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Abstract: This paper focuses on the use of smart manufacturing in lathe-cutting tool machines, which
can experience thermal deformation during long-term processing, leading to displacement errors in
the cutting head and damage to the final product. This study uses time-series thermal compensation
to develop a predictive system for thermal displacement in machine tools, which is applicable in
the industry using edge computing technology. Two experiments were carried out to optimize the
temperature prediction models and predict the displacement of five axes at the temperature points.
First, an examination is conducted to determine possible variances in time-series data. This analysis
is based on the data obtained for the changes in time, speed, torque, and temperature at various
locations of the machine tool. Using the viable machine-learning models determined, the study then
examines various cutting settings, temperature points, and machine speeds to forecast the future
five-axis displacement. Second, to verify the precision of the models created in the initial phase,
other time-series models are examined and trained in the subsequent phase, and their effectiveness is
compared to the models acquired in the first phase. This work also included training seven models of
WNN, LSTNet, TPA-LSTM, XGBoost, BiLSTM, CNN, and GA-LSTM. The study found that the GA-
LSTM model outperforms the other three best models of the LSTM, GRU, and XGBoost models with
an average precision greater than 90%. Based on the analysis of training time and model precision,
the study concluded that a system using LSTM, GRU, and XGBoost should be designed and applied
for thermal compensation using edge devices such as the Raspberry Pi.

Keywords: sensor; thermal compensation; time-series model; edge computing

1. Introduction

With the popularization of Industry 4.0, the manufacturing industry is gradually
transforming its manufacturing mindset from mass production to customized precision
manufacturing, achieving the ultimate goal of smart manufacturing. The core of smart
manufacturing is the integration and application of digital and physical systems, namely
cyber-physical systems (CPS) and the Internet of Things (IoT). Industry 4.0 enables high
flexibility in the development, diagnosis, maintenance, and operation of automation sys-
tems. When developing these systems, people can choose the best suppliers from many
components, modules, and service providers. Some diagnostics can be performed by the
user, and access to “big data” helps with automation. Information can be retrieved on
demand, used intelligently, and correlated to achieve automatic diagnosis. Components
can be ordered automatically from the cheapest manufacturer, solving the skill shortage
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problem [1]. Meanwhile, recent developments show that the concept of Industry 5.0 is
beginning to emerge along with the development of artificial intelligence. Data-driven
decision systems help humans and robots optimize production scheduling, running equip-
ment, forecasting breakdowns, and evaluating industrial performance. Moreover, the
collaboration between humans and machines allows for a faultless environment where the
versatility of humans and the precision of machines may achieve production performance
that is free from errors and optimized [2].

In the post-pandemic era, the manufacturing industry uses remote access to data and
cloud-based processing of large amounts of data, but this method has some drawbacks,
such as data transmission delays, data storage security problems, and large-scale use of
network bandwidth [3]. Therefore, the combination of intelligent manufacturing and edge
computing will greatly reduce the labor cost of the manufacturing industry and improve
the security of its data, while the combination of edge computing with small devices
will also greatly improve the portability of the system, helping factories move toward
comprehensive intelligent manufacturing [4].

In the era of global trade, product quality and product precision have become in-
creasingly important, so it is very important to control the tooling errors of manufactured
products. Among machine tool errors, thermal error is also one of the most influential
factors. Excess temperature will cause thermal deformation of the machine tool. There are
two main sources of machine tool thermal deformation, namely internal heat sources and
external heat sources. External heat sources come mainly from solar heat radiation or the
influence of ambient temperature, while internal heat sources are mainly the heat generated
by the machine tool and its components during operation. The traditional method of
thermal compensation is to use coolant to cool the interior of the machine, but this method
does not completely improve the thermal error of the machine tool [5]. Based on reviews by
Konstantinidis et al. [6], this research could be carried out at level 4 that covers advanced
features such as intelligent object identification capabilities and metadata transformation
techniques to address interoperability issues. In particular, classifiers with less data are
typically trained via (semi)supervised machine learning. On the other hand, distributed
learning techniques enhance the effectiveness of models while ensuring privacy, as seen in
Federated Learning. The metadata or decisions are shown on mobile interfaces or sent to
Industrial IoT platforms for further utilization or interaction with other systems.

This paper aims to use deep learning models to predict the axial displacement of
machine tools and integrate them into a lightweight edge computing device that can be
directly connected to the machine tool to improve the precision of the machining. The study
is divided into two parts. In the first part, data recorded during machine tool operation,
such as spindle temperature, speed, and torque, are used. They are used to train and
predict future temperature changes. In the second part, data of multiple temperature point
changes, speed changes, and corresponding five-axis displacement changes are used to
train and predict the five-axis displacement. Finally, a Raspberry Pi machine tool thermal
compensation system is developed to predict the future five-axis displacement. This study also
develops an intelligent machine tool thermal compensation system on the Raspberry Pi Edge
device. The system will collect temperature data points from the machine tool and predict
future five-axis displacement. Therefore, the contributions of this study are listed as follows:

1. This study designs two experiments to develop an appropriate prediction model for
time-series data on lathe machine tools.

2. This study designs a combination of genetic algorithm (GA) and the LSTM model to
improve the accuracy of predicting thermal displacement in turning machine tools.

3. This study compares multiple time-series models using the same set of lathe data and
integrates their final prediction results.

4. This study develops an intelligent compensation system for thermal displacement in
machine tools using Qt Creator and runs the system on the edge computing side of
the Raspberry Pi and the cloud computing side of Windows operating systems.
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2. Background Review and Related Works

This section describes the relevant knowledge and literature in this study, including an
introduction to edge computing, the research results of the major international companies
in tool compensation, and the introduction of mathematical models of time-series models.
In addition, this section provides a detailed analysis of the process and structure of genetic
algorithms. More detailed information will be provided in the following section.

2.1. Edge Computing

With the popularity of smart manufacturing, the application of edge computing in
the industry has become increasingly widespread. Ren et al. [7] introduced the design
and implementation of a big data platform for intelligent industrial IoT sensor monitoring
systems and predicted errors in advance. They proposed a design and implementation
scheme of a manufacturing big data platform and an intelligent industrial IoT sensor
monitoring system based on edge computing and artificial intelligence.

Sun et al. [8] introduced an intelligent computing architecture for IIoT with collabo-
rative edge and cloud computing. Based on the computing architecture, they proposed
an AI-enhanced offloading framework for maximizing service accuracy, which considers
service accuracy as a new metric in addition to latency and intelligently distributes traffic
to edge servers or remote clouds through appropriate paths. Transfer learning case studies
were conducted to demonstrate the performance gain of the proposed framework.

Trinks et al. [9] introduced the most advanced edge computing in smart factories.
Therefore, the results of this paper describe the priority topics of the current scientific
discussion and draw the possibilities of EC to support RTA.

2.2. Thermal Compensation

FANUC and PFN have developed a new AI function, the AI Servo Monitor, which
collects high-speed machine tool feed and spindle control data. It performs deep learning
on the collected data and displays anomaly scores based on the current state of the machine
components. When the machine is running normally, the AI Servo Monitor uses the motor
torque data as input to train the model. The trained model extracts the features of the
torque data that can represent the normal state of the torque. During actual machine
operation, the AI Servo Monitor takes torque data as input, compares them with the normal
state, and calculates and displays anomaly scores. This allows machine tool operators
to observe symptoms of feed or spindle failure. AI Servo Monitor notifies operators to
perform maintenance before a feed or spindle failure occurs, which will help improve
machine availability [10].

Mazak has developed an Intelligent Thermal Shield (ITS) system [11] to address ther-
mal displacement issues. It uses sensors placed in areas relevant to thermal displacement to
collect data. For rapid and dynamic thermal displacement that occurs during axis rotation,
compensation is achieved by analyzing surface displacement data based on the thermal
response of the rotational speed. However, for slower and more uniform thermal displace-
ment caused by environmental temperature changes, compensation is performed using
temperature application formulas. Through similar experiments and observations, Mazak
optimizes thermal displacement compensation based on the data collected by the sensors,
ensuring stable and accurate machining precision under various environmental conditions.
These sensors are strategically placed in locations closely related to thermal displacement.

The Advanced Process System (APS) was developed by the Swiss precision machine
manufacturer Mikron [12]. The APS function is now a standard feature of Mikron’s CNC
systems and can display vibration measurement signals during the machining process. APS
was initially used on high-speed and heavy-duty cutting machines to monitor tool vibration
and cutting force. Mikron’s HPM1100 uses a Step Tec spindle with a built-in accelerometer
to measure vibration. Through this accelerometer, the current spindle vibration signal can
be transmitted to the control, and with the APS function, if the received spindle vibration
value exceeds a set limit, the control automatically reduces the feed rate. When the vibration
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value returns to normal, the feed rate can be increased again. In addition, users can view
the current machine torque and vibration conditions through the control’s human-machine
interface. This combination reduces vibration, increases machining accuracy, and extends
the useful life of the tool. In addition to these functions, APS also includes other features,
such as reducing load per unit of time, which extends spindle life, balancing holder force,
and increasing machining reliability.

2.3. Time-Series Model

Zhou et al. [13] proposed an intelligent anomaly detection variational long-short-term
memory (VLSTM) learning model based on reconstructed feature representation, which
can effectively address imbalanced and high-dimensional problems in industrial big data
and significantly improve the accuracy of data anomaly monitoring while reducing the
error rate in the industry. Ren et al. [14] proposed a data-driven self-supervised long- and
short-term memory deep factorization machine (LSTM-DeepFM) model driven by data for
soft industrial measurement, including a framework of pre-training and fine-tuning stages
to explore different features of industrial data. Mateus et al. [15] used an LSTM model
to predict the future condition of industrial paper machine equipment based on sensor
data, maximizing industrial plant maintenance and supporting decision-making about
equipment availability. Alazab et al. [16] proposed a novel multidirectional long-short-term
memory (MLSTM) technique to predict the stability of intelligent power grid networks and
compared this model with other related time-series models. The results showed that the
MLSTM method outperformed other ML methods.

Liu et al. [17] proposed a multifactor installed capacity prediction model based on
bidirectional long- and short-term memory-gray relational analysis to predict the installed
capacity of solar photovoltaics. The results showed that the prediction accuracy of the
GRA-BiLSTM model was higher than that of other models. Lan et al. [18] proposed a
method called threshold optimization, which combined the CNN-BiLSTM-Attention model
with a threshold modification method based on receiver operating characteristic (ROC)
curves. The experimental results showed that this method can improve the accuracy (AC)
and the minority class detection rate (DR) at low false alarm rates (FR), outperforming
other intrusion detection methods. Prihatno et al. [19] developed a single dense layer
bidirectional long-short-term memory (BiLSTM) model to predict PM2.5 concentrations in
indoor environments using time-series data. The method achieved high precision with low
errors in predicting PM2.5 concentrations in the cleanroom of a semiconductor factory.

Cavdar et al. [20] proposed a method that combined 1D convolutional neural net-
works (1DCNN) and the Dempster-Shafer (DS) decision fusion approach (DS-1DCNN) for
anomaly decision-making in IIoT. Based on the simulation results obtained, this method
improved the accuracy of the decision and significantly reduced uncertainty. Compared
to Long-Short-Term Memory (LSTM), Random Forest, and CNN models, the proposed
method demonstrated superior performance. The average recall rate was 0.9763, and
the average precision was 0.9899 on the Mill dataset, indicating acceptable and reliable
decision outcomes.

2.4. Related Works

Liang et al. [21] present a new system to predict thermal error on heavy-duty CNC
machines. The methods used were LSTM networks and fog–cloud architecture. The results
indicate that, compared to procedures without employing the intended system, the system
reduced the amount of data transferred by 52.63% and increased the precision of the
machining by 46.53%.

Gui et al. [22] considered the prediction and control of the error of the spindle system
thermal problems; a new mist–edge fog–cloud system (MEFCS) design is recommended.
The methods were Bi-LSTM network and cosine and sine gray wolf optimization (CSGWO)
algorithms. The results show that the accuracy level of the deviation of the tooth profile
is increased from ISO level 5 to ISO level 3 with the suggested MEFCS. The mist-cloud
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structure, mist-edge-cloud structure, mist-cloud structure, and mist-edge-cloud structure,
respectively, have execution times of 206 s, 200 s, 186 s, and 167 s.

Guo et al. [23] study the spatiotemporal correlation of data in the static thermal
deformation modeling of CNC machine tools. The methods use a hybrid CNN-LSTM model
with spatiotemporal correlation (ST-CLSTM). The results of the ST-CLSTM model are great,
robust, and have good prediction performance. The ST-CLSTM model outperforms other
comparison models in terms of prediction accuracy, generalization ability, and robustness in
three different directions through thermal error studies conducted under various situations
(such as varying spindle speed and ambient temperature).

Kuo et al. [24] discuss an approach for autonomous optimization using bidirectional
GRU that can accurately forecast manufacturing mistakes. The methods implement an op-
timized automatic logistic random generator time-varying acceleration coefficient particle
swarm optimization (LRGTVAC-PSO) method to optimize a branch structured bidirectional
Gated Recurrent Unit (GRU) neural network. The results for issues requiring prediction
related to time bidirectional GRU produce better results. The accuracy of the suggested
method is higher than that of the other optimized algorithms analyzed in this study, with a
three-axis average of 0.945.

Kuo et al. [25] use sophisticated algorithms to forecast the thermal displacement of the
machine tool. The methods apply an ensemble model to integrate long short-term memory
(LSTM) with a support vector machine (SVM). The experimental findings demonstrate that
LSTM-SVM has better prediction performance than other machine-learning methods. The
experiment shows that the prediction error RMSEs were successfully reduced to 2.13, 3.91,
and 2.04 using this hybrid LSTM-SVM model. The overall mean RMSEs are 2.69, which is
better than 3.28 and 2.97, respectively, for the LSTM and SVM models.

Liu et al. [26] determine the relationship between spindle thermal errors and tem-
perature fluctuations. This study aimed to build a reliable and efficient spindle thermal
displacement modeling method. The algorithms applied the comparison of three types
of modeling methods: LSTM, MLR, and BPNN. The results show that, especially under
high rotation spindle speed, the performance of the ANN-based modeling schemes (LSTM
and BPNN) significantly surpassed the MLR modeling method. At all spindle operating
circumstances, the suggested LSTM has a lower root mean square error (RMSE) than a
BPNN. The suggested spindle thermal error prediction technique is validated at spindle
rotation speeds of 3000, 6000, and 9000 rpm.

Liu et al. [27] performed spindle systems, thermal error modeling, and compensation
based on the error mechanism of spindle systems. The methods used were the VMD-
GW-LSTM network, the VMD-LSTM network, and RNN. According to the findings, the
compensation rates for sizes 1, 2, and 3 of the VMD-GW-LSTM network model are 77.78%,
75.00%, and 77.78%, respectively. Furthermore, compared to the VMD-LSTM network and
RNN models, the VMD-GW-LSTM network model performs both prediction analysis and
compensation analysis far better.

Nguyen et al. [28] reduce the thermal error of the workpiece. The study builds a
thermal deformation prediction model using an artificial neural network and applies real-
time error correction to a three-axis vertical CNC milling machine in cutting processes. The
methods apply LSTM with Pearson’s correlation coefficients for feature selection. This
study demonstrates how well a real-time error correction system for a CNC milling machine
may function when an LSTM neural network is used as the temperature error prediction
model. With real-time error compensation, the thermal error on the X-axis reduced from 7
to 3 m, the thermal error on the Y-axis decreased from 74 to 21 m, and the thermal error on
the Z-axis decreased from 64 to 20 m during an 8-h cutting experiment, according to the
dimensions of the workpiece.

Zeng et al. [29] predicted thermal error and were controlled by an edge cloud system.
The methods implement a Sequence-to-Sequence model-based LSTM network with an at-
tention mechanism (SQ-LSTMA). The results show that the SQ-LSTMA model outperforms
other networks in terms of prediction performance and convergence rate. Additionally, the
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calculation time is shortened as a result of the attention mechanism. The respective predic-
tion accuracy of the BP, RNN, LSTM, SQ-LSTM, and SQ-LSTMA models is 90.98%, 97.66%,
95.32%, 95.37% and 99.02%. The computation times for the BP, RNN, LSTM, SQ-LSTM, and
SQ-LSTMA models are, respectively, 10.36 s, 17.94 s, 100.50 s, 80.81 s, and 41.05 s.

Ji et al. [30] introduce an innovative deep neural network topology that efficiently
utilizes multisensor information to achieve reliable perception in unorganized and unpre-
dictable environments. This method uses the intended trajectory and the present sensor
observation to estimate the likelihood of future failure. The detector achieved superior per-
formance in detecting navigation failures in agricultural environments using a feature-level
camera-lidar fusion. It outperformed other state-of-the-art approaches in terms of F1-score
and PR-AUC. In the real-time test, they showcased the proposed proactive anomaly de-
tection network (PAAD), which has a reliable ability to detect anomalies with minimal
false alarms.

Lee et al. [31] propose a lightweight and efficient solution named Realtime Ready to go
(ReRe) that can accurately identify anomalies in real time. The suggested system adaptively
modifies its two long-term detection thresholds over time and retrains its two LSTM
models as needed. The results indicate that the suggested system performs comparably
well with real-time time-series anomaly detection (RePAD), AnomalyDetectionTs (ADT),
and AnomalyDetectionVec (ADV).

Gupta et al. [32] introduced supervised prediction classification methods. In the first
stage, they produce forecasts for future resource levels. In the second step, they analyze
these predictions to identify any anomalies. The proposed approach combines LSTM and
BLSTM models to forecast future resource usage trends and detect anomalies in cloud
workloads in advance. The performance of various resource prediction models, including
RNN, LSTM, bidirectional LSTM, and a hybrid of LSTM and BLSTM, was tested. The
hybrid model was shown to have the highest performance.

Spantideas et al. [33] present a practical application of a system consisting of three
components (MCS server, NWDAF, and Orchestrator) within the context of MCS services.
The purpose of this system is to identify the occurrences of MCS overload and to facilitate
the efficient allocation of computational service resources. Additionally, it is important
to predict future requirements and notify the orchestrator to take proactive measures in
relation to the scalability of the service.

Wang et al. [34] introduced an innovative method for predictive and proactive mainte-
nance in the field maintenance of HSR power equipment. The LSTM-RNN-driven mainte-
nance predictor has demonstrated its remarkable capability to forecast future maintenance
times using historical sample data.

Psarommatis et al. [35] proposed faultless manufacturing by optimizing efficiency and
effectiveness in production processes. The study used machine vision technology, demon-
strating its superiority over traditional methods in real-world situations. The showcase
used simulation to show the enhancement of in-line process systems’ performance with the
implementation of machine vision. Furthermore, the article addressed significant obstacles
in the implementation process, including the management of environmental contamination,
the optimization of machine coordination, the accommodation of various part sizes, and
the configuration of efficient coolant delivery systems. The comprehensive examination of
crucial elements includes the durability of machine vision equipment, training for operators
in machine vision technology, and a cost-benefit analysis of its adoption. The research
highlights the crucial role of machine vision in revolutionizing production settings and
improving advanced automation systems.

3. Research Methodology and Framework

In this section, the research framework of the study will be introduced, which includes
a detailed description of the GA-LSTM model used in Experiment 2.
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3.1. Research Framework

Research processes have two main steps. First, feasible time-series variations are
investigated based on the data collected of time, speed, torque, and temperature changes at
different positions of the machine tool. Subsequently, using the identified feasible machine-
learning models, the study analyzes different cutting conditions, temperature points, and
speeds of the machine to predict the future 5-axis displacement. To ensure the accuracy
of the models developed in the first step, additional time-series models are explored and
trained in the second step, and their performance is compared with the models obtained in
the first step.

Upon completion of the aforementioned research, a human-machine interface is built
using Qt Creator in both Raspberry Pi and Windows environments, allowing users to
predict real-time thermal displacements of the machine. Figure 1 illustrates the complete
research framework.

Figure 1. Complete Research Framework.

3.2. Data Preprocessing

Due to the large number of temperature points in the data set, the prediction of the
model may suffer from overfitting. Therefore, in this experiment, Pearson’s correlation
analysis was performed to select the eight top temperature points that have a significant
contribution to the displacement of the five axes. Pearson’s correlation analysis is used to
explore the linear relationship between two continuous variables (x and y). If the absolute
value of the correlation coefficient between the two variables is large, it indicates a high
degree of mutual covariance. Generally, if the two variables are positively correlated, an
increase in x will correspond to an increase in y. On the contrary, if the two variables are
negatively correlated, an increase in x will result in a decrease in y. The formula for the
Pearson correlation coefficient is as follows, where r represents the correlation coefficient
and COV is the covariance.

r(x, y) =
COV(x, y)

SxSy
=

∑n
i=1(xi−x̄)(yi−ȳ)√

∑n
i=1((xi−x̄)2)∑n

i=1(yi−ȳ)2
(1)

3.3. AI Model for Experiment 1

This experiment used the LSTM, GRU, TCN, and Ensemble Stacked models. Let us
provide an overview and description of each model’s architecture.

The LSTM model requires the input data to be in a specific format. In this study, the
data were reorganized to meet the input requirements of the LSTM model. The data were
transformed into groups of 10 records, with each record consisting of 5 attribute values.
The input data were then reshaped into the format [n, 10, 5], where n represents the total
number of samples. The output data were shaped as [n, ].
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The GRU model requires that the input data be in a specific format. In this study, the
data were reorganized accordingly. The data were transformed into groups of ten samples,
each sample consisting of five attributes. The input data were reshaped in the shape of
[n, 10, 5], where n represents the total number of samples. The output data had the shape
of [n, ].

The TCN (Temporal Convolutional Network) model also requires that the input data
be in a specific format. For this study, the data were reorganized accordingly. The data
were transformed into groups of ten samples, each sample consisting of five attributes. The
input data were reshaped in the shape of [n, 10, 5], where n represents the total number of
samples. The output data had the shape of [n, ].

3.4. AI Model for Experiment 2

In addition to the time-series models used in Experiment 1, this experiment also
included the training of seven additional time-series models of different types. They
are WNN, LSTNet, TPA-LSTM, XGBoost, BiLSTM, CNN, and GA-LSTM. The following
describes its model content.

The usage condition for the BiLSTM model is that the input data should adhere to
the input format of the BiLSTM model, restructuring the data set accordingly. For this
experiment, the data were transformed into groups, each group consisting of one record
that contains nine attribute values. The input data were then reshaped into the format [n, 1,
9], where n represents the total number of records. The output data format is [n, ].

The usage condition for the LSTNet model is that the input data should conform to
the input format required by the LSTNet model. It necessitates reorganizing the dataset
accordingly. For this experiment, the data were transformed into groups, each group
consisting of 20 records that contain nine attribute values. The input data were then
reshaped into the format [n, 20, 9], where n represents the total number of records. The
output data format is [n, ].

The usage condition for the 1DCNN model is that the input data should conform to
the input format required by the 1DCNN model. Reorganizing the data set accordingly is
necessary. For this experiment, the data were transformed into groups, with each group
consisting of one record containing nine attribute values. The input data were then reshaped
in the format [n, 1, 9], where n represents the total number of records. The output data
format is [n, ].

After multiple experiments, it was determined that for this experiment, XGBoost
should be trained and used for predictions using the multivariate regression approach.
Sklearn provides a wrapper class called MultiOutputRegressor that meets the requirements
of this experiment. However, it is necessary to configure the parameters of MultiOutputRe-
gressor accordingly.

3.5. GA-LSTM

In the second experiment, this study proposes a recurrent neural network GA-LSTM
(Genetic Algorithm-Long-Short-Term Memory) to predict the displacement of the five axes
based on the previous experimental results. Transforms the problem into genes using
binary representation, combines multiple sets of genes into a population, and calculates
the fitness of each chromosome in the population using the fitness function. Based on
fitness, better chromosomes are selected for crossover and mutation to obtain solutions
that are closer to the optimal solution. Iteration continues until the termination condition
is satisfied.

This study combines GA (Genetic Algorithm) with LSTM (Long-Short-Term Memory)
and uses GA to optimize the parameters of the LSTM training process. The main parameters
optimized by GA include the data time steps (look_back, lb), the hidden layers of the LSTM
model (lstm_nets, ls), the number of training epochs (epochs, ep), and the dropout rate
(dp). After obtaining the optimal parameter set, the five-axis displacement dataset of the
machine tool is used as input data, and the predicted values of the machine tool’s five-axis
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displacement are used as the output matrix. The model weights are adaptively adjusted,
and the GA-LSTM model is constructed. The data set is trained using this model, and the
predicted values are compared with the actual values.

4. Experimental Procedures
4.1. Experimental Environments

This study mainly involved training and prediction using a general computer and a
Raspberry Pi. The hardware of the general computer utilized the VACS (Virtual AI Com-
puting System), which includes the Nvidia Quadro RTX8000 GPU (NVIDIA, Santa Clara,
CA, USA) for testing purposes. For the Raspberry Pi (Raspberry Pi Foundation, Cambridge,
UK), two units of the 4B 8 GB RAM version were used. The operating system used was
Raspberry Pi OS (64-bit), Debian version: 12 the official operating system provided by
Raspberry Pi. This system is based on Debian Linux. One of the Raspberry Pi units served
as the system monitoring host, while the other unit was installed with AI packages for the
main testing and computation tasks. The system of this study is primarily implemented
on Raspberry Pi 4 with 4 GB RAM hardware. The user interface is developed using QT
Creator 4.14. Python is utilized on this platform to build AI models. Various functionalities
are executed by calling Python functions through QT Creator. Figure 2 represents the
architecture diagram of the system environment.

Figure 2. System Environment Architecture Diagram.

4.2. Experimental 1
4.2.1. Dataset Introduction

Based on our research on smart machine tools from international controller man-
ufacturers such as Fanuc and Siemens and machine tool manufacturers such as DMG,
Okuma, Mazak, and Mikron, we have found that there is limited publication and literature
available on prediction studies specifically focused on rotary axes. Most of the major
manufacturers mainly focus on thermal compensation for machine tools in their research
and discussions. Additionally, we have observed that many manufacturers have developed
new smart machine tools, but our search for the core technical literature on these types of
machine tools did not reveal any related predictions regarding rotary axes. Therefore, in
this study, we have selected models that demonstrate better training performance in the
field of time-series prediction based on the collected time-series dataset.

The acquisition of the data set for this study mainly involved the collection of data
on-site from the operating machine tools. We capture real-time speed and torque data from
machine tools and save it. We used an infrared temperature sensor to measure and record
temperatures at key points of the machine tool, as shown in Figure 3. The data set for this
study mainly collected four temperature points, namely indoor temperature, condenser
temperature, rotary axis temperature, and motor stator temperature. We recorded the
variations of these four temperature points every minute during the experiment.
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Figure 3. Temperature Point Display.

To ensure that the prediction results align closely with the actual working conditions
of the machine tool, we observed temperature variations by introducing changes in speed.
From the line graph, it is evident that there are slight changes in the temperature trend with
variations in speed, as shown in Figure 4.

Figure 4. Temperature Line Chart.

4.2.2. Data Preprocessing

In this study, we selected a time difference of one minute for each data point. After
normalizing the data, we transformed the time-series problem into a supervised learning
problem using a sliding-window approach. According to the research proposal, the task
requires predicting the rotary axis temperature for the next ten minutes based on the
previous ten minutes of data. The input values consist of the motor stator temperature,
speed, torque, indoor temperature, and condenser temperature at time t − 1, while the
output value is the temperature on the inner side of the rotary axis at time t + 9.

Regarding data preprocessing, there are two main aspects of data cleansing. The
first part involves checking the consistency of the data, specifically handling outliers or
values that are too large or too small, to ensure that the data align with realistic values. The
second part involves handling invalid or missing values in the data. In our study, data were
collected by measuring on-site, and we performed simultaneous checks and processing for
both aspects during the data collection process. Therefore, there is no need for further data
cleansing in the data set used in this investigation.

During the data collection process, we collected six attribute values that can affect
the temperature variation on the inner side of the rotary axis. To understand the correla-
tion between attributes and temperature variation, we used Microsoft Azure to perform
sensitivity analysis on the dataset used in this investigation. Microsoft Azure [36] is a
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Microsoft-provided public cloud service platform that offers AutoML capabilities for a
complete automated analysis of datasets. The results of the sensitivity analysis for this
research are shown in Figure 5. It can be observed that the attributes with the greatest
impact on the temperature variation on the inner side of the rotary axis are the speed and
the motor stator temperature.

Figure 5. Attribute Sensitivity Analysis Chart.

4.3. Experimental 2
Dataset Introduction

This dataset was provided by the Industrial Technology Research Institute and focuses
mainly on the temperature variations and five-axis displacements of two different machine
tools under different conditions. Five-axis machining is a machining mode of CNC machine
tools that utilizes the linear interpolation motion of the X, Y, Z, A, B, and C axes. Machine
tools used for five-axis machining are commonly referred to as five-axis machine tools or
five-axis machining centers, as shown in the following Figure 6. The machine possesses the
capacity to execute tool or workpiece displacement along five distinct axes concurrently.
These axes are denoted by different arrows labeled X, Y, Z (for linear displacement) and A,
B (for rotational displacement). The + and − symbols indicate the direction of movement
along each axis. This capability enables the execution of complicated machining opera-
tions, such as drilling, milling, and tapping, at various angles without necessitating the
repositioning of the workpiece.

As shown in Table 1, the first machine tool provides datasets for three different
conditions, comprising a total of 41 columns. These columns include time, rotation speed,
34 temperature points, and displacement variations of the five axes. On the other hand,
the second machine tool provides datasets for four different conditions, comprising a total
of 60 columns. These columns include time, rotation speed, 53 temperature points, and
displacement variations of the five axes.

The experiment ultimately integrates the different operating conditions of the machine
tool into a single dataset to increase the amount of data available for model training.
Figure 7a displays the temperature variations at different points for Tool 1 in a line chart,
while Figure 7b shows the corresponding displacement of the five axes. Similarly, Figure 7c
represents the temperature variations at different points for Tool 2, and Figure 7d illustrates
the corresponding displacement of the five axes for Tool 2.
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Figure 6. Five-axis Machine Tool or Five-axis Machining Center Display.

Table 1. Dataset Introduction.

Machine Tool Operating Conditions

Tool 1 Spray water to heat 10 degrees

Tool 1 Spindle 2350RPM-turn 8 stop 2

Tool 1 Water spray heating 10 degrees-spindle 2350RPM-turn 8 stop 2

Tool 2 Room temperature plus 15 degrees

Tool 2 Room temperature plus 15 degrees-spindle 2350RPM-turn 8 stop 2

Tool 2 Room temperature plus 15 degrees-water spray heating 10 degrees

Tool 2 Room temperature 20 degrees-spindle 2350RPM machine

(a) (b)

(c) (d)
Figure 7. The different operating conditions of the machine tool. (a) Tool 1 Temperature Line Chart.
(b) 5-axis Displacement of Tool 1. (c) Tool 2 Temperature Line Chart. (d) 5-axis Displacement of Tool 2.
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5. Research Results and Discussion
5.1. Experiment 1 Results

The dataset for Experiment 1 consists of a total of 300 records. In this study, the data
set is divided into a training set and a test set in an 8:2 ratio for model training. To evaluate
the prediction results of the aforementioned models, we mainly use RMSE (Root Mean
Square Error) to check if they meet our requirements, as shown in Figure 8. It can be
observed that both the GRU and LSTM models yield lower RMSE values, indicating that
these two AI models provide more accurate predictions compared to actual values based
on the collected data set.

Figure 8. Histogram of RMSE Results of AI model.

Although the TCN model also achieves an RMSE below 1 in most experiments, its
performance is comparatively poorer than that of the LSTM and GRU models. In some
cases, the TCN model does not converge during training, leading to increased instability in
the predictions.

In addition, although the Stacking Ensemble Learning algorithm performs well in
overall prediction, we have observed that its results can vary significantly when different
rotational speeds are provided for prediction. Therefore, if the machine tool operates with
a fixed set of rotational speeds, this AI model might be a good option due to its faster
training speed and higher accuracy. However, if the machine tool requires a wide range of
rotational speed changes, it is not recommended to use this model due to its inconsistency
in predictions.

In addition, we compared the runtime of these four models on the Raspberry Pi, as
shown in the above Figure 9. It can be observed that the inference time on the Raspberry
Pi is significantly longer compared to a general computer (including the GPU). However,
considering that the Raspberry Pi is a lightweight and relatively inexpensive product
compared to a general computer, it can be considered a lightweight edge AI computing
tool, especially when computational time is not a critical requirement.
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Figure 9. Histogram of Computing Time between General Computer and Raspberry Pi.

5.2. Experiment 2 Results

For Experiment 2, Machine Tool 1 has a total of 6433 datasets, and Machine Tool 2
has a total of 7423 datasets. In this study, each data set is divided into a training set and
a test set in an 8:2 ratio for model training. According to Pearson’s correlation analysis,
Figure 10a shows the top eight temperature points and their corresponding importance
values in relation to the five-axis displacement for Tool 1, and Figure 10b shows the top
eight temperature points and their corresponding importance values in relation to the
five-axis displacement for Tool 2. In the inspection by experts in the field, these results
align well with their practical experience.

(a) (b)
Figure 10. Histogram of the eight temperature points. (a) Tool 1. (b) Tool 2.

Based on the sensitivity analysis, we filtered the data set for the first eight temperature
points related to the machine tool. We then trained the selected dataset using the prebuilt
deep learning models. To evaluate the prediction results in this study, we adopted the
determination coefficient (R2 score) as an assessment metric. In regression models, this
coefficient mainly reflects the accuracy of model predictions compared to actual values. A
higher coefficient indicates a higher accuracy of the model predictions, with values ranging
from 0 to 1. The calculation formula for R2_score is as follows:

R2(y, ŷ) = 1 − ∑
nsample−1
i=0 (yi − ŷi)2

∑
nsample−1
i=0 (ŷi − yi)2

(2)

As shown in Figure 11, it can be seen that, under the same dataset and hardware
environment, the research results of this experiment indicate that the time-series models
used in this study have achieved a R2 score of 0.8 or higher. The GA-optimized LSTM
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model developed in this investigation also demonstrates excellent performance with an
accuracy of 0.99.

Figure 11. Histogram of Experimental Research Results.

In the early stages of system development, we evaluated the overall performance of
AI models. Figure 12 shows the training times for each model on a general computer. It
can be seen that although GA-LSTM achieved the highest prediction accuracy, it required
a relatively longer training time. Compared to GA-LSTM, the LSTM, GRU, and XGBoost
models, it provided overall more suitable results for practical applications.

Figure 12. Histogram of Model Training Time.

5.3. Discussion

Based on the entire experiment, the development of the system in this study con-
sists mainly of three main functionalities: model training, model prediction, and model
retraining, as shown in Figure 13.
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Figure 13. Schematic Diagram of Platform Functions

The first functionality of the system is the initial training of the model. The system per-
forms sensitivity analysis on the user input data set to identify the top 8 temperature points
that have the greatest impact on the 5-axis displacement. The data are then preprocessed,
specifically for the 8 selected temperature points. The system calculates the temperature
differences by subtracting the initial temperature values from the selected temperature
values. The dataset is further split to suit the input format of the AI models.

Next, the system trains and validates the input data set using three different AI models.
It outputs the predictions of the three models, along with the corresponding R2_score and
a line chart that compares the predicted values and the actual values. These results are
provided to the user for selection. Based on the experience, the user can choose the most
suitable model for the specific machine tool. Finally, the selected model is exported and
made available to the user. The Raspberry Pi interface of the system is shown in Figure 14.

The second functionality addresses the need to retrain the models as the dataset
evolves over time. The platform provides the ability to retrain the models by preprocessing
the new dataset and using the models obtained from the first part. The updated models are
then outputted for further use. The Raspberry Pi interface for this functionality is shown in
Figure 15.
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Figure 14. Raspberry Pi Interface 1.

Figure 15. Raspberry Pi Interface 2.
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6. Conclusions

Based on the two experiments conducted, it was observed that applying different time-
series models to the machine tool dataset yielded favorable prediction results. Furthermore,
the GA-optimized LSTM model developed in the second experiment achieved the best
performance. In future research, efforts will be made to optimize the training time of the GA-
LSTM model, and additional algorithms will be applied to analyze multiple temperature
points in the machine tool compensation data set. The goal is to identify the recommended
features and integrate them into the developed Raspberry Pi smart compensation system.
Based on the research results, three AI models were selected and developed for edge
computing terminals, which demonstrated good performance. Additionally, the operating
system was modified to enable its use in the machine cloud at the Industrial Technology
Research Institute. Finally, the precision of the research models reached more than 0.96,
which is in line with the current trend of using deep learning in the manufacturing industry
to improve the thermal errors of the machining. Although this research has achieved a
high accuracy of over 0.96 in predicting the five-axis displacement of machine tools, further
improvements are needed to apply the developed system to real factory machines. For
example, in this study, data were provided by selecting file paths, but in the future, our goal
is to establish a direct connection with machine tools for real-time data prediction so that
on-site personnel can make adjustments based on future five-axis displacement changes.
The training time of the models in this research was time-consuming, and we hope to
address this issue in future studies. Long-term time-series problems can lead to model drift,
where the performance of the previously trained model deteriorates over time. Therefore,
we also aim to develop a system that can effectively address this issue. In addition, this
research can be applied to other machine tools.
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