination (R2) and the confidence interval (CI, set at 95%). The Shapiro–Wilk
test was used to verify if the values were normally distributed, and the Wilcoxon signed
rank nonparametric test was used for data not normally distributed. A repeated measures
ANOVA was used to detect changes, with a two-sample F-test for variances. The effect size
(ES, Cohen’s d) of the intervention was calculated using Cohen’s guidelines [47,48]. The
threshold values for the ES were small (≥0.2), medium (≥0.5), and large (≥0.8). For all
procedures, a level of p ≤ 0.05 was selected to indicate statistical significance.

3. Results

During the experimental period, no injuries were sustained by any of the players, and
the compliance with the assessments and degree to which the participants adhered to the
study protocol and accepted the interventions and assessments were maximal, as there
were no dropouts. Regarding the study results, these include the EMG signal and speed
mean values, detected with the EMG signal in a bipodal static (2.4 ± 0.6% relative to the
EMGpeak) and obtained during the four incremental constant running and sprint efforts
over 50 m. The first constant running (C1) exercise was completed at 6.9 ± 0.8 km·h−1,
with an EMGe of 16.2 ± 8.3%, an EMGc of 14.0 ± 3.8%, and an EMGTOT_ecf of 13.9 ± 5.3%.
In the second constant running (C2) exercise, the speed was 10.2 ± 0.8 km·h−1 with an
EMGe of 21.6 ± 11.8%, an EMGc of 17.7 ± 6.4%, and an EMGTOT_ecf of 18.5 ± 8.3%.
C3 was completed at 13.3 ± 1.5 km·h−1, with EMGe, EMGc, and EMGTOT_ecf values of
27.4 ± 11.8%, 23.0 ± 5.9%, and 23.1 ± 7.8%, respectively. Finally, the speed reached
in C4 was 17.4 ± 1.3 km·h−1, with an EMGe of 33.1 ± 8.7%, an EMGc of 30.4 ± 12.6%,
and EMGTOT_ecf of 28.6 ± 8.0%. Regarding the sprint effort (S5), the speed achieved
was 27.3 ± 1.8 km·h−1, the EMGe was 62.3 ± 8.6%, the EMGc was 57.4 ± 8.6%, and the
EMGTOT_ecf 63.1 ± 8.7%. Figure 3 displays the corresponding total EMG patterns in relation
to running speed.

During sprinting, the EMG/F ratio data were processed for each 5 m interval (Figure 4)
and presented a double behavior interpolated with two types of fit. The EMG/F ratio was
linear up to 30 m (R2 = 0.99) and polynomial (fourth degree) up to the completion of 50 m
(R2 = 0.96).
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Comparisons of the MP for the different split distances obtained with the GPS and
EMG are presented in Figure 5. The data were not normally distributed at 20–25 m and
35–40 m distances. In the 0–5 m and 5–10 m splits, the MP calculated with the GPS
was significantly higher than with EMG (0–5 m: p = 0.03, F = 1.13, ES = 0.81; 5–10 m:
p = 0.02, F = 1.67, ES = 0.89). Conversely, in the 10–15 m and 15–20 m ranges, no significant
differences were observed between both methods (10–15 m: p = 0.31, F = 1.42, ES = 0.37;
15–20 m: p = 0.58, F = 1.76, ES = 0.20; 20–25 m: p = 0.39, F = 1.66, ES = 0.10). In the 20–25 m,
25–30 m, 30–35 m, and 35–40 m splits, the MP was significantly lower when determined via
the GPS rather than EMG (20–25 m: p = 0.01, F = 1.66, ES = 0.31; 25–30 m: p ≤ 0.001, F = 1.17,
ES = 1.42; 30–35 m: p = 0.002, F = 0.48; ES = 1.19; and 35–40 m: p = 0.02, F = 1.15, ES = 0.98).
Lastly, no differences between the MP determined via the GPS and EMG were found in
the 40–45 m (p = 0.14; F = 0.94, ES = 0.54) and 45–50 m splits (p = 0.53; F = 1.38, ES = 0.22).
Table S1 (in Supplementary Files) illustrates the values obtained after adjustments, applying
the nonparametric statistical test.

The EC estimated through the GPS and EMG is displayed in Figure 6. The data
were not normally distributed at the distances 15–20 m, 20–25 m, 25–30 m, 30–35 m, and
35–40 m. No differences were found between both approaches in the 0–5 m split (p = 0.30,
F = 0.68, ES = 0.38), which contrasts with the 5–10 m split, in which the EC determined
via the GPS was significantly greater (p = 0.001, F = 1.03, ES = 1.33). In the 10–15 m
(p = 0.09, F = 1.03, ES = 0.63), 15–20 m (p = 0.09, F = 1.32, ES = 0.40), and 20–25 m (p = 0.54,
F = 1.66, ES = 0.20) ranges, no differences in EC were identified. Regarding the 25–30 m
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(p = 0.02; F = 0.96, ES = 1.35), 30–35 m (p = 0.003, F = 0.61, ES = 0.95), and 35–40 m
(p = 0.05, F = 1.14, ES = 0.76) ranges, the EC estimated through EMG was significantly
higher. Finally, in the 40–45 m (p = 0.30, F = 1.57, ES = 0.37) and 45–50 m splits (p = 0.12,
F = 2.78, ES = 0.56), no differences were observed in the EC estimated with the GPS and
EMG. Table S2 (in Supplementary Files) illustrates the values obtained after adjustments,
applying the nonparametric statistical test.
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4. Discussion

The present study aimed to investigate the EMG activity and the EMG/F ratio during
different submaximal and maximal runs and to study the differences between GPS-IMU
and EMG technologies in the calculation of the MP and EC during constant running and
sprinting efforts. The main findings indicate a linear increase in EMG values with running
speed during the submaximal runs, which becomes exponential when considering the
inclusion of sprinting. Moreover, the current results demonstrate the existence of a linear
increase in the EMG/F ratio in sprints up to a breaking point (i.e., observed at 30 m) when
an alteration in the overall trend is observed (i.e., considering the whole 50 m). In addition,
differences were found at certain splits between the MP and EC calculated from the GPS-
IMU and EMG, which indicates that these technologies cannot be used interchangeably to
determine these metrics. Taking this into account, the present findings suggest that EMG
seems to be a more precise technology for accurately estimating the MP and EC, showing a
higher EC for sprinting, especially at greater speeds.

Notably, in the constant-speed runs, the EMG activity increased linearly with in-
creasing speed. However, when also considering the sprint actions, the best-fitting trend
becomes exponential (Figure 3). This might have an important implication for the study of
the metabolic engagement of running efforts, as it supports the idea that sprint situations
may cause an important increase in the energy expenditure of soccer players [36,46,49,50].
However, it should be considered that the present study did not specifically consider the
EC of acceleration, high-speed running, and deceleration efforts, although from previous
studies [3,12,22,33], we could already hypothesize significant differences between these
types of actions. From a coaching perspective, the results herein could be used to determine
the effective energetic and neuromuscular engagement needed for different types of actions
and better understand performance models to develop the best training methodologies.

Another important parameter to be considered when investigating the interaction
between external and internal loads during actions such as linear sprinting is the EMG/F
ratio [51–55]. The current data highlight that this ratio appears to linearly increase until a
‘breakpoint’, where a decrease occurs (i.e., at 30 m, as evidenced by the data interpolation
in Figure 4), which may have significant practical applications. In brief, it indicates that
the expression of neuromuscular parameters likely varies across different distances and
sports contexts, providing practitioners with an ideal range of distances that could be
used in sprint training. For example, for youth soccer players, from an energetic and
neuromuscular perspective, it may not be optimal to perform linear sprints greater than
30 m due to the observed decline in EMG/F. In our analyzed sample, there appears to
be difficulty in maintaining the neuromuscular engagement characteristics indicated by
the EMG/F marker over longer distances. This may be due to poor sprinting habits for
longer distances, particularly under static start conditions. Future studies should verify the
behavior of this parameter in other populations of athletes (e.g., sprinters), assuming that
the drop in the EMG/F ratio should be postponed as much as possible for those who must
perform linear sprints.

Finally, based on the construction of an ad hoc profile that allowed for the calculation
of the MP and EC from EMG, it appears that the GPS-IMU approach may systematically
underestimate the actual cost of sprinting in a statistically significant manner, especially for
sprint actions between 25 and 40 m, when compared to EMG. This may be explained, at least
in part, by the fact that at higher speeds, acceleration rates are considerably lower [49,56]
but more costly; hence, the GPS-IMU may not be the most appropriate approach to quantify
energy expenditure. Of note, EMG technology seems to display different MP and EC
engagement with a much more “curvilinear pattern” (i.e., a fourth-degree polynomial
relationship) during sprints, thus emphasizing a different, realistically more accurate
engagement in some splits. These considerations could be useful for coaches and physical
trainers to understand actual energy engagement and neuromuscular parameters in soccer,
knowing more about its limitations and potential [56,57]. However, further research is
required to determine the practical applications of this area of study in different populations
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with different purposes. In accordance with Van Hooren et al. [6], the calculation of the
markers would be important for optimizing energetic and mechanical efficiency, possibly
minimizing injury occurrence resulting from internal (i.e., physiology) and external (i.e.,
environment) sources. All these findings seem to be important in characterizing sprint
action. The MP and EC analyses using EMG in comparison to the GPS may provide more
precise results for evaluating neuromuscular and metabolic activity. This approach can
be advantageous for optimizing mechanical–energetic requirements and warrants further
investigation, including cognitive engagement during exercises involving a ball.

This study has several limitations that should be considered when interpreting the
results. Firstly, the cross-sectional design used prevents us from drawing any causal infer-
ences regarding the examined variables. Secondly, only isolated and “decontextualized”
linear sprints without a ball were assessed when it is known that, in soccer, most physical
capacities are expressed along with technical–tactical elements with the ball [32,38]. Thus,
the data here should not be directly extrapolated to sprinting during soccer matchplay.
Thirdly, other important running-based actions, such as accelerations and decelerations,
were not assessed and compared in detail. Additionally, the EC and MP were estimated
through a GPS-IMU and EMG, and the use of a portable gas analyzer could have en-
hanced the study’s accuracy, providing practical assistance and a better understanding
when comparing data. This was demonstrated by Savoia et al. [33] when comparing the
GPS algorithm based upon di Prampero’s theoretical model in elite soccer players with a
measure obtained with a portable gas analyzer. Nevertheless, the methodological approach
here is more practical and easier to apply in real-world contexts, which is an important
point worth highlighting. Further research is necessary to determine whether and how the
current findings may be affected by training adaptations.

The outcomes of this study may be useful for strength and conditioning coaches to
plan their sessions more effectively. Our data examined the EC of running at different
speeds and identified the EMG trends indicative of actual neuromuscular demands. The
analysis of an internal-to-external load ratio, such as the EMG/F ratio, may be useful in
determining appropriate distances for training. In addition, the differences between the
MP and EC calculated by the GPS-IMU and EMG suggested an important underestimation
of the actual demands of high-speed actions by the former (which must be considered
when developing training exercises). However, it is important to note that the current
data were collected from a sample of U17 soccer players from a Mediterranean context
and that the generalization of the results to other populations should be made cautiously.
Further research should be conducted to investigate these aspects and potential disparities
in game scenarios.

5. Conclusions

In summary, this study presents a new perspective for characterizing running activ-
ities in soccer, utilizing parameters such as the EMG/F ratio and using the MP and EC
calculated from EMG, and just a GPS-IMU. Defining and characterizing the specifics of
physical engagement are strategic factors for designing a novel approach [58–60] to study
neuromuscular and metabolic activity to continue development [3,33,49,56]. Although
additional research is necessary, these indicators appear suitable for accurately studying
workload, improving performance, examining the dose–response relationship of exercise,
and identifying the onset and modification of fatigue during competitions. In the future,
a GPS-IMU and EMG should be validated against direct measures of energy expenditure,
both external and internal, to determine their relationship with direct measures of fitness
and performance.
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