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Abstract: Accurate and reliable pose estimation of boom-type roadheaders is the key to the forming 
quality of the tunneling face in coal mines, which is of great importance to improve tunneling effi-
ciency and ensure the safety of coal mine production. The multi-laser-beam target-based visual lo-
calization method is an effective way to realize accurate and reliable pose estimation of a roadheader 
body. However, the complex background interference in coal mines brings great challenges to the 
stable and accurate segmentation and extraction of laser beam features, which has become the main 
problem faced by the long-distance visual positioning method of underground equipment. In this 
paper, a semantic segmentation network for underground laser beams in coal mines, RCEAU-Net, 
is proposed based on U-Net. The network introduces residual connections in the convolution of the 
encoder and decoder parts, which effectively fuses the underlying feature information and im-
proves the gradient circulation performance of the network. At the same time, by introducing cas-
cade multi-scale convolution in the skipping connection section, which compensates for the lack of 
contextual semantic information in U-Net and improves the segmentation effect of the network 
model on tiny laser beams at long distance. Finally, the introduction of an efficient multi-scale at-
tention module with cross-spatial learning in the encoder enhances the feature extraction capability 
of the network. Furthermore, the laser beam target dataset (LBTD) is constructed based on laser 
beam target images collected from several coal mines, and the proposed RCEAU-Net model is then 
tested and verified. The experimental results show that, compared with the original U-Net, RCEAU-
Net can ensure the real-time performance of laser beam segmentation while increasing the Accuracy 
by 0.19%, Precision by 2.53%, Recall by 22.01%, and Intersection and Union Ratio by 8.48%, which 
can meet the requirements of multi-laser-beam feature segmentation and extraction under complex 
backgrounds in coal mines, so as to further ensure the accuracy and stability of long-distance visual 
positioning for boom-type roadheaders and ensure the safe production in the working face. 
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1. Introduction 
Coal will remain the dominant energy source worldwide for decades to come. The 

automation of underground coal excavation processes has long been the focus of both 
industrial and academic research efforts. As the core equipment of the coal mine produc-
tion system, the roadheader’s accurate pose estimation can improve the efficiency of road-
way digging, and anticipate and avoid the collision of the roadheader with roadway sup-
port equipment in the complex geological environment, which is beneficial to reduce the 
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risk of accidents, and ensure the safe and efficient production of the underground working 
face in coal mines [1]. 

At present, the position measurement technology of roadheading equipment in-
cludes inertial navigation and positioning technology, iGPS technology, total station 
measurement technology, ultra-wideband wireless communication technology (UWB) 
technology, machine vision measurement technology, etc. Among them, the inertial nav-
igation positioning technology is less affected by environmental factors, but it is prone to 
cumulative errors during operation, and with the continuous operation in the working 
face, there are certain difficulties in the precise positioning of the roadheading equipment. 
Positioning based on iGPS is consistent with the GPS positioning method, which uses the 
triangulation principle to complete the spatial positioning of the measured point, but a 
large number of positioning signal transmitters will cause mutual obstruction of the meas-
urement path and interference between the laser signals, and it is difficult to calibrate and 
install. At the same time, the accuracy of the receiver’s light sensitivity will also limit its 
positioning accuracy. The total station positioning method mainly calculates the position 
information under the coordinate system of the body of the roadheader based on the on-
site arrangement of the coal mine equipment, but the underground environment of the 
coal mine is complex and variable, and it is necessary to combine a variety of feature da-
tums to carry out the local coordinate transformation to obtain the accurate displacement 
value and to carry out the attitude estimation and the trajectory tracking in order to obtain 
the accurate position of the equipment, which makes the system complexity high. UWB-
based measurement technology relies on the Time-of-Flight (TOF) and Time-Difference-
of-Arrival (TDOA) principles to measure the time difference of the signals between the 
two ultra-wideband modules, so as to calculate the relative distance between the road-
header and the laser, and to complete the position measurement of the roadheader; how-
ever, due to the influence of the cut-off dust and occlusion on the digging surface, the 
UWB positioning error cannot meet the precise positioning requirements of the road-
header. The measurement information obtained by vision-based position measurement 
technology is intuitive and reliable, usually using visible light as the visual positioning 
target, and the spatial position of the body of the roadheader is obtained by adopting the 
target feature extraction and analyzing the relationship between the feature datum posi-
tion and the roadway coordinate system, which has the advantages of non-contact, high 
measurement accuracy, low cost, and no accumulation of error, etc. Therefore, visual po-
sitioning is the most widely used positioning technology in coal mines. 

In the previous work, we conducted a lot of research on the long-distance accurate 
pose estimation of the boom-type roadheader body, and developed a visual positioning 
system based on a laser beam target [2,3]. The method mainly relies on an industrial cam-
era to collect the laser beam images formed by the laser pointing instrument to complete 
the remote distance positioning of the tunneling equipment. However, due to the inter-
ference of the harsh environment such as dust, water fog, and uneven illumination in coal 
mines, traditional laser beam image segmentation and feature extraction algorithms have 
some problems such as feature omission, extraction error, and extraction difficulty in un-
derground laser beam image extraction. It is necessary to further study the stable and 
accurate segmentation and extraction method of laser beam target images that are suitable 
for complex underground environments, so as to further improve the performance of the 
laser beam target-based long-distance vision positioning system. The laser beam target-
based visual positioning system was tested industrially at the working face, and the laser 
beam images acquired are shown in Figure 1. 
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Figure 1. The laser beam-based visual positioning system that was under industrial testing at the 
tunneling face and its collected laser beam image. 

The line feature of the laser beam target is the visible laser beam produced by the 
Tyndall effect of the laser beam due to the dust and water fog in the mine. The laser beam-
based target is formed by the laser beams emitted by the laser pointing instrument that 
was installed above the tunneling roadway. Line feature segmentation and extraction are 
the keys to the precise visual positioning of a boom-type roadheader by using an artificial 
laser beam target. Due to the complex environment of the tunneling face, the line feature 
information of the laser beam target used for pose calculation is easily confused by the 
background, especially when the distance between the vision sensor and the laser point-
ing instrument increases, whereby the laser beam target information will be weak, result-
ing in difficult feature extraction. Therefore, a laser beam image segmentation and feature 
extraction network model is a necessity to provide the data basis for the accurate and real-
time visual positioning of tunneling equipment. At the same time, in order to solve the 
problem that the laser beam features are not obvious when the dust concentration is low, 
the laser beam feature enhancement needs to be adopted in the process of laser beam im-
age segmentation and feature extraction to ensure the stability of laser beam feature ex-
traction. 

Aiming at the problem that laser line features are difficult to extract in the complex 
environment of a coal mine, a multi-laser-beam target image segmentation network model 
is needed to realize the laser beam target feature segmentation and extraction, and to ob-
tain the center-line information. At present, the advantage of the traditional image seg-
mentation method is that its segmentation performance in a single background is more 
stable, but for complex scenes such as underground coal mines, the robustness of the tra-
ditional algorithms cannot achieve the expected results [4]. With the rise of computer vi-
sion technology, image semantic segmentation technology based on deep learning has 
made significant progress, and high segmentation stability can be achieved by using spe-
cific network models in specific scenes. Aiming at harsh environments such as high dust, 
high water mist, and uneven light at the tunneling face of underground coal mines, and 
combined with the distribution characteristics of the laser beam target, this work builds a 
multi-laser-beam target image semantic segmentation network RCEAU-Net for the com-
plex environment of a coal mine tunneling face based on the traditional U-Net, inspired 
by the encoder–decoder structure of the U-Net network, aiming to provide accurate and 
real-time laser beam features for the visual positioning of the boom-type roadheader. The 
main contributions of this paper are as follows: 
• Aiming at the problem of multi-laser-beam segmentation and extraction faced by the 

remote distance vision positioning system in underground application, an RCEAU-
Net model suitable for the laser beam image segmentation in the underground work-
ing face is proposed. The reliable segmentation and accurate extraction of laser beam 
features are realized under the condition of complex background interference, dis-
tance change, and constant change in dust concentration in the coal mine. 

• The proposed RCEAU-Net model effectively fuses the underlying feature infor-
mation by introducing residual connections in the convolution of the encoder and 
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decoder structures of U-Net. Meanwhile, the problem of missing contextual semantic 
information in U-Net is compensated by introducing cascade multi-scale convolution 
in the skipping connection part. In addition, the introduction of an efficient multi-
scale attention module with cross-spatial learning in the encoder enhances the feature 
extraction ability of the network for laser beams, which improves the segmentation 
effect of the network model on tiny laser beams at long distance. 

• The LBTD was constructed with images collected from multiple scenarios of different 
distances, dust concentrations, low illumination, and overexposure in coal mines. 
Based on LBTD datasets, the experiment was carried out for the validation of the 
image segmentation performance of the constructed RCEAU-Net. The results 
demonstrated that the proposed RCEAU-Net realizes the accurate and reliable seg-
mentation of the boundary features and tiny features of laser beam images in the 
complex background, and it can meet the demand for laser beam segmentation for 
long-distance visual localization in coal mines. 
The rest of this paper is organized as follows, Section 2 introduces some related work 

within this topic; Section 3 gives an overview of the traditional U-Net network, based on 
which the RCEAU-Net semantic segmentation network proposed in this paper is de-
scribed in detail, and summarizes the method for feature enhancement of red laser beams 
under the complex conditions of the coal mine tunneling face, and describes the scheme 
for constructing the LBTD of the laser beam segmentation dataset; the construction of the 
related experimental platform as well as the experimental demonstration is given in Sec-
tion 4; and Section 5 discusses and concludes the research work of this paper. 

2. Related Work 
Multi-laser-beam target feature extraction accuracy mainly depends on the stability 

and robustness of the image segmentation method; at present, image segmentation meth-
ods can be divided into traditional image segmentation methods and deep learning-based 
image segmentation methods. Traditional image semantic segmentation methods mainly 
use pixel color information, gradient histogram information, grey scale information, edge 
information, and other features of the image to complete the task of image segmentation 
in different scenes [5]. Before the deep learning-based image semantic segmentation net-
work was proposed, traditional image segmentation methods were applied in the fields 
of road sign extraction [6], medical image segmentation [7], plant disease image segmen-
tation [8], etc., which shows that the traditional algorithms have good application feasi-
bility in simple scenes. 

With the application and development of computer technology, the requirements of 
industrial intelligence are getting higher and higher, and the demand for image segmen-
tation tasks under complex backgrounds is rising. Constrained by the traditional algo-
rithm design difficulties, whereby it is difficult to ensure real-time target segmentation in 
the complex background of poor results and other issues, researchers have begun to 
choose to use deep learning-based image semantic segmentation methods to build seg-
mentation models to complete the target segmentation task. Currently, the design of seg-
mentation models based on the encoder–decoder structure of a full convolutional neural 
network FCN [9] is quite extensive, among which, due to the relatively simple structure 
of the U-Net [10] model and its outstanding segmentation performance, it and its variants 
have now achieved remarkable results in the semantic segmentation tasks of images such 
as medicine [11], traffic [12], agriculture [13], aerial photography [14], remote sensing [15], 
and so on. O. Oktay et al. [16] proposed a novel Attention Gate (AG) model for the medical 
image domain, which can automatically learn to focus on target structures of different 
shapes and sizes, and integrated it into the U-Net network architecture to build the Atten-
tion U-Net network, which reduces the computational overheads of the original U-Net 
model, and improves the model’s sensitivity and computational accuracy. To bridge the 
feature mapping gap between sub-networks caused by the original U-Net encoder–
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decoder architecture, Zhou, Z et al. [17] proposed a more efficient medical segmentation 
architecture, U-Net++, which utilizes a deeply supervised encoder–decoder network by 
re-designing the skipping connections of the U-Net network to partially improve the med-
ical image segmentation results. Foivos I. Diakogiannis et al. [18] proposed a ResUnet net-
work by combining the U-Net network with the residual structure, which improves the 
accuracy of semantic segmentation task for high-resolution aerial images, and solves the 
problem of gradient vanishing and exploding, which exists when the network is struc-
tured in a deeper way. Huang H et al. [19] addressed the lack of full-scale semantic infor-
mation transfer in a U-Net++ network, introduced full-scale skipping connections between 
the encoder and decoder to combine low-level semantic information with high-level se-
mantic information from other feature maps of different scales, established a U-Net3+ 
model, and achieved better results in organ segmentation task, and also, the design of the 
model reduces the network parameters, which improves the computational efficiency. 
Aiming at the problem that convolutional operations cannot satisfy the global semantic 
information transfer, H Cao et al. [20] proposed a Swin-Unet network architecture, in 
which a shift-window-based hierarchical Swin Transformer is used as an encoder to ex-
tract contextual features, and a Swin Transformer-based patch extended layer symmetric 
decoder is designed to achieve up-sampling. At the same time, skipping connections were 
used to learn local–global features, and the model achieved better results in organ and 
heart segmentation tasks. Li C et al. [21] designed a nested attention-aware segmentation 
network model, Attention unet++, to improve the effectiveness of the resection of necrotic 
portions of the liver, which incorporates the deep supervised encoder–decoder architec-
ture in the U-Net++ structure as well as dense skipping connections, and introduced an 
attention mechanism between nested convolutional blocks, and validated the model for 
automatic segmentation of necrotic liver on the MICCAI 2017 Liver Tumor Segmentation 
(LiTS) dataset. In order to solve the model degradation problem of U-Net++, Li Z et al. [22] 
proposed a Residual-Attention UNet++ network, which introduced the residual unit in U-
Net++, and at the same time, added an attention mechanism to the network structure to 
enhance the weight of the segmentation target part and inhibit the background region that 
is irrelevant to the segmentation task, and validated it experimentally on the skin cancer, 
nucleus, and coronary angiography medical image sets for experimental validation, and 
better segmentation results were obtained. In order to detect road cracks in time and im-
prove the safety of road traffic, an ARD-Unet network was proposed by Gao Y et al. [23] 
using UAV remote sensing images as a starting point, which combines a depth-separable 
residual block (DR-Block) based on U-Net, an Atrous Space Pyramid Fusion Attention 
Module (ASAM) and Receptive Field Block (RFB), which compensates for the problem of 
the loss of semantic feature information in the traditional U-Net, and improves the seg-
mentation effect of road cracks in remote sensing images. In order to achieve automatic 
planning of transmission lines, Nan, G et al. [24] proposed an AS-Unet++ network to com-
plete the accurate segmentation of remote sensing image features, which added the spatial 
pyramid pool (ASPP) and squeeze-and-excitation (SE) modules based on the traditional 
U-Net network to expand the model’s receptive field and enhance the feature information 
of the targets to be segmented. At the same time, combined with the skipping connection 
part in the structure of U-Net++, the feature extraction part of each layer is stacked, which 
makes up for the problem of semantic feature loss caused by the traditional skipping con-
nection; compared with U-Net, AS-Unet++ has a significant increase in the segmentation 
accuracy of remote sensing images. Li, Y. et al. [25] proposed a U-Net citrus plantation 
extraction model based on an image pyramid structure to accurately extract citrus planta-
tion areas based on Sentinel-2 satellite images, using the pyramid structure encoder to 
capture contextual information at multiple scales, and using spatial pyramid pooling to 
prevent information loss and improve the ability to learn spatial features, which achieves 
high-precision large-scale citrus plantation segmentation. Khan, M.A.-M. et al. [26] pro-
posed a Dense U-Net network to segment cracks on railway sleepers based on the U-Net 
network model in response to the time-consuming and inefficient traditional methods of 



Sensors 2024, 24, 2552 6 of 22 
 

 

detecting cracks on railway sleepers. In this model, several short connections are estab-
lished between the encoder and decoder modules of the original U-Net network, so that 
more semantic information is obtained in the skipping connection part of the network, 
and the segmentation accuracy of railway crack images is improved. 

With the wide use of U-Net, researchers in the field of coal mining have also begun 
to apply U-Net to some related tasks. Inspired by the excellent performance of neural net-
works in the field of image segmentation, Houxin Jin et al. [27] proposed an M2AR-U-Net 
segmentation model for coal rock feature extraction, which achieves the accurate segmen-
tation of coal rocks from the background region. In order to investigate the particle char-
acteristics of tar-rich coal mines before separation, Jinwen Fan et al. [28] combined the 
image segmentation model of the U-Net variant with OpenCV feature extraction, and sys-
tematically analyzed the particle morphology, particle size, release characteristics, and 
density separation process of coal mines. Fengli Lu et al. [29] proposed a deep neural net-
work, A-DNNet, based on the U-Net framework to extract micro-cracks from coal rock 
images in continuous frames. Experiments show that A-DNNet can achieve more stable 
and efficient segmentation of sequential coal rock cracks compared with the original U-
Net algorithm. In order to overcome the problems of mis-segmentation and omission of 
segmentation of traditional methods in the coal processing industry, Yihao Fu et al. [30] 
proposed a U-network based on simple linear iterative clustering (SLIC) for superpixel 
preprocessing, and compared it with the traditional watershed algorithm, and obtained 
more accurate segmentation results. 

In summary, since U-Net was proposed, its good segmentation performance, as well 
as small-sample training advantage, has received the favor of many researchers, and its 
explosive growth in various structures has explored the great potential of U-Net networks 
[31] so that semantic segmentation methods based on U-Net and its variants have matured 
and been applied in most fields, but due to the complex conditions of the tunneling face 
of underground coal mines such as high dust, high water mist, high noise, and uneven 
illumination, and other problems such as laser beam feature information that is not obvi-
ous and easy to confuse with the background, the existing model is not sufficient to solve 
the task of the segmentation of the laser beam target feature in coal mine undergrounds. 
Therefore, based on this previous research, this study establishes the RCEAU-Net frame-
work based on the encoder–decoder structure of U-Net by introducing the residual unit, 
cascade multi-scale convolution (CMSC) module, and the Efficient Multi-Scale Attention 
Module with Cross-Spatial Learning (EMA). The specific details of the network architec-
ture will be detailed in the following Sections. 

3. Methods 
3.1. The U-Net Network Overview 

The U-Net network consists of three main components: encoder, decoder, and skip-
ping connections. Among them, the encoder consists of multiple convolutional blocks and 
maximum pooling module, which serves for extracting input image features. Where each 
convolution block contains a convolution operation and ReLU activation followed by a 
maximum pooling operation to reduce the resolution of the feature map. The decoder 
maps the feature maps extracted by the encoder back to the original input image space by 
means of multiple up-sampling modules and convolutional blocks. The skipping connec-
tion part is the key design for U-Net network to be able to segment the target accurately, 
which achieves the feature information transfer by directly connecting the corresponding 
feature maps of the encoder and the decoder. After each encoder down-sampling, the 
skipping connection retains the corresponding layer of feature maps and connects with 
the up-sampled feature maps on the decoder path to achieve the integration of feature 
information. This design avoids the loss of semantic information to a certain extent, en-
hances the network’s ability to perceive the details and local features, and effectively 
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improves the robustness of the U-Net in the task of image segmentation. The architecture 
of the U-Net is shown in Figure 2. 

 
Figure 2. The architecture of the U-Net network model. 

The feature fusion strategy adopted by U-Net is very representative, and its U-
shaped structure and skipping connection design between the encoder and the decoder 
can achieve good feature information transfer, effectively avoiding the problem of infor-
mation loss, and, at the same time, the structure ensures that U-Net can adapt to different 
sizes of the input image, with good generalization ability. The underground environment 
of a coal mine is complex and the data are difficult to obtain, while U-Net performs well 
in small-sample learning and can achieve good results even in the case of limited data. 
Therefore, this paper constructs the RCEAU-Net network based on the U-Net network 
architecture, combined with the characteristics of laser target images in underground coal 
mines. 

3.2. RCEAU-Net 
Although the traditional U-Net is able to achieve accurate segmentation in different 

fields, there are still some problems in the laser beam target segmentation task for the laser 
beam marking in the face of the underground digging workings in coal mines. Specifi-
cally, the skipping connection part of the U-Net fails to effectively transfer the information 
between low-level features and high-level features, resulting in the lack of multi-scale fea-
ture information, which affects the extraction effect of the features on the boundary and 
detailed parts of the downhole laser beam. In addition, when the concentration of work-
face cut-off dust decreases, the laser beam emitted by the downhole laser point instrument 
produces limited feature information due to the restricted Tyndall effect, which is easily 
confused with the complex background of the downhole, thus leading to the segmentation 
model, and problems such as omission and misjudgment. 

Due to the environmental characteristics such as high noise and uneven illumination 
at the tunneling face of the coal mine, the laser beams acquired at long distances are weak 
and the target area is small, and it is difficult to distinguish them from the background. 
Although the skipping connection part of the traditional U-Net can help to fuse different 
levels of features, its ability to process multi-scale information is relatively limited, and 
the simple splicing or summing operation cannot adapt to the feature extraction of tiny 
targets, which leads to the failure of laser beam segmentation at long distances and when 
the concentration of cut-off dust is low. 

Therefore, to address the above problems, we proposed the RCEAU-Net based on 
the U-Net architecture to complete the task of laser beam target segmentation for the laser 
beam marking feature at the face of an underground coal mine. The architectures of the 
RCEAU-Net network are shown in Figure 3. Among them, the design of the Residual 
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structure (R), Cascade Multi-Scale Convolution Module (C), Efficient Multi-Scale Atten-
tion Module with Cross-Spatial Learning (EA), and loss function are described in detail in 
Sections 3.2.1–3.2.4, respectively. 

 
Figure 3. The architectures of the RCEAU-Net. 

3.2.1. Residual Structure 
In order to enhance the generalization ability of the U-Net segmentation network, 

better transfer and effectively use the underlying feature information, and improve the 
model’s multi-scale perception and characterization performance for laser beam features, 
we combined the residual structure in ResNet, and used the idea of residual connection 
in both the encoder and decoder parts of U-Net, respectively, using two 3 × 3 convolutions 
to form a residual block to replace the convolution block in traditional U-Net, in order to 
construct the encoder–decoder framework based on the residual structure. Among them, 
each convolutional block contains a BN layer, a ReLU activation layer, and a convolutional 
layer. Eventually, a feature encoder was built from four layers of convolutional blocks 
based on the obtained residual structure. Meanwhile, the corresponding decoder is sym-
metrically obtained based on the U-Net architectural properties for RCEAU network ar-
chitecture construction. 

The introduction of the residual structure not only enables the model to effectively 
fuse the underlying feature information, but also improves the gradient flow performance 
of the network and reduces the gradient vanishing problem during the training process. 
The residual connection improves the training stability and convergence speed of the net-
work, enhances the processing capability of the model for the laser beam feature segmen-
tation task in the complex environment of underground coal mines, better captures the 
boundary and detailed information of the laser beam, and improves the segmentation ac-
curacy of the laser beam. In this paper, the model is named RU-Net. The residual block 
structure is shown in Figure 4. 

 
Figure 4. The residual block. Here, two sets of BN, ReLU, and Conv 3 × 3 are used for feature ex-
traction of the input feature, respectively, and an identity mapping of the initial feature to the final 
feature is performed in place of the convolutional blocks in the conventional U-Net network. 
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3.2.2. Cascade Multi-Scale Convolution Module 
In order to solve the problem of the original U-Net network’s insufficient segmenta-

tion ability for tiny laser beams when the visual sensors are far away from the laser point 
instrument, this paper introduces the CMSC module in the skipping connection part, 
which aims to make up for the original U-Net network’s lack of contextual semantic in-
formation in the skipping connection part, and thus improve the model’s segmentation 
effect for tiny laser beams. CMSC captures multi-scale features by introducing multiple 
parallel convolutional layers and making full use of the different receptive fields of each 
convolutional layer. Through scale feature fusion, a rich feature representation with multi-
scale is formed, which successfully preserves the details and global information in the 
image. 

In this paper, the CMSC is built with three convolution kernels, Conv 5 × 5, Conv 3 × 
3, and Conv 1 × 1. First, the input feature map is subjected to the Conv 5 × 5 operation to 
obtain a more global feature map, which is noted as F1. Then, the original feature map is 
used to superimpose with F1 to obtain the feature map F2. Subsequently, Conv 3 × 3 is used 
to capture F2 to obtain the feature map F3. F3 is superimposed with the original feature 
map to extract the richer features, which is noted as F4. And then, Conv 1 × 1 is used to 
capture F4 and obtain the feature map F5. Finally, F1, F3, and F5 are fused at multiple scales 
to obtain a multi-scale feature map, denoted as F6. The abstract and detailed feature infor-
mation retained by F6 at different scales at the same time improves the segmentation ca-
pability of the model for weak laser beams, bridges the semantic gap in the traditional U-
Net skipping connection, and is capable of better adapting to the size change in laser 
beams at different distances; this design makes the model more adaptable to the scenarios 
that deal with the segmentation task requirements of tiny laser beams, and effectively im-
proves the segmentation effect of the model. The CMSC module is shown in Figure 5. 

 
Figure 5. The CMSC module. Here, three kinds of convolution kernels, Conv 5 × 5, Conv 3 × 3, and 
Conv 1 × 1, are used to build a cascade multi-scale convolution module to extract multi-scale feature 
information, and complete the fusion of feature maps through “Concatenation”, and finally use 
Conv 1 × 1 to restore the feature dimensions, so as to make up for the semantic gaps in the part of 
the jump connection. 

3.2.3. Efficient Multi-Scale Attention Module with Cross-Spatial Learning 
Due to the complex features of the underground coal mine environment, which con-

tains various noises such as stray light, dust, water mist, etc., these factors affect the sta-
bility of the network model in the laser beam target segmentation task. In order to enhance 
the encoder’s ability to extract laser beam features from underground coal mines and sup-
press the network’s extraction of irrelevant features such as noise, this manuscript intro-
duces an Efficient Multi-Scale Attention Module with Cross-Spatial Learning [32] after 
each residual structure-based convolutional block of the encoder portion of RU-Net to 
strengthen the network’s segmentation performance for laser beam features. 

Compared with Convolutional block attention module (CBAM) [33], Normalization-
based Attention Module (NAM) [34], Shuffle attention (SA) [35], Efficient channel atten-
tion (ECA) [36], and Coordinate attention (CA) [37] attention mechanisms, the Efficient 
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Multi-Scale Attention Module (EMA) can reduce the computational overhead while effi-
ciently and stably attending to and utilizing the different channel information and spatial 
information of the input features, enabling the model to improve the attention of the target 
features. 

When the traditional attention module performs sequential computation, it leads to 
a large network depth and complex model computation. When the convolution operation 
is carried out in the module, it often leads to a reduction in the feature map channel di-
mension, thus failing to effectively characterize the channel dimension information, and 
failing to produce better pixel-level attention for the mapping of higher-order features. 
Therefore, in order to solve the module complexity caused by sequential computation and 
the channel dimension reduction problem caused by convolution, the EMA attention 
mechanism slices the input feature map X ∈ IC×H×W into G sub-feature maps in the chan-
nel dimension C, i.e., Xi ∈ IG//C×H×W is obtained; then, at this point, X = [X0, Xi, … , XG−1], 
which is used for the subsequent weight computation, where C >> G. Based on this, EMA 
designed a parallel branching structure to compute and fuse the grouped feature maps 
through two different branches to improve the target region weights. Among them, the 
two branches are the 1 × 1 branch formed by the shared component of the 1 × 1 convolution 
extracted from the coordinate attention (CA) and the newly designed 3 × 3 convolution 
kernel branch. 

The shared component of the 1 × 1 convolution extracted from the CA attention mod-
ule is used to accurately embed the location information in the channel information and 
to achieve remote interaction in spatial location, which enables the convolution operation 
to learn effective channel information without reducing the channel dimensions in order 
to accurately embed the spatial location information in the channel attention. Specifically, 
the branch designs two one-dimensional global average pooling layers along the two spa-
tial dimensions X and Y, respectively, encodes the global information through global av-
erage pooling, and compresses the global spatial location information into the channel 
attention graph, which enhances the feature fusion between the channel and the spatial 
information. The CA Attention module is shown in Figure 6. 

 
Figure 6. CA module. “C”, “H”, and “W” are the number of channels, height, and width of the 
feature maps, respectively. “X Avg Pool” refers to 1D horizontal global pooling, and “Y Avg Pool” 
means 1D vertical global pooling. “Re-weight” is the adjusted weight matrix. 

In order to ensure that the whole spatial locations can interact with each other and 
fuse the spatial feature information at multiple scales, EMA computes the 1 × 1 branch of 
CA in parallel in the X and Y spatial dimensions, respectively, and at the same time, places 
the two paths in parallel with the 3 × 3 branch to obtain a total of three computational 
paths. In the 1 × 1 branch, when the input feature map is subjected to the average pooling 
operation, the output is decomposed into two vectors using the shared 1 × 1 convolution, 
and then two Sigmoid nonlinear functions are used to fit the convolution output results, 
and finally, the information of the channel attention maps obtained by the two paths of 
the 1 × 1 branch is fused using the multiplication method. In the 3 × 3 branch, a 3 × 3 
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convolution kernel is used to capture the multi-scale information of the feature maps in 
order to enhance the local cross-channel information interaction and facilitate the fusion 
of contextual information at different scales. Through the above cross-channel information 
interaction and modeling, EMA effectively establishes the importance distribution of dif-
ferent channels, while being able to stably combine spatial and channel information. 

In order to better characterize and fuse richer features, EMA utilizes a cross-space 
fusion approach in different spatial dimensional directions to learn features for each com-
putational path and enhance the interactions across latitudes. Firstly, global average pool-
ing is used to encode the global spatial information on the outputs of the two branches of 
1 × 1 and 3 × 3 respectively, and a Softmax natural nonlinear function is fitted to them, and 
the outputs on each branch are multiplied by the matrix dot product in order to obtain the 
two respective spatial attention maps. Then, the output features of each grouping are 
mapped using the set of the two spatial attention weight matrices and the Sigmoid activa-
tion function to obtain pixel-level correspondences and complete the cross-space learning. 
For the laser beam target segmentation task, EMA can effectively adjust the target position 
weights and improve the model segmentation performance while ensuring real-time per-
formance. The module of EMA is shown in Figure 7. 

 
Figure 7. EMA module. “G” means grouping, “X Avg Pool” denotes the one-dimensional horizontal 
global pooling, and “Y Avg Pool” means one-dimensional vertical global pooling. 

3.2.4. Loss Function 
The loss function is used to measure the difference between the predicted output of 

the segmentation model and the true labels, which can guide the network training to make 
the model’s prediction closer to the true labels and evaluate the model’s performance on 
the validation set or test set. In U-Net networks, the training of segmentation models is 
generally completed using the binary cross-entropy loss function (BCELoss), which moti-
vates the models to focus more on the accuracy of the segmentation results. However, 
BCELoss only takes into account the information between pixel levels; in order to ensure 
that the model has a better discriminative ability for the global features of the laser beam 
and its boundary position during the training process, this paper introduces the loss func-
tion part of PraNet [38], which combines the intersection and concatenation ratio loss 
(IoULoss) in addition to the BCELoss, so that the loss function can quantify the difference 
between the segmentation results of the laser beam in the global features and the real label, 
pay more attention to the integrity of the laser beam segmentation, improve the model’s 
attention to the laser beam boundary, optimize the effect of the laser beam detail segmen-
tation, and further improve the detection performance of the tiny laser beam. The formu-
las for BCELoss and IoULoss are shown in Equations (1) and (2), respectively. 

𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵  =  −∑ [𝐺𝐺(𝑟𝑟, 𝑐𝑐)𝑙𝑙𝑙𝑙𝑙𝑙(𝑆𝑆(𝑟𝑟, 𝑐𝑐)) + (1 − 𝐺𝐺(𝑟𝑟, 𝑐𝑐))𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑆𝑆(𝑟𝑟, 𝑐𝑐))](𝑟𝑟,𝑐𝑐) , (1) 

𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼  =  1 −  
∑ ∑ 𝑆𝑆(𝑟𝑟, 𝑐𝑐)G(𝑟𝑟, 𝑐𝑐)𝑊𝑊

𝑐𝑐=1
𝐻𝐻
𝑟𝑟=1

∑ ∑ [𝑆𝑆(𝑟𝑟, 𝑐𝑐) + 𝐺𝐺(𝑟𝑟, 𝑐𝑐) − 𝑆𝑆(𝑟𝑟, 𝑐𝑐)𝐺𝐺(𝑟𝑟, 𝑐𝑐)]𝑊𝑊
𝑐𝑐=1

𝐻𝐻
𝑟𝑟=1

 (2) 
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where 𝐺𝐺(𝑟𝑟, 𝑐𝑐) ∈ {0,1}  is the true label at pixel point (𝑟𝑟, 𝑐𝑐),  and 𝑆𝑆(𝑟𝑟, 𝑐𝑐)  is the predicted 
probability of the target. 

In order to enhance the flexibility of the loss function, in the design of the loss func-
tion, the traditional loss calculation method with uniform global weights is discarded, and 
the weighted approach is used to complete the value calculation for BCELoss and IoU-
Loss, respectively. The weighted design enables the model to better focus on the laser 
beam region in the image and reduce the impact of data noise on the model. In this paper, 
we use the difference obtained by subtracting the result of the binary label map after av-
erage pooling from itself to adaptively measure the relative importance of the pixels in the 
image, when the difference is large, it means that there is a significant difference between 
the labeled image and the average pooled map, which indicates that the computed region 
contains more difficult to capture the information, and it should be given stronger atten-
tion; on the contrary, when the difference is smaller, it means that the computed region is 
relatively consistent in terms of its content, which has less impact on the segmentation 
task and should be given less attention; in this paper, the difference obtained by subtract-
ing the average pooled binary labeled image from the original binary labeled image is 
used as the dynamic weight 𝜔𝜔 to emphasize the importance of the laser beam boundaries 
and to suppress the attention of irrelevant regions. 

The weighted sum of BCELoss and IoULoss using the obtained weight matrix 𝜔𝜔 
completes the construction of the final overall loss function, which alleviates the influence 
of noise on the loss function, further enhances the focus of the segmentation model on the 
laser beam boundary, and improves the segmentation performance of the model on the 
weak laser edges. The final obtained overall loss function of RCEAU-Net is defined as 
shown in Equations (3) and (4). In this paper, this loss function is denoted as StructLoss. 

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝜔𝜔 + 𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔  (3) 

𝜔𝜔 = 𝑋𝑋 − 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  (4) 

where 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the overall loss function, 𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝜔𝜔  is the weighted BCELoss, and 𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔  is the 
weighted IoULoss. 𝜔𝜔 is the weight matrix, 𝑋𝑋 is the actual labeled map of the laser beam, 
and 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is the global average pooled graph over 𝑋𝑋. 

3.3. Underground Coal Mine Laser Beam Target Dataset 
In this paper, the multi-laser-beam target image data are collected from the tunneling 

working face of several coal mines. Due to the complexity of the working environment of 
coal mines, the collected laser beam images have a diversity of coal dust concentration 
change, low dust, high dust, low illumination, overexposure, distance change, etc. The 
laser beam image acquisition is made with an industrial camera of MV-EM510C (HD514-
MP2), with a lens resolution of 2048 × 2456, and a focal length of 5 mm. The wavelength 
of the mining laser pointing instrument is 658 nm, the advantage of this wavelength is that 
it is able to produce a good Tyndall effect in dust, and can enhance the visibility of the 
laser beam in the image through the color component constraints. 

The laser beam image data were obtained by collecting the laser beams above the 
roadway behind the fuselage by the camera installed on the fuselage of the boom-type 
roadheader. The distance range between the camera and the mining laser pointing instru-
ment was about 10 m~80 m. Due to the complexity of the working conditions in under-
ground coal mines, the acquired image data contain different distances, different dust 
concentrations, and different lighting conditions and other distribution types. Meanwhile, 
because a large number of similar frames are generated in the process of image acquisi-
tion, the training will reduce the generalization of the model, resulting in the overfitting 
phenomenon. Therefore, we built an automatic filtering network based on ResNet50 to 
filter the acquired raw data [39], aiming to eliminate similar images, images that are heav-
ily occluded, or where the laser beam target features are missing, that making it impossi-
ble to perform annotation. Meanwhile, in order to further ensure the effectiveness of data 
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filtering, manual screening was used to check the filtered data, and the final 3406 images 
were used as our image data for the laser beam target dataset production. Some of the 
obtained image data are shown in Figure 8. 

 
Figure 8. The Laser beam target images. The bottom right area shows a local enlargement of the 
laser beam target in the original image. 

The laser beams emitted by the mining laser point instrument rely on the diffusion 
of the cutting dust from the roadheader, by using the Tyndall effect to complete the visible 
laser beam imaging in the industrial camera. Therefore, the cutting dust concentration will 
directly affect the quality of the laser beam features in the collected image. When the cut-
ting is stopped at the tunneling face, the dust concentration in the environment decreases, 
and it is difficult for the laser beams emitted by the laser point instrument to produce a 
strong Tyndall effect, which leads to a reduction in the visible laser beam features under 
the camera imaging, and it makes the manual annotation production and laser beam tar-
get segmentation more difficult. Therefore, by combining the environmental characteris-
tics of the tunneling face in underground coal mines and the wavelength of the laser point 
instrument used in this work, a red laser beam feature enhancement module is proposed 
in this Section to improve the quality and efficiency of manual annotation production. 
Meanwhile, it is used as an image preprocessing module before network segmentation to 
enhance the visible features of the red laser beams and the segmentation stability of the 
network. The judgment condition depends on the color component distribution constraint 
between the R, G, and B channels of the laser beam image, and the part of each channel 
that does not satisfy the condition is assigned to 0, and the rest of the values are kept 
unchanged in order to perform noise filtering. Combined with the laser beam character-
istics of the 658 nm wavelength, this paper shows through the image of the same pixel 
under the R channel and the remaining two channels that the difference is greater than 0, 
as a judgment condition for noise filtering; if greater than 0, it means that this is a laser 
beam target feature, if less than 0, then this is a noise point. 

Subsequently, each channel after conditional judgment is median-filtered to reduce 
the influence of noise on the image quality, and the filtered three channels are merged to 
obtain the filtered RGB map. Adaptive histogram equalization is used to adjust its 
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brightness and contrast to obtain the laser beam feature-enhanced image. Parts of the en-
hanced images are shown in Figure 9. 

 
Figure 9. Laser beam image feature enhancement. “Origin” indicates the original image captured 
with the industrial camera. “Enhanced” indicates the enhanced image. 

The 3406 original images with manual screening were enhanced using the above laser 
beam feature enhancement method. The laser beam targets were manually annotated us-
ing the annotation software Labelme tool (5.3.1) (https://github.com/labelmeai/labelme, 
accessed on 10 September 2023), and during the annotation process, the images were an-
notated in accordance with the VOC dataset format to obtain visual labels in PNG file 
type. Subsequently, the image data and labeled data were both divided according to the 
ratio of 8:2, of which 2725 were used as the training set and 681 as the validation set. The 
constructed laser beam targets image dataset was named LBTD. In addition, in order to 
calculate the distribution of images across different conditions, three members with rich 
working experience in the coal mining field were selected to discriminate the distribution 
of the images in the LBTD datasets. Among these, there were 635 images of high dust 
concentration, 128 images of low dust concentration, and 2643 images of normal dust con-
centration when the images of the LBTD dataset were divided according to the dust con-
centration; and there were 101 images of strong light illumination, 846 images of low light 
illumination, and 2459 images of normal light illumination when the images of the LBTD 
dataset were divided according to the light intensity. 

4. Experiments and Performance 
4.1. Training Environment and Parameter Settings 

In this study, Python3.8 was used as the main programming language, and the 
PyTorch 2.0.0 framework was used to complete the RCEAU-Net network construction. 
CUDA11.8 and cuDNN8.7.0 were used as deep learning acceleration modules to ensure 

https://github.com/labelmeai/labelme
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that GPU acceleration was used during training. Meanwhile, the initial learning rate (lr0) 
was set to 1 × 10−5, and the final learning rate (lrf) was 1 × 10−6. The momentum was set 
to 0.9, and the was set to Adam, where 𝛽𝛽1 and 𝛽𝛽2 were respectively 0.9 and 0.999. Set 
the maximum number of training rounds epochs to 100, the weight decay coefficient 
(weight decay) to 0, the batch size to 4, and the image size to 2048 × 2456. Using Windows 
10 system with 13th Gen Intel(R) Core(TM) i9-13900K CPU purchased in China and 
NVIDIA GeForce TUF-RTX4080-O16G-GAMING (which OEM from ASUS, Taipei, China) 
to complete the laser beam segmentation model training. 

4.2. Experimental Results and Analysis 
In order to verify the feasibility of RCEAU-Net on the laser beam segmentation task 

as well as its adaptability and generalization in the different coal mine tunneling faces, we 
adopted the image acquisition method mentioned in Section 3.3, and re-collected a total 
of 615 laser beam target images as the test set of LBTD using the industrial camera, which 
were collected at different distances under different environments in both the actual coal 
mine working scenes and the simulated tunnel environments in the laboratory. In the pro-
cess of laser beam image acquisition in the laboratory of simulation underground road-
way, the camera was installed in the tracked mobile robot and the smoke maker was used 
to simulate the cutting dust, at the same time as taking into account the low light environ-
ment and stray light interference such as mine lamps. The accuracy, precision, recall, and 
IoU of several more commonly used segmentation task indexes are used to quantify the 
extraction results to verify the robustness of the segmentation model, and their calculation 
formulas are shown in Equations (5)–(8), respectively. 

𝐴𝐴𝑐𝑐𝑐𝑐 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (5) 

𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (6) 

𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (7) 

𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (8) 

In the formula, TP, TN, FP, and FN represent the four indicators of the true-positive, 
true-negative, false-positive, and false-negative prediction results of the segmentation 
model, respectively. In this paper, TP represents the total number of downhole laser beam 
pixels correctly predicted by the model; TN represents the total number of downhole non-
laser beam pixels correctly predicted by the model; FP represents the total number of non-
downhole laser beam pixels predicted by the model as laser beam pixels; and FN repre-
sents the total number of downhole laser beam pixels predicted by the model as non-laser 
beam pixels. In this paper, we combine the above four quantitative metrics to build a net-
work using five sets of improvement strategies using U-Net as a benchmark, and perform 
model evaluation on the LBTD test set to verify the effectiveness of each module. Among 
them, Improvement Strategy 1 is U-Net + StructLoss, Improvement Strategy 2 is RU-Net 
+ StructLoss, Improvement Strategy 3 is RU-Net + StructLoss + EMA, Improvement Strat-
egy 4 is RU-Net + StructLoss + CMSC, and Improvement Strategy 5 is RCEAU-Net. The 
improvement results of the network under different improvement strategies are shown in 
Table 1. It can be seen from the data in Table 1 that Improvement Strategy 5 achieves the 
highest score in all four groups of evaluation indexes, which is the optimal improvement 
scheme, proving the effectiveness and necessity of the introduction of each module. Alt-
hough the introduction of the module increases the model inference time and training 
time, from the demand analysis of this study, for the feature extraction task of the laser 
beam target in an underground coal mine, the inference speed of the model is guaranteed 
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to be within 80 ms per frame to meet the requirements. From the perspective of real-time 
inference, the inference time of RCEAU-Net is about 2.5 ms lower than that of the original 
U-Net, and its slightly longer inference time does not affect the real-time application of 
the model. The loss of RCEAU-Net when trained on LBTD and the trend of accuracy with 
the number of training rounds are shown in Figure 10. 

Table 1. Evaluation results under different improvement strategies. 

No. Network Model mAcc mPre mRec mIoU 
Inference Time 

(per/ms) 

Training 
Time per 
Epoch(s) 

1 U-Net 0.9962 0.7091 0.6236 0.6014 5.6132 351 
2 U-Net + StructLoss 0.9972 0.7115 0.8056 0.6707 5.5005 354 
3 RU-Net + StructLoss 0.9974 0.7151 0.8196 0. 6724 5.9147 243 
4 RU-Net + StructLoss + EMA 0.9979 0.7251 0.8360 0.6746 6.9504 334 
5 RU-Net + StructLoss + CMSC 0.9978 0.7191 0.8383 0.6768 7.1446 363 
6 RCEAU-Net 0.9981 0.7344 0.8437 0.6862 8.1003 430 

 
Figure 10. The loss and accuracy curves of RCEAU-Net when trained on LBTD datasets. The black 
curve represents loss and the red curve represents accuracy. 

As can be seen from Figure 10, the loss and accuracy curves of RCEAU-Net are able 
to converge stably and achieve high accuracy and small loss value, which shows that the 
laser beam segmentation model under RCEAU-Net has high detection accuracy and good 
fitting degree for the training data, and is able to stably complete the task of laser beam 
segmentation in an underground coal mine. 

In order to further verify the segmentation effect of RCEAU-Net, we complete the 
training on LBTD using the four variants of Attention U-Net, U-Net3+, and Swin-Unet, 
which are the more popular U-Net network architectures at present, and Deeplabv3+ [40] 
semantic segmentation network, which is widely used in the industry at present, and test 
them on the test set. The performance evaluation of the different network models is ob-
tained as shown in Table 2. The results of the assessment of the mean metrics under the 
different models are shown in Table 3. From the data in Table 3, it can be seen that RCEAU-
Net is able to obtain better and more stable performance than U-Net and its more popular 
variants. In particular, accuracy, precision, recall, and IoU are improved by 0.19%, 2.53%, 
22.01%, and 8.48%, respectively, over the traditional U-Net model. 
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Table 2. Evaluation results of laser beam target and background under different models. 

No. Network Model Category Acc Pre Rec IoU 

1 U-Net 
Laser beam target 0.9945 0.5073 0.3459 0.2817 

Background 0.9979 0.9109 0.9013 0.9211 

2 Attention U-Net 
Laser beam target 0.9977 0.5247 0.7301 0.4236 

Background 0.9981 0.9121 0.9033 0.9238 

3 Swin-Unet 
Laser beam target 0.9950 0.4969 0.3239 0.2758 

Background 0.9982 0.9095 0.9089 0.9244 

4 U-Net3+ 
Laser beam target 0.9970 0.5300 0.7665 0.4445 

Background 0.9986 0.9088 0.9101 0.9091 

5 DeepLabv3+ 
Laser beam target 0.9972 0.5281 0.7458 0.4337 

Background 0.9980 0.9101 0.9132 0.9163 

6 RCEAU-Net 
Laser beam target 0.9979 0.5595 0.7767 0.4525 

Background 0.9983 0.9093 0.9107 0.9199 

Table 3. Mean metrics evaluation results under different models. 

No. Network Model mAcc mPre mRec mIoU 
1 U-Net 0.9962 0.7091 0.6236 0.6014 
2 Attention U-Net 0.9979 0.7184 0.8167 0.6737 
3 Swin-Unet 0.9966 0.7032 0.6164 0.6001 
4 U-Net3+ 0.9978 0.7194 0.8383 0.6768 
5 DeepLabv3+ 0.9976 0.7191 0.8295 0.6750 
6 RCEAU-Net 0.9981 0.7344 0.8437 0.6862 

In order to observe the segmentation results of the laser beam more intuitively, we 
visualized some of the segmentation results obtained by different models, and the results 
were collated as shown in Figure 11. 

 
Figure 11. The segmentation effect of different models for laser beams. 

As can be seen from the figure, RCEAU-Net has a better segmentation effect for the 
laser beam in an underground coal mine; compared with other models, it not only has a 
better segmentation of the edge details of the laser line, but also reduces the mis-segmen-
tation and omission of segmentation to a large extent, and it can well extract the weak 
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visible laser beam under a low concentration of cut-off dust. To a certain extent, it meets 
the requirements of laser beam target feature segmentation in the underground working 
face and extraction, so as to ensure the stable and accurate positioning of tunneling equip-
ment. 

In order to verify the effectiveness of RCEAU-Net on laser beam segmentation and 
feature extraction and to complete the pose calculation of the tunneling equipment based 
on the laser beam feature information, it is necessary to further obtain the slope and inter-
cept of the laser beam center line. Here, the least squares method is adopted to carry out 
linear fitting of the laser beam center line obtained by segmentation. However, because 
the laser beam itself has a certain width, using the laser beam region to directly fit the 
straight line easily causes the problem of center-line deviation, resulting in the subsequent 
positioning accuracy. In order to ensure the linear fitting effect, an edge refinement algo-
rithm is used based on the single-pixel edge mode [41] to refine the features of the seg-
mented laser beam target to obtain finer laser beam features. The feature refinement re-
sults are shown in Figure 12. 

 
Figure 12. The feature refinement results. 

Meanwhile, in order to improve the fitting effect of the straight line where the laser 
beam is located, so that each pixel point is as close as possible to the center line of the laser 
beam, this work analyzes the grey scale value of the center line of the laser beam and its 
surroundings. The distribution of grey scale values at the center line and its surroundings 
is shown in Figure 13. 

 
Figure 13. The 3D distribution of laser beam grey value, as shown in the lower right corner. The 
gray value of pixels close to the yellow region becomes larger, and the gray value of pixels close to 
the blue region becomes smaller. 

From Figure 13, it can be seen that, in general, the grey distribution of the laser beams 
decreases sequentially from the center lines of the beam to both sides of the laser beams. 
Therefore, based on this grey scale distribution characteristic, this work establishes a 3 × 3 
window and uses it to slide on the center line where the laser beam is located, and com-
pletes the corrective of the feature points that deviate from the spot center by selecting the 
grey scale maximum in each local window as the new feature point. The adoption of the 
local window is beneficial to accurately fit a straight line closer to the center of the laser 
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beams, and to reduce the localization error brought by the straight-line deviation. The 
center line fitting results of multi-laser beams are shown in Figure 14. 

 
Figure 14. The center line fitting results of multi-laser beams. 

From Figure 14, it can be concluded that by using RCEAU-Net to segment the laser 
beams to obtain the laser beam target area, and by fitting the center line after feature re-
finement through the least squares method, the slope and intercept information of the 
center line where the laser beam target is located can be obtained stably and efficiently, so 
as to provide stable straight-line features of the laser beam for realizing the precise posi-
tioning of the tunneling equipment. Even if part of the laser beam is blocked, the segmen-
tation model will still have good performance. It can accurately complete the laser beam 
center-line extraction, and meet the requirements of the visual positioning model. In order 
to further verify the effectiveness of the center-line fitting, this work compares the partially 
fitted center-line information with the manually marked laser beam center-line infor-
mation, and calculates the deviation of the slope and intercept between them. The parts 
of the comparison results are shown in Table 4. 

Table 4. The comparison of center-line fitting results with ground truth. 

No. 
Slope Intercept (Pixels) 

GT Fitting Deviation GT Fitting Deviation 
1 0.5074 0.5075 −0.0001 210.5813 210.5532 0.0281 
2 5.7172 5.7087 0.0085 −7036.5186 −7036.7213 0.2027 
3 −0.4989 −0.5005 0.0016 1600.8748 1601.2083 −0.3335 
4 0.5716 0.5743 −0.0027 312.6917 312.5921 0.0996 
5 1.8137 1.8145 −0.0008 −1454.4894 −1454.1673 −0.3221 
6 6.5202 6.5191 0.0011 −8169.6474 −8170.0015 0.3541 
7 0.3314 0.3289 0.0025 674.7073 674.2767 0.4306 
8 1.0353 1.0294 0.0059 −336.2056 −335.799 −0.4066 
9 2.2483 2.2425 0.0058 −2075.6864 −2076.0135 0.3271 
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From Table 3, it can be seen that the maximum deviation of the slope between the 
center line where the laser beam is located and the real center line obtained by fitting is 
0.0085, and the maximum deviation of the intercept is 0.4306 pixels. We carried out a de-
viation analysis on a total of 615 sets of the laser beam center-line fitting results and ob-
tained an average slope deviation of 0.0039 and an average intercept deviation of 0.2986 
pixels, which can meet the requirements of the feature segmentation extraction of the cen-
ter line where the laser beam is located in the complex background, and this is helpful to 
improve the visual positioning accuracy based on the laser beam target, and to complete 
the accurate pose measurement of the coal mine tunneling equipment. 

5. Discussion and Conclusions 
In this work, aiming at the problems of laser beam target image feature extraction 

and poor real-time performance faced by the long-distance visual localization system of 
tunneling equipment in the harsh environment of coal mines, we proposed a RCEAU-Net 
network model to segment the laser beam target features efficiently and stably. When the 
Tyndall effect is weak in the process of dust concentration change, the visible laser beam 
features generated are insufficient, which easily confuses the laser beam features with the 
background and makes it difficult to make artificial labels in the construction of the da-
taset. Laser beam feature enhancement is adopted to improve the visibility of the tiny laser 
beam under the weak Tyndall effect. At the same time, the laser beam images obtained by 
RCEAU-Net were refined and debiased, respectively, and the laser beam center line was 
obtained by the least squares method, which verified the effectiveness of RCEAU-Net and 
further ensured the accuracy and reliability of the visual localization for the tunneling 
equipment at the underground working face. The specific conclusions are as follows: 
1. An RCEAU-Net model suitable for laser beam image segmentation in the working 

face is proposed for long-distance vision localization in an under-ground application. 
An LBTD was constructed with images collected from several different scenarios of 
a coal mine working face, which contains 3406 images and the laser beam target area 
that were manually labeled. The performance of the proposed RCEAU-Net model 
was significantly improved, and it can reliably segment and accurately extract laser 
beam features under the conditions of complex background interference, distance 
change, and coal dust concentration change. 

2. Considering that it is difficult for traditional segmentation networks to obtain stable 
and accurate characteristics of multi-laser-beam targets, a new RCEAU-Net network 
is proposed in this work, which can effectively solve the problem of segmentation 
errors or omissions of laser beam target images due to weak laser beam features, dis-
continuity, and easy confusion with background. Moreover, although its inference 
speed is slightly slower than that of the U-Net network, the reasoning speed of the 
RCEAU-Net model can meet the requirement of real-time segmentation and extrac-
tion of downhole laser beam images. 

3. The proposed underground laser beam segmentation network RCEAU-Net is veri-
fied on the established LBTD datasets. Compared with traditional U-Net, the accu-
racy is improved by 0.19%, precision is improved by 2.53%, recall is improved by 
22.01%, and IoU is improved by 8.48%. The fitting accuracy of the laser beam center 
line is also verified and analyzed. The experimental results show that the maximum 
slope deviation between the fitted laser beam center line and the real center line is 
0.0085, and the maximum intercept deviation is 0.4306 pixels, which can meet the 
accuracy requirements of laser beam feature extraction for long-distance visual local-
ization in a coal mine. 
From the above conclusions, it can be seen that the RCEAU-Net proposed in this 

manuscript is able to obtain good segmentation results under the premise of real-time 
performance for laser beam target segmentation under the complex background of the 
tunneling face in coal mines. However, when the industrial camera is affected by factors 



Sensors 2024, 24, 2552 21 of 22 
 

 

such as severe overexposure interference, excessive artificial occlusion, and severe motion 
blur, it will lead to the low quality of the captured image and result in bad results such as 
intermittent laser beam segmentation results and incorrect segmentation. Therefore, in 
our future work, we will focus on the problems of laser beam mis-segmentation and 
missed segmentation that are caused by camera overexposure, as well as camera motion 
blur, and concentrate on laser beam feature enhancement to improve the laser beam target 
segmentation effect in these cases. 
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