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Abstract: Among the common applications of plenoptic cameras are depth reconstruction and post-
shot refocusing. These require a calibration relating the camera-side light field to that of the scene.
Numerous methods with this goal have been developed based on thin lens models for the plenoptic
camera’s main lens and microlenses. Our work addresses the often-overlooked role of the main lens
exit pupil in these models, specifically in the decoding process of standard plenoptic camera (SPC)
images. We formally deduce the connection between the refocusing distance and the resampling
parameter for the decoded light field and provide an analysis of the errors that arise when the exit
pupil is not considered. In addition, previous work is revisited with respect to the exit pupil’s role,
and all theoretical results are validated through a ray tracing-based simulation. With the public
release of the evaluated SPC designs alongside our simulation and experimental data, we aim to
contribute to a more accurate and nuanced understanding of plenoptic camera optics.
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1. Introduction

Plenoptic cameras as initially described by Lippmann [1] and Ives [2] combine a
traditional camera with an additional microlens array (MLA) located between the main lens
and the sensor. Over the years, two primary designs have been extensively studied and
brought to market, the standard plenoptic camera (SPC) [3,4] and the focused plenoptic
camera (FPC) [5,6], which mainly differ in the microlens focus distance. Due to their earlier
commercialization, larger angular resolution, and simpler decoding process, SPCs remain
popular despite certain disadvantages in terms of spatial resolution and depth of field
when compared to the multi-focus variant of FPCs [6]. Classical applications for SPCs
include depth reconstruction [3] and post-capture refocusing from single shots [4]; as a first
step to achieve these, the raw 2D image of a plenoptic camera is usually de-multiplexed
and resampled into a 4D light field [7], as shown in Figure 1. For this reparametrization
procedure, knowledge about the exact position of each microlens image center (MIC) is
crucial, as any inaccuracies in their locations can result in computational errors affecting the
quality of the refocused images [8]. Furthermore, a formal connection between the MICs
and the plenoptic camera optical setup is required to relate the light field within the camera
to the optical reality outside the camera, e.g., to find the correct refocusing parameters for
the desired object distance [7,8].

Over the past two decades, a number of studies have delved into the topic of processing
plenoptic camera images; however, these have often considered the MICs to be determined
by the main lens center or its principal planes as a consequence of reducing the main lens
to a simple thin lens. This assumption oversimplifies the actual optics involved. A more
accurate representation acknowledges the role of the exit pupil in determining these image
centers, as observed in studies by Hahne et al. [8,9]. Despite these advancements, the exit
pupil is often ignored in studies relating the light field within the camera to the 3D scene in
front of the camera.
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Capturing Setup Raw Image

Decoded 4D Light FieldRefocused Images

Figure 1. Exemplary pipeline for SPC post-shot refocusing. A scene is captured by a virtual SPC,
shown here without the housing. The resulting raw image consists of a large number of microlens
images and is subsequently decoded into a 4D light field representation, which can be visualized
by a subset of the sub-aperture images [7]. By resampling the light field, a refocused image can be
created [4]. The correctly focused images shown here were created based on parameters considering
the exit pupil as described in Section 2, while the slightly defocused image are results from the directly
calculated parameters based on [10] without any exit pupil consideration.

In this context, our work aims to again highlight the importance of the exit pupil.
To this end, a paraxial model of the SPC under consideration of the exit pupil is first
described, directly relating the refocusing shift [4] to the object distance. The expected
errors of models ignoring the exit pupil are formally analyzed and later verified through
a ray tracing-based simulation of various plenoptic cameras in Blender [11] using real
lens data. Subsequently, multiple works in the domain of plenoptic camera calibration are
revisited and examined with respect to the need for a more complex lens model. More
specifically, the popular work of Dansereau et al. [7] is first revisited, along with the works
of Zhang et al. [12] and Monteiro et al. [13] building upon Dansereau’s ideas. In these cases,
it can be concluded that the parameters of the respective calibration models are sufficiently
general to permit the simplicity of a main lens model without considering the exit pupil.
However, this only holds true because these works do not require a specific interpretation
of the model parameters. On the other hand, for the work of Pertuz et al. [10], which
also employs the decoding from [7] for metric distance measurement, it is shown that the
oversimplified main lens model leads to an incorrect interpretation of the metric refocusing
model parameters. In summary, our contributions are:

• A formal deduction of the connection between object distance and sub-aperture image
shift considering the exit pupil.

• A model for the errors resulting from ignoring the exit pupil in this relation.
• An analysis of the exit pupil’s role in popular works on SPC calibration [7,10,12–14].
• Publicly available SPC designs [15] and a camera simulation framework [16] based on

Blender [11] supporting a large database of lens designs and enabling quick generation
of new plenoptic camera setups.
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1.1. Related Work

Plenoptic Cameras: There are two primary design concepts of plenoptic cameras
which have been extensively studied and brought to market. The first, known as the
standard plenoptic camera (SPC), was described by Adelson and Wang [3] and later
commercialized by Ng [4]. It requires the microlenses to be focused at infinity, i.e., the
MLA-to-sensor separation must match the microlens focal length. Consequently, for a
scene object placed at the SPC’s focus distance, all sensor pixels behind a single microlens
effectively capture a nearly identical segment of this object, albeit from slightly varied
perspectives. This results in large angular resolution but low spatial resolution.

Later, the focused plenoptic camera (FPC) was presented by Lumsdaine and Georgiev [17]
and extended by Perwass and Wietzke [6] to feature multifocal MLAs for extended depth of
field. For an FPC, instead of directly dissecting the scene into its directional components, the
microlenses are focused at the scene’s virtual image inside the camera. This arrangement
is advantageous in maintaining a greater portion of the conventional camera’s spatial
resolution, albeit at the expense of a decrease in angular resolution compared to SPCs.

Despite the advantages of FPCs, especially when combined with multifocal MLAs, in
this work we chose to focus on SPCs due to their straightforward image processing pipeline.
More specifically, in order to show the effect of the exit pupil, the application of post-shot
refocusing is used throughout this work. While this is a possible application for an FPC,
the process involves direct [18] or indirect [19] depth estimation, which can introduce
artifacts that affect subsequent processing steps. In contrast, for a well-configured SPC
the post-shot refocusing only comprises a demultiplexing step [7] for the raw image and a
subsequent shift-and-sum procedure for the resulting sub-aperture images. The simplicity
of this pipeline reduces the quantity of artifacts resulting from complex interpolation and
optimization steps, allowing for more direct analysis of the exit pupil’s effects. It should be
noted, however, that this work is intended to be a starting point for further research which
will analyze and improve FPC calibration algorithms suffering from the same model flaws
as their SPC pendants.

SPC Calibration: The calibration of plenoptic cameras plays a crucial role in relating
the captured light field within the camera to the 3D world in front of the camera. To this
end, Dansereau et al. [7] presented a method for demultiplexing the raw image of an SPC
into a 2D array of sub-aperture images and using these for the geometric calibration. Due
to its popularity and accessibility in the form of a Matlab toolbox, this work is still being
used as a base for publications concerning the processing of SPC data. With respect to
calibration models, Zhang et al. [12] and Monteiro et al. [13] modified the ideas of [7] to
associate a plenoptic camera with an equivalent multi-camera array. Both of these works
made direct use of the decoding process proposed by Dansereau et al. [7]. Pertuz et al. [10]
followed the same approach in proposing a focus-based metric for depth estimation.

Due to the popularity of the demultiplexing process from [7], the revision of the
previous literature in Section 4 focuses on this method and the approaches based on it.
Nevertheless, there has been further work, which in part also reduces the main lens to
a thin lens, ignoring the effects of the exit pupil. One such calibration approach, which
directly uses the line features in the microlens images, is the one presented by Bok et al. [20].
Using a similar model, Zhao et al. [21] performed SPC calibration based on the plenoptic
disc features. Both Thomasen et al. [22] and Suliga and Wrona [23] directly estimated the
MLA pose and microlens pitch; however, neither related the captured light field to the
scene-side light field. Similar to the approaches related to [7], these works assume the
microlens images centers to be projections of the main lens center, i.e., the center of the
camera-side principal plane. On the other hand, Hahne et al. [8,9] described the refocusing
distance based on known main lens and MLA parameters under consideration of the exit
pupil. Further improvements to aspects of the calibration pipeline which acknowledge the
exit pupil have been presented by Schambach et al. [24], who increased the MIC detection
accuracy, and Mignard-Debise and Ihrke [25], who analyzed the effect of vignetting on
calibration models.
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Of these works, Hahne et al. [9] considered the exit pupil and its connection to
the microlens image geometry in a similar fashion to this work; however, they did not
situate this within the direct context of pre-existing calibration methods by a comparative
evaluation, nor provide an analysis of the expected errors resulting from oversimplified lens
models. In order to further validate our model, which establishes the refocusing distance in
terms of the two-plane parameterization, its equivalence to the chief ray intersection model
in [9] is formally proven in Section 4.1.

FPC Calibration: Despite this work focusing on SPCs, as explained above, there is
relevant work to be found in the related field of FPC calibration. Johannsen et al. [26]
described a metric reprojection model for FPCs incorporating a radial distortion model.
This was further enhanced by Heinze et al. [27], who included the tilt and shift of the main
lens as well as multi-focus MLAs. Further improvements to the distortion model were
presented by Zeller et al. [28]. All of these approaches are based on the reconstruction of the
virtual scene between the MLA and the main lens followed by association of these virtual
3D points with known scene points. In contrast, Noury et al. [29] proposed an approach
that works directly on the microlens images, i.e., by associating the scene points with their
projections on the sensor without the intermediate step of calculating virtual depths. This
method, however, is limited to single-focus FPCs. and models the microlenses as simple
pinholes. Nousias et al. [30], on the other hand, featured a more complete microlens model
in their work and directly included the estimation of multiple microlens focal lengths
in their approach. Wang et al. [31] presented a two-step model consisting of a forward
projection from the scene into the camera and a second projection from the virtual image to
the sensor. More recently, Labussiere et al. [32] proposed simultaneous calibration of the
different microlens types in a multi-focus plenoptic camera by incorporating defocus blur
into the features used for parameter optimization.

None of the listed methods for FPC calibration directly consider the exit pupil, and
while most of these works, all of which require the identification of MICs, incorporate a
scaling between the grid of microlens centers and the grid of MICs, this is usually a result of
projecting the main lens center, i.e., the center of the camera-side principal plane, through
the microlens centers. However, as observed by Hahne et al. [8,9] for SPCs and confirmed
in Section 5, the MICs actually result from a projection of the exit pupil’s center. Thus,
using the distance between the simplified main lens plane and the MLA for both the image
formation model and the calculation of MICs could inadvertently reduce the degrees of
freedom of the model. While this might be desirable in terms of increased stability during
parameter optimization, such reduction should be analyzed for FPC models. For reasons of
clarity and comprehensibility, we decided against including the topic of FPC calibration in
this work, and leave this for future efforts.

Lens Models and Simulation: In the domain of ray tracing-based camera simula-
tion, realistic main lens models which consider all lens components and their respective
properties have been used for over two decades, either explicitly by direct modeling,
as in Kolb et al. [33] and Wu et al. [34], or implicitly via learned black-box lens models,
as proposed in Zheng et al. [35]. Regarding plenoptic cameras, most previous works
have used oversimplified models for rendering, such as pinhole cameras or multi-camera
arrays modeling the MLA without a model for the main lens [36–38]. More recently,
Nürnberg et al. [39] as well as our own group [40] have provided simulations of plenoptic
cameras without oversimplifying the main lens. Due to this familiarity, we extended our
previous work for our synthetic experiments.

1.2. Organization

In Section 2, the general lens model and two-plane parameterization are explained first,
before deducing the refocusing model under consideration of the exit pupil. Subsequently,
Section 3 provides a formal analysis of the expected errors when dismissing the exit pupil.
In Section 4, previous works are revisited with a focus on the need for more complex lens
models. Finally, our deductions are validated with synthetic experiments in Section 5.
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2. SPC Optics
2.1. Preliminaries—Lens Models

The thin lens model describes a lens by assuming it as infinitely thin and only refracting
light at a single lens plane. The relation between the real scene and the lens image in this
model is described by the equation

1
fM

=
1
o
+

1
i

, (1)

where fM is the focal length of the lens, o is the object distance, and i is the image distance,
with both measured from the refraction plane. This concept can be extended to a thick
lens model by expanding the refraction plane into two principal planes, Hscene and Hcam,
between which a traced light ray is considered to run parallel to the optical axis [41,42].
Furthermore, a combination of thick lenses, such as the main lens of a plenoptic camera,
can again be represented as a single thick lens [42]. As visualized in Figure 2, the object
distances o and image distance i are then measured based on the positions of the principal
planes, and Equation (1) remains valid.

Hscene Hcam Exit Pupil

MLA

Sensor

0o 0 iX d

dML dMLI

Figure 2. Plenoptic camera modeled by a thick main lens combined with a thin-lens MLA. The pitch
of the microlens is described by dML, the distance between the neighboring microlens image centers
(MICs) is denoted as dMLI, X describes the distance between the exit pupil and the camera-side
principal plane, and d is the distance between Hcam and the MLA. A complete notation overview is
provided in Appendix A.

In addition to this model, it is possible to consider the exit pupil, i.e., the image of the
aperture stop viewed towards the image plane. It defines the size and location of the virtual
aperture in the optical system [42] and, as pointed out by Hahne et al. [8,9], determines
the positions of the microlens image centers (MIC) on the sensor. As empirically shown
in Section 3, the exit pupil and Hcam rarely coincide; accordingly, a systematic error can
be introduced when a plenoptic camera image is de-multiplexed based on MICs that are
incorrectly estimated under the premise that the main lens follows the thin lens model
without considering the exit pupil.

2.2. Preliminaries—Light Field Parametrization

Despite being a standard tool when working with light field data, the two-plane
parameterization as described by Levoy and Hanrahan [43] and used in various popular
works, including the work of Dansereau et al. [7] and Ng et al. [4] is reiterated in this section
for two reasons. First, the previous descriptions do not consider the exit pupil; second,
the literature is not consistent in terms of the underlying data representation. While [7]
used the raw camera image indexed by integer pixel coordinates as the basis for their
description, [4] assumed known metric coordinates for every pixel. We follow the approach
of [7] in order to facilitate the reproduction of our results.

For a given SPC following the thick lens model with an exit pupil as visualized in
Figure 2, the light field inside this camera can be parameterized using two planes: the MLA,
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which serves as virtual sensor plane, and the exit pupil plane, which can be interpreted
as a virtual lens plane. By following the decoding process of Dansereau et al. [7], the 4D
light field can be parameterized as LF(i, j, k, l), with integer indices (k, l) for the uniformly
sampled sub-aperture image and (i, j) for the pixel coordinates in that image.

The corresponding metric parameterization L̃F(s, t, u, v) describes the intensity of light
captured at the MLA plane point (s, t, d) coming from the exit plane point (u, v, X). In
accordance with Ng et al. [4,44], the distance between these two parameterization planes is
denoted as F := d − X. Note, however, that Ng et al. [4] implicitly assume X = 0, as the
main lens in their work is modeled by a thin lens. While this is approximately correct for
the two tested main lenses in [4], a Zeiss Planar T* 2/80 with X = 7.8 mm = 0.098 · fM and
a Zeiss Sonnar T* 2.8/140 with X = −4 mm = −0.029 · fM (compare [45,46]). Section 3
shows that this assumption does not hold in general.

To calculate the metric parameterization from a given integer parameterization, note
that the pixel pitch ∆ST of the virtual sensor, i.e., the step size in the ST-plane, corresponds
to the microlens pitch, i.e., ∆ST = dML; as shown in Figure 3, the step size in the virtual lens
plane, i.e., the UV-plane, can be calculated by means of the triangle equality as ∆UV =

spx ·F
fm

,
where spx and fm respectively denote the pixel size and the microlens focal length. With
these step sizes, the light field parameterized in metric coordinates (s, t, u, v) is provided by

L̃F(s, t, u, v) = LF

(
s

∆ST
,

t
∆ST

,
u

∆UV
,

v
∆UV

)
. (2)

Note that the metric coordinates (s, t, u, v) might not be integer multiples of their respective
step sizes; accordingly, querying the corresponding values from the integer parameteriza-
tion LF could require additional interpolation steps.

With the described light field parameterization, we can now reproduce the resampling
steps necessary to refocus the image by moving the virtual sensor plane while considering
the position of the exit pupil.

UV ST I J

−2

−1

0

1

2

KL

−2

−1

0

1

2

∆UV ∆ST

spx

F := d − X fm

Figure 3. Integer (red) and metric (black) two-plane parameterization of the light field. Here, spx

describes the size of a sensor pixel and fm the focal length of a microlens, which for an SPC coincides
with the distance between the MLA and sensor.

2.3. Light Field Refocusing with Exit Pupil

In order to refocus the virtual sensor image onto an object at a distance o measured
from Hscene, the virtual sensor needs to be placed at a distance i measured from Hcam
according to the thin lens Equation (1). This corresponds to a distance F′ := i − X between
the UV-plane (exit pupil) and the virtual sensor, as visualized in Figure 4. By defining the
refocusing parameter α = F′

F as in [4], the thin lens equation can be applied to deduce

α =
F′

F
=

o· fM
o− fM

− X

d − X
=

o · ( fM − X) + fM · X
(o − fM)(d − X)

. (3)
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For a given integer 4D light field LF(i, j, k, l) based on sub-aperture images, as in [7], the
relationship between the virtual sensor movement specified by α and the resulting disparity
at the original ST-plane is described by the following. While the general deduction is
similar to [4], for reproducibility the following calculations are based on integer indexing.

UV STS′T′

∆UV ∆ST

px

F′ = i − X

F = d − X

fm

s′

u

s

Figure 4. Light field refocusing via shifting of the virtual sensor, i.e., the ST-plane is moved to the
image distance i. A ray (s′, u) can be associated with a ray (s, u) by means of the triangle equality,
i.e., s = u + F

F′ (s′ − u).

As shown in Figure 4, the metric light field value L̃F′(s′, t′, u, v) for the modified sensor
plane placed at a distance F′ from the exit pupil can be calculated as follows:

L̃F′(s′, t′, u, v) = L̃F

(
u +

s′ − u
α

, v +
t′ − v

α
, u, v

)
= L̃F

(
u
(

α − 1
α

)
+

s′

α
, v
(

α − 1
α

)
+

t′

α
, u, v

)
. (4)

Ignoring the image magnification introduced by the movement of the virtual sensor, i.e., set-
ting the step size for the S′T′-plane to α · ∆ST and defining ∆ := ∆UV

∆ST
, it can be deduced

that the integer parameterization LF′(i, j, k, l) for the modified sensor plane corresponds to

LF

(
k · ∆

(
1 − 1

α

)
+ i, l · ∆

(
1 − 1

α

)
+ j, k, l

)
.

At this point, the pixel shift S between neighboring sub-aperture images required to refocus
onto the desired distance o can be calculated for a given value α as follows:

S(α) = ∆ ·
(

1 − 1
α

)
. (5)

Plugging Equation (3) into Equation (5) then yields the direct relation between the object
distance o and the disparity S as

S(o) = ∆ · o( fM − d) + fM · d
o( fM − X) + fM · X

. (6)

This model can be easily reverted to calculate the object or refocusing distance based on a
given sub-aperture image shift via

o(S) =
fM · (d · ∆ − S · X)

S · ( fM − X)− ∆( fM − d)
. (7)
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3. Error Analysis

In the following, we analyze the error that can be anticipated when ignoring the exit
pupil, i.e., when setting X = 0. First, we define the scaling between the ST and UV planes
in under this assumption as

∆̃ := ∆X=0 =
spx · d

fm · dML
. (8)

We then calculate the pixel disparity based on Equation (6) as

S̃(o) := SX=0(o) = ∆̃ · o( fM − d) + fM · d
o · fM

(9)

along with the object distance, which can be simplified to

õ(S) := oX=0(S) =
fM · d · ∆̃

S · fM − ∆̃( fM − d)
. (10)

The relative error of the shift is then calculated by

ERRS(o) :=
S̃(o)− S(o)

S(o)
= X · d · fM − o(d − fM)

o · fM(d − X)
. (11)

By describing o as a multiple of the focus distance o f , i.e., o = λ · o f , we obtain

ERRS(λ) := ERRS(λ · o f ) =
X(λ − 1)

λo f ·
(

X
d − 1

) . (12)

For the error of the object or refocusing distance, two cases are analyzed. First, it is assumed
that the correct shift S corresponding to the ground truth o is given; in a second step, the
oversimplified model of Equation (10) is used to calculate the object distance. This error
can be found in applications measuring the correct shift, e.g., by repeatedly refocusing an
image and subsequently using the incorrect object distance calculation in order to estimate
the associated metric distances in the scene. This error can be formulated as

ERRõ(o) :=
õ(S(o))− o

o
= −

X(d − fM) + o
o f

X( fM − d) + X fMd
(

1
o f

− 1
o

)
fM(d − X) + o

o f
X( fM − d) + X fMd 1

o f

. (13)

Using o = λ · o f again, we obtain

ERRõ(λ) := ERRõ(λo f ) =
X(λ − 1)2

λo f

(
1 − X

d

)
− X(λ − 1)λ

. (14)

The second case assumes an incorrectly calculated shift S based on Equation (9), which is
subsequently used to refocus an image with a refocusing algorithm complying with the
correct object distance estimation in Equation (7). This type of error is provided by

ERRS̃(o) :=
o(S̃(o))− o

o
=

fM∆ − fMX∆̃
(

1
o − 1

o f

)
∆̃
(

1 − o
o f

)
( fM − X) + ∆ fM

o
o f

− 1. (15)

After substituting o = λ · o f , the error can be formulated by

ERRS̃(λ) := ERRS̃(λo f ) =
X(λ − 1)2

λo f

(
X
fM

− 1
)
− λ2X

. (16)
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Now, assuming a camera with a focal length of fM = 100 mm focused at a finite distance,
Figure 5 shows exemplary error values for different values of X relative to the focal length.

0.5 1 1.5

0

0.2

0.4

0.6

λ

ERRS(λ)

0.5 1 1.5

0

0.2

0.4

λ

ERRõ(λ)

0.5 1 1.5

−0.4

−0.2

0

λ

ERRS̃(λ)

X = 0.7 fM
X = 0.35 fM
X = 0
X = −0.35 fM
X = −0.7 fM

Figure 5. Left: Relative shift error based on λ = o
o f

. Middle/Right: The two cases of relative object
distance errors for an assumed camera focused at a finite distance which is met for a relative distance
of o

o f
= 1. Negative error values indicate an underestimation of the ground truth value, while positive

errors represent an overestimation.

The visualization shows that all errors diverge for λ → 0 with a rate depending on
the positional relationship between the exit pupil and the principal plane Hcam. Beyond
the focus distance at λ = 1, the object errors again diverge, while the shift error converges
according to ERRS(λ) −→

λ→∞
X

o f (X/d−1) . Note that these graphs present an ideal refocusing

case free of aliasing artifacts and limiting optical properties such as the depth of field; hence,
our later experiments only verify a section of these results within the respective physical
and image processing limits.

In summary, these examples show a large deviation between the estimated refocusing
distances in models with and without consideration of the exit pupil whenever there is a
non-zero distance X between the exit pupil and Hcam. This leads to the question of how
prevalent a significant X ̸= 0 is in off-the-shelf main lenses. To answer this question, the
data of 866 DSLR lenses listed by Claff [47] were collected, then X and fM for each lens
were calculated via paraxial ray tracing. The resulting data in Figure 6 show a nearly
linear connection between the focal length of a lens and the distance X, with a Pearson
correlation coefficient of 0.8994. Fitting a linear model to these data results in the non-zero
function X( fM) = 0.7108 · fM − 56.5546 with coefficient of determination R2 = 0.8089.
Further examination shows that only a small subset, 62 of the 866 lenses, exhibits values
for X below 5% of the focal length, i.e., |X| < 0.05 fM. On the other hand, for the other
627 lenses the deviation is larger than |X| > 0.25 fM, and 444 lenses even have values
|X| > 0.5 fM. Overall, these data show that the assumption of X ≈ 0 is usually not met in
reality. Therefore, the exit pupil should be considered when relating the camera-side light
field to the scene’s light field.

8 15 25 50 100 200 400
−150

−75
0

75

150

225

300

Main lens focal length fM in mm

X
in

m
m

X ≤ − fM

X = −0.5 fM

X = 0

X = 0.5 fM

X ≥ fM

Figure 6. Distances X between the exit pupil and principal plane Hcam for 866 lenses [47] sorted
by focal length. The black line represents the linear model fitted to the data, while the colors of the
datapoints indicate the relationship X/ fM. Note that the horizontal axis uses logarithmic scaling due
to the large number of lenses with a focal length below 100 mm.
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4. Revisiting SPC Methods

In this section, several previous works are examined with respect to the exit pupil’s
role in the respective model deductions.

4.1. Equivalent Ray Model

First, the equivalence between the refocusing model in Equation (7) and the ray
intersection model presented by Hahne et al. [9] is proven. Instead of basing the model
on the decoding scheme of Dansereau et al. [7] in [9], an approach building upon the
intersection of chief rays is presented in order to calculate the refocusing distance for a
resampling of the raw plenoptic camera image. A comprehensive notation transfer into our
setup is provided in Appendix B.1.

As depicted in Figure 7, the basic idea of [9] is to select two pixels on the sensor
that show scene points from the desired focus plane, then trace rays from these through
the respective microlens centers. The resulting camera-side intersection determines the
distance of the virtual image inside the camera from the main lens; accordingly, the thin
lens equation can be applied in order to calculate the corresponding object or refocusing
distance. Without loss of generality, the following calculations assume an MLA with
one microlens center located on the optical axis of the main lens.

Hscene Hcam Exit Pupil Sensor

0o 0 iX d

Ŝ

dMLI

fmzi

dML

MLA

Figure 7. Image formation (light blue) for an object point located at distance o from Hscene. The image
of this point, located at distance i from Hcam, is seen by multiple microlenses, and its projections onto
the sensor have a metric disparity of Ŝ. In order to determine the object distance o, Hahne et al. [9]
proposed using intersecting ray functions (red) from two of the images and transferring the resulting
image distance i to the scene via the thin lens equation.

For a given a sub-aperture image shift S in a pixel, as depicted in Section 2.3, this
translates to a metric pixel disparity Ŝ on the sensor by

Ŝ = − spx

S
, (17)

with the sign flip resulting from the difference in conventions between this work and [9].
Under the premise of a well-configured plenoptic camera with a regular microlens grid, any
two pixels from neighboring microlenses with a disparity of Ŝ can be chosen to calculate
the image distance. To simplify the calculations, the first ray is chosen to run along the
optical axis, as shown in Figure 7, and the second ray is based on the pixel at sensor position
dMLI + Ŝ passing through the neighboring microlens center. According to [9] (compare
Appendix B.1) this leads to two ray functions

f (z) = 0 and f̃ (z) =
dML − (dMLI + Ŝ)

fm
· z + dML (18)

which intersect at
zi = − dML · fm

dML − (dMLI + Ŝ)
. (19)
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The crucial element that sets [9] apart from the works reviewed in the following sections is
the correct calculation of the microlens image center distance dMLI based on the exit pupil
(compare the calculation of uc,j in Table A5) via

dMLI =
dML

d − X
· fm + dML, (20)

which yields

zi = − dML fm

dML − ( dML
d−X · fm + dML + Ŝ)

=
(d − X)dML fm

(d − X)Ŝ + fmdML
. (21)

This intersection results in the image distance i = d − zi measured from Hcam, and can be
used to calculate the object distance by the thin lens equation via

o =

(
1
fM

− 1
i

)−1
=

(
1
fM

− 1
d − zi

)−1

=
fM · d − fM · zi
(d − fM)− zi

=
fM · d · ((d − X)Ŝ + fmdML)− fM · (d − X)dML fm

(d − fM) · ((d − X)Ŝ + fmdML)− (d − X)dML fm

=
fM · d · d−X

fmdML
Ŝ + fMX

(d − fM) · d−X
fmdML

Ŝ − fM + X

=
fM · (d · ∆ − S · X)

S · ( fM − X)− ∆( fM − d)
, (22)

where Equation (17) and the definition ∆ := ∆UV
∆ST

=
spx(d−X)

fmdML
from Section 2 are used

in the last step. This equation equals the previously deduced Equation (7), proving the
equivalence of both models.

4.2. Light Field Decoding and SPC Calibration

This section revisits the popular decoding and calibration theme presented by
Dansereau et al. [7]. In that work, the raw plenoptic camera image is first de-multiplexed
into an integer-indexed two-plane parameterization L(i, j, k, l). These indices are then
transformed into metric rays and propagated through the main lens. The combination of
these steps yields an intrinsics matrix

s
t
u
v
1

 =


H1,1 0 H1, 3 0 H1,5

0 H2,2 0 H2,4 H2,5
H3,1 0 H3, 3 0 H3,5

0 H4,2 0 H4,4 H4,5
0 0 0 0 1

 ·


i
j
k
l
1

 (23)

associating the integer indices directly with metric coordinates (s, t, u, v) for the scene-side
light field. Note that these do not correspond to the equally named coordinates in Section 2
which describe the camera-side light field coordinates before propagating them through
the main lens.

The relevant step with respect to the gap between the exit pupil and the principal plane
in this process is the division of the integer indices by the respective spatial frequencies of
the pixels and microlenses via the matrix Hθ

abs. As explained in Section 2.1, the grid of MICs
corresponds to the scaled grid of microlens centers. Accordingly, the sampling rate for the
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microlens plane has to be scaled down, or equivalently, the pixel sampling rate has to be
scaled up by the inverse factor. Dansereau et al. [7] acknowledged this fact and chose the
second option by introducing a scaling factor, which in our notation (compare Appendix B.2)
corresponds to

Mproj =

(
1 +

fm

d

)−1
. (24)

This scaling, however, assumes a projection center at the main lens principal plane. Using
the exit pupil instead, the correct rescaling is provided by

Mproj =

(
1 +

fm

d − X

)−1
, (25)

as visualized in Figure 8.

STUV

0
∆ST dMLI

F := d − X fm

Figure 8. The central sub-aperture image consists of the MICs, i.e., the image of the aperture center
viewed across all microlenses. These MICs originate from the center of the UV plane, i.e., the exit
pupil; accordingly, the distance between neighboring MICs is provided by the triangle equality via
dMLI = ∆ST · ( fm + F)/F = ∆ST · (1 + fm/(d − X)).

Fortunately, due to the overall formulation of the intrinsics as an end-to-end ray
transformation, this slight change is not relevant for the calibration results, as neither fm
nor d is directly estimated. Instead, the factor Mproj contributes to the intrinsic variables
H1,1 to H4,4, and repeating the deduction of H with the correct scaling leads to the same
general form for the intrinsics matrix as in Equation (23).

Similar cases of general parameters compensating for the model inaccuracies have
been presented by Monteiro et al. [13] and Zhang et al. [12]. Both made use of the same
decoding process as [7] and built upon the idea of directly relating the camera-side and
scene light field. Monteiro et al. [13] slightly reduced the intrinsics matrix shown above,
and subsequently used it to create an equivalent array of cameras for the scene-side light
field. Zhang et al. [12] followed a similar approach by first relating the de-multiplexed light
field in the form of sub-aperture images to the scene-side light field metric, which they then
based all of their further calculations on. In both of these works, the interpretation of the
intrinsic matrix parameters is irrelevant and they are not directly used to reconstruct the
main lens properties; accordingly, these methods do not require any reformulation using a
more complex main lens model.

Despite this, it is important to point out the inaccuracy in [7], as several related
works only make use of the proposed decoding process and assume that a two-plane
parameterization is received with a plane distance of d instead of d − X, as shown by the
examples in the following section.

4.3. Depth Reconstruction

One such case is presented by Pertuz et al. [10] and repeated in the follow-up work by
Van Duong et al. [14]. In this work, a model relating the sub-aperture image shift to the
object distance was deduced, which translates into our notation (compare Appendix B.3) as
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o(ρ) = o f

(
1 − a0 · ρ

1 − a1 · ρ

)
(26)

with system-dependent parameters

a0 =
fm · dML

spx · d
and a1 =

o f · a0

fM
(27)

and shift parameter

ρ =
spx · (F − F′)

fm · dML
. (28)

There are two problems in the deduction of this model. First, the shift parameter ρ is
not correctly deduced under the premise of light field data decoded by the method of
Dansereau et al. [7]; second, the exit pupil is ignored. In the following, a corrected version
is presented, which additionally explains how these two problems nearly neutralize each
other and lead to the same general model, albeit with different parameter interpretations.

First, the incorrect shift parameter ρ is examined. In [10], this parameter is described
as the pixel disparity between neighboring sub-aperture images obtained via the decoding
process from Dansereau et al. [7], and as such should correspond to our shift parameter S̃,
which also ignores the exit pupil. However, due to different conventions, ρ is positive when
focusing to a distance larger than the focus distance, whereas S̃ is negative in that case
(compare Equation (5) for α < 1). Accordingly, ρ should equal −S̃; however, transforming
these parameters into a common notation leads to

−S̃(o) = ∆̃ · o( fM − d) + fM · d
−o · fM

=
spx · d

fm · dML
· o( fM − d) + fM · d

−o · fM

̸= spx · d
fm · dML

· o( fM − d) + fM · d
d( fM − o)

(29)

=
spx · (d − o· fM

o− fM
)

fm · dML

=
spx · (F − F′)

fm · dML
= ρ.

The reason for this discrepancy is the implicit incorrect assumption in [10] that the grid of
microlens image centers equals the grid of microlens centers, i.e., dML = dMLI. While a light
field in general could be reparametrized with this step size in the ST plane, this requires
exact knowledge of the camera and MLA geometry, which is usually unknown and not
considered in the decoding process of [7]. Using the correct shift parameter for light field
data by following [7] instead and rearranging the corresponding Equation (10) results in

õ(S̃) =
fM · d · ∆̃

S̃ · fM − ∆̃( fM − d)

= o f

(
(d − fM) · ∆̃

S̃ · fM − ∆̃( fM − d)

)

= o f

 1

1 +
(

fM
∆̃(d− fM)

)
· S̃

 = o f

 1

1 −
( o f · fm ·dML

d2·spx

)
· (−S̃)

. (30)

While this correction of Equation (26) continues to ignore the exit pupil, just as [10] does,
it is considerably simpler than the original model, as only a single system-dependent

parameter
o f · fm ·dML

d2·spx
is present instead of the two parameters a0 and a1 in Equation (26).
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Finally, by introducing a non-zero distance X and thereby using o and S instead of õ
and S̃, the full model can be deduced from Equation (7) as

o(S) =
fM · (d · ∆ − S · X)

S · ( fM − X)− ∆( fM − d)

= o f

(
(d − fM) · ( fM · d · ∆ − fM · X · (−S))
( fM · d) · (∆(d − fM)− (X − fM) · S)

)

= o f

 fM · d · ∆ − fM · X · S

fM · d · (∆ − X− fM
d− fM

· S)


= o f

 1 −
(

X
∆·d

)
· S

1 −
(

X− fM
∆·(d− fM)

)
· S

. (31)

To align this model with the inverted shift direction of [10], we define

o f

 1 −
(

X
∆·d

)
· S

1 −
(

X− fM
∆·(d− fM)

)
· S

 = o f

 1 −
(
−X
∆·d

)
· (−S)

1 −
(

fM−X
∆·(d− fM)

)
· (−S)

 =: o f

(
1 − a0 · (−S)
1 − a1 · (−S)

)
. (32)

This model has the same general form as Equation (26) proposed by Pertuz et al. [10], which
explains the reasonable experimental results in that work. Nevertheless, the interpretation
of the system-dependent parameters a0 and a1 as provided in [10] and repeated in [14]
is incorrect, which is verified by experiment (V) in the following section. This different
interpretation could lead to problems when the model needs to be fitted to data and the
initial parameter values are based on the incorrect direct calculation.

Overall, the results of Pertuz et al. [10] are not entirely incorrect; however, the light
field representation based on [7] simply does not match the implicit assumptions used
for the model deduction. More specifically, the main problem of [10] is the definition of
the shift parameter ρ for light field data, which is decoded similarly to [7] but is based
on known microlens centers instead of MICs. While the light field could theoretically be
reparametrized using the parallel projections of the microlens centers onto the sensor, this
would require exact knowledge of the SPC intrinsics, namely, the parameters of the MLA
and its placement relative to the main lens and sensor.

5. Evaluation
5.1. Simulation Environment

Because SPCs with exchangeable lenses were not commercially available at the time of
writing and custom-built solutions are costly as well as prone to misalignment of the optical
components, we resorted to synthetic experiments via extension of the ray tracing solution
we provided in [40]. Our publicly available [16], updated version of the Blender [11] add-on
expands the original simulation in the following aspects:

• Simulation of aspherical lenses and zoom lenses.
• Configurable MLA pose, thickness, and IOR.
• Automatic focusing with lens group movement based on paraxial approximations.
• Integration of Claff’s lens collection [47] and a collection of sensor presets.
• Assisted plenoptic camera (SPC and FPC) configuration based on the ideas of [48].

This simulation setup facilitates quick generation of a broad range of plenoptic cam-
eras, such as the example shown in Figure 9, and is used in the following to validate the
formal analysis from Sections 2.3, 3, and 4.3.
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Figure 9. Cross-section and rendering of an example evaluation setup. A fully modeled lens was
combined with a two-plane MLA model and a sensor in order simulate a plenoptic camera via ray
tracing. Calibration patterns were placed at different distances in front of this setup to verify the
analytical models. Note that the housing of the camera and lens were removed for the purpose of
visualization. The ISO 12233 pattern [49] is used with the permission of Cornell University.

5.2. Experiments

For the validation, the five lenses listed in Table 1 were selected from the database [47].
While the first lens presents the ideal case of X ≈ 0 mm, i.e., with the exit pupil coinciding
with the camera-side principal plane, the remaining four lenses present interesting cases
with varying relationships between X and the focal lengths fM of the lenses.

Table 1. Overview of the simulated main lenses and their properties in the finite and infinite focus
setup. Note that the focal length of a lens can vary in different setups due to the lens group movements
involved in refocus or zoom operations.

Finite Focus Infinite Focus

Lens Model fM (mm) X (mm) X
fM

Focus
Dist. (mm) fM (mm) X (mm) X

fM

Rodenstock
Sironar-N 100mm F5.6 99.998 0.194 0.002 500.0 99.998 0.194 0.002

Zeiss
Batis 85mm F1.8 82.047 40.652 0.496 500.0 82.860 39.573 0.478

Ricoh smc Pentax-A
200mm F4 Macro ED 167.994 99.908 0.595 500.0 173.115 91.854 0.531

Canon
EF 85mm F1.8 USM 84.998 −28.938 −0.341 300.0 84.998 −28.938 −0.341

Olympus Zuiko
Auto-Zoom 85–250mm F5 85.120 −60.219 −0.708 300.0 85.004 −60.308 −0.709

Each of these lenses was used in two SPC configurations: one with a finite focus dis-
tance o f < ∞ and another focused at infinity o f = ∞. To this end, the MLA placement with
respect to the main lens, i.e., the distance d between the MLA and the camera-side principal

plane of the main lens, was calculated using the thin lens Equation (1), as d =
fM ·o f

o f − fM
for

the finite case, and simply set to d = fM for o f = ∞. The remaining microlens parameters
were automatically initialized using the main lens and sensor properties so as to fulfill
the following two constraints. First, the microlens f-number needs to match that of the
main lens in order to optimally cover the sensor area [4]; second, a predefined number
of 129 × 129 microlens images should be visible on the sensor in order to guarantee this
resolution for the sub-aperture images. The resulting parameters were then fine-tuned by
hand to accommodate the approximating nature of the f-number constraint and guarantee
that the MICs coincided with the centers of the sensor pixels. This optimal MIC position-
ing has two effects. First, it renders the resampling during the decoding process of [7]
unnecessary. After normalizing the raw images with white images to get rid of vignetting
effects [50], the sub-aperture images in this setup can be directly extracted by combining
the same relative sensor pixels from each microlens image [4]. Second, the evaluation can
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then concentrate on validating the refocusing itself instead of additionally dealing with
compensating for interpolation artifacts from the decoding process. The full experimental
setups can be found in Appendix D. Five experiments were performed with each of the ten
following setups.

(I) MICs and Exit Pupil: The exit pupil as origin of the MICs is verified by first
tracing ray bundles from the main lens aperture center through the main lens and MLA
onto the sensor. This results in a set of sensor hits for every microlens. Due to the small
variance within such a set, the mean is considered to represent the ground truth position of
the microlens image center. In a second step, rays are traced from these sensor positions
through the corresponding microlens centers and the convergence location of the resulting
ray bundle is calculated in two ways: first by performing a line search along the optical
axis for the minimum blur spot position of the ray bundle, and second based on the rays’
intersections with the optical axis. For these intersections, the mean and variance are
calculated and presented alongside the minimum blur spot position. This whole process is
visualized in Figure 10.

Aperture Stop

MLA

Sensor

Hcam
Exit Pupil

0 X

Figure 10. Experiment (I): The two steps of the MIC/exit pupil verification visualized for the Zeiss
Batis 85mm F1.8. Rays (light gray) are traced from the main lens aperture center through the main
lens and MLA onto the sensor. The resulting means of the sensor hits per microlens represent the
MICs. The exit pupil as the approximate source of these points is verified by backwards tracing of the
rays (blue/green) from the MICs through the respective microlenses and calculation of the minimum
blur spot position along with the mean and variance of intersections along the optical axis.

(II) o and S: A calibration pattern (more specifically, a Siemens star with four spokes)
is placed at various distances in front of the camera. After demultiplexing the plenoptic
camera image, the sub-aperture image shift S required to focus onto the given target
distance o is measured. This is accomplished via line search, i.e., by repeatedly refocusing
the image with a simple shift-and-sum algorithm [4] and calculating the sharpness of the
refocused image. Here, the variance of the Laplacian [51] is used as the metric for image
sharpness and the shift value with the highest score is considered the optimum. This
procedure results in tuples of ground truth distances o and measured shifts S, which are
then used to verify the connection S(o) as formally described in Equation (6).

To validate the inverted connection o(S) in Equation (7), all images are refocused for
a given set of shift values. For each of these shift values, the object distance associated
with the best focused image is considered the measured object distance for the respective
shift value. The resulting tuples of preset shifts and measured distances are then used
to verify o(S).

(III) ERRõ Validation: The data from experiment (II) are further used to verify the
error model ERRõ. In detail, the measured shift S for a known target distance o is used
along with Equation (10) to approximate õ(S) and calculate the measured relative error
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according to Equation (13). This error is then compared to the expected error obtained by
directly calculating S based on the camera’s properties instead of measuring it.

(IV) ERRS̃ Validation: In addition, the images of (II) can be used to verify the error
model ERRS̃ presented in Section 3. First, for every target distance o, the incorrect shift
S̃(o) is calculated based on the assumption X = 0 as in Equation (9), and the images of the
patterns at different positions are all refocused with this parameter. The target distance
corresponding to the sharpest of the refocused images approximates o(S̃), and is then used
to measure ERRS̃ as in Equation (15). Again, the measured values are compared to the
errors obtained by directly calculating o(S̃).

Note that instead of verifying ERRõ and ERRS̃, Equations (9) and (10) and the
shift error model in Equation (11) could be directly validated with the data measured
and calculated in experiments (III) and (IV). However, these equations do not include a
comparison between the incorrect estimations and the ground truth refocusing distances.
Therefore, the indirect validation of those models by means of the resulting refocusing
errors was preferred.

(V) Validation of Section 4.3: As analyzed in that section, the overall formulation of
the model presented by Pertuz et al. [10] is correct; however, the model parameters have
a different interpretation under the assumption of light field data decoded following the
method from [7]. To verify the corrected model, the parameters a0 and a1 were first calcu-
lated based on the formula of Pertuz [10], then according to our model from Section 4.3,
and finally fitted to the data of (II), i.e., the set of shift–distance pairs with measured shifts
and ground truth target distances. For this parameter fitting, a grid search for the best
parameters by means of the RMSE was performed with a grid explicitly containing both
directly calculated parameter sets.

5.3. Results and Discussion

(I) As shown in Figure 11, the ray bundle consisting of rays running from the calculated
ground truth MICs through the microlens centers generally converge towards the exit pupil
in all setups. The closer the ray origins are to the optical axis (for example, compare the
inner 25% of rays shown in Figure 11), the closer the minimum blur spot is located to
the exit pupil. The deviations for larger sets of rays including the outermost MICs, as
especially visible for the Canon setups, can be explained by the dependence of the exit
pupil’s location on the viewing angle. Similar to the curved focal plane in lenses with a
significant non-zero Petzval field curvature, the exit pupil cannot be well approximated
by a plane in certain setups, and consequently affects the MIC grid on the sensor in a
nonlinear fashion [42]. This is a clear limitation of our model, which is built upon paraxial
approximations. Nevertheless, considering that the origin of the MICs is located close
to the exit pupil plane even in extreme cases such as the outermost microlenses in the
Canon setups, these results again confirm the observation of Hahne et al. [8], and justify
the recommendation to examine the necessity of including the exit pupil in the lens model.

(II) The connection between the focus distance o and the shift S as described by
Equation (6) is verified by the measurements presented in Figure 12. The mean of the
absolute differences |S(o)measured − S(o)GT | between the measured and directly calculated
ground truth shift values across all ten setups is 0.008 px, with a variance of 0.0026 px.
The worst single setup is the finitely focused Olympus setup, with a mean of absolute
differences of 0.04 px and a variance of 0.025 px. These values are in the range of expected
inaccuracies resulting from the image processing methods involved; in particular, the
interpolation steps required by the shift-and-sum refocusing [4], as well as the rather
simple (de)focus measure, which is prone to interference errors, are limiting factors that
prevent higher accuracy.
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Figure 11. Results of Experiment (I). The orange markers indicate the locations of the exit pupils on
the optical axis (horizontal, dotted line) with respect to the respective principal planes (Hcam). The
black markers show the mean and variance of the intersection points between the optical axis and the
rays traced back from the MICs through the microlens centers. The colored functions show the blur
spot sizes for different subsets of these ray bundles close to the exit pupil (compare Figure 10). These
subsets contain the respective portion of rays from the bundle which are closest to the optical axis.
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Figure 12. Results of Experiment (II): Verification of the model S(o) according to Equation (6). The
datapoints represent measured shift values for the respective object distances, while the underlying
lines represent the expected directly calculated values. Left: The error for the setups with finite focus
based on the relative object distance o

o f
. Right: The error for setups focused at infinity.

A similar situation is observable in the inverse case, i.e., for the model o(S) from
Equation (7), as presented in Figure 13. Due to the wide range of target distances, in this
case the relative absolute differences |o(S)measured−o(S)GT |

o(S)GT
are calculated to quantify the results

from Figure 13. For the finite setups, the mean of these relative absolute differences is 0.13%,
with a variance of 2 · 10−5%, while in the infinite cases the overall mean is 0.72% with
a variance of 0.01%. Here, the infinitely focused Zeiss setup has the worst performance,
with a relative absolute difference mean of 0.9% and a variance of 0.004%. The worse
performance of the infinitely focused setups is a consequence of the smaller range of shift
values representing a larger refocusing range (compare Figure 13), resulting in greater
susceptibility to small shift changes. Nevertheless, the overall performance again confirms
the model o(S) within the constraints posed by the involved image processing steps.
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Figure 13. Results of Experiment (II): Verification of the model o(S)) according to Equation (7). The
datapoints represent measured focus distance values for the respective shifts and the underlying
lines represent the expected directly calculated values.

(III) The results of the ERRõ verification experiment are shown in Figure 14. The
graphs again show the error based on measurements compared to the directly calculated
ground truth error based on the error models presented in Section 3.

0.5 1 1.5 2
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ERRõ(λ)
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Figure 14. Results of Experiment (III): Relative object distance error resulting from a correctly
estimated shift with incorrect object distance estimation based on the assumption that X = 0. The
thick lines indicate the predicted ground truth error based on Equations (13) and (14), with the
points indicating the measurements. Left: The error for the setups with finite focus. To provide a
comparative visualization of the different target distance ranges, the results are shown based on the
relative object distance λ = o

o f
. Right: The error for the setups focused at infinity.

The mean of the absolute differences between the measured and calculated error
values is 0.003, with a variance of 10−5, which validates our models within the limitations
of only the accuracy of the image processing methods and the optical properties of the
chosen lenses. More specifically, the small deviations from the expected values, which
are present even in the baseline case for the Rodenstock lens, can be explained as due to
the interpolation operations required in Experiment (II) by the shift-and-sum refocusing
algorithm [4] for non-integer shift values. The larger deviation visible at close range for
the Olympus lens with finite focus distance is a result of the optical limits of this lens,
which can be explained as follows. A single sub-aperture image contains one pixel per
microlens; hence, such an image can be considered sharp if the calibration target is imaged
onto the MLA with all blur spot sizes being smaller than the microlens diameter dML. For
the Olympus lens, however, these blur spot sizes increase more drastically at close range
than those of the other lenses, leading to severe defocus blur even in the sub-aperture
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images. This can produce interference artifacts during the refocusing, leading in turn to
fluctuating contrast measurements. Because the refocus distance o is determined by these
measurements, this affects the error calculated by õ(S(o))−o

o in Equation (13).
(IV) Experiment (III) validated the error model in the case of a correctly estimated

shift combined with an oversimplified distance estimator. Figure 15 shows that the inverse
problem of an incorrectly calculated shift with the shift-and-sum refocusing is modeled
correctly as well. The mean of absolute differences between the measured and directly
calculated error values is 0.004, with a variance of 2.47 · 10−5.

0.5 1 1.5 2
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−0.1

0
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Relative object distance λ (finite focus)

ERRS̃(λ)

0 1000 2000 3000
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ERRS̃(o)

Rodenstock
Zeiss
Ricoh
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Olympus

Figure 15. Results of Experiment (IV): Relative object distance error resulting from an incorrectly
calculated shift ignoring the exit pupil in combination with a correct object distance estimation.
The thick lines indicate the predicted ground truth error based on Equations (15) and (16), with the
points indicating the measurements. Left: The error for the setups with finite focus. To provide a
comparative visualization, the results are shown based on the relative object distance o

o f
, i.e., the

finite focus distance for the respective setups is met at o
o f

= 1. Right: The error for the setups focused
at infinity.

Overall, Experiments (III) and (IV) confirm the formal deductions in Section 3, and
again justify our warning to mind the exit pupil when modeling a standard plenoptic
camera. However, the results also hint at further minor optical or algorithmic aspects
not being accounted for. In all cases, the mean of the absolute differences between the
measured values and the ground truth model is up to two orders of magnitude larger than
the respective variance. This is the result of nearly constant over- or underestimation, and
could indicate a systematic error, which could be caused by, e.g., the refocusing model
being limited to paraxial calculations.

(V) Regarding the correction of the model from [10] in Section 4.3, the results presented
in Table 2 show that the corrected model appropriately describes the connection between
the refocusing distance and the sub-aperture image shift. In all setups, the RMSE of
our directly calculated model was within 1.75 mm of the RMSE of the fitted model. In
addition, the fitted parameters are approximated well by the direct calculation with our
model. On the other hand, the model in [10] can be regarded as incorrect for this light field
parameterization, with one exception: the parameter a1 in the setups focused at infinity is
in general correct, which can be explained as follows. Neither the original model of [10]
nor our correction directly considers the case o f = ∞; instead, a large focus distance of
o f = 106 m is used as an approximation in both cases. For such a focus distance, the
distance d between the main lens and the MLA is close to the focal distance of the main
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lens, i.e., d = fM + ϵ for some small value ϵ > 0. With this formulation, the correctness of
a1 in the infinite cases can formally be explained by

a1,Pertuz

a1,our
=

(o f · a0,Pertuz

fM

)
·
(

∆(d − fM)

fM − X

)
=

o f · fm ·dML
spx ·d

fM
·

spx ·(d−X)
fm ·dML

· (d − fM)

fM − X

= o f ·
d − fM

d fM︸ ︷︷ ︸
=1/o f

· d − X
fM − X

=
fM + ϵ − X

fM − X
= 1 +

ϵ

fM − X
≈ 1. (33)

Table 2. Results of Experiment (V): Model parameters and the resulting RMSE in mm for the ten SPC
setups. The parameters for our method and that of Pertuz et al. from [10] were directly calculated
based on the known optical properties. The fitted parameter sets were acquired via grid search and
subsequent local optimization to fit the model to the data from Experiment (II).

Pertuz et al. [10] Ours (Equation (32)) Fitted

Setup a0 a1 RMSE a0 a1 RMSE a0 a1 RMSE

Rodens. 0.0927 0.4633 21.03 −0.00014 0.3705 0.64 −0.00038 0.36951 0.49

Zeiss 0.1853 1.1294 28.05 −0.13102 0.81304 1.51 −0.13109 0.81361 1.51

Ricoh 0.1140 0.3391 89.77 −0.07435 0.15079 0.52 −0.07403 0.15111 0.51

Canon 0.1341 0.4733 45.50 0.02630 0.36553 0.74 0.025547 0.36568 0.59

Olympus 0.0674 0.2376 37.49 0.02267 0.19286 1.12 0.0213 0.19146 0.62

Rodens.∞ 0.0927 55.588 96.87 −0.00018 55.495 7.19 0.00198 55.625 6.83

Zeiss∞ 0.1070 322.73 153.30 −0.09773 322.53 9.67 −0.08574 323.61 8.35

Ricoh∞ 0.0635 366.78 364.78 −0.07175 366.65 6.76 −0.06887 367.54 5.03

Canon∞ 0.1458 1715.1 67.40 0.03702 1715 10.26 0.04576 1724.1 8.69

Olympus∞ 0.1370 96.683 46.52 0.05680 96.603 8.23 0.06014 96.631 8.07

6. Conclusion and Limitations

Overall, this work shows that the exit pupil can play a crucial role when modeling
the relation between the camera-side and scene-side light fields. The connection between
sub-aperture image shift and refocusing distance is derived analogously to previous work
but with the additional consideration of an exit pupil that does not coincide with the
principal plane of the main lens. Based on this deduction, two error models for the relative
refocusing distance are created and validated. A subsequent review of previous work
shows that a sufficiently general formulation of the SPC calibration model in most methods
absorbs these errors, albeit leading to an incorrect interpretation of the model parameters.
As an example, a correction of the work of Pertuz et al. [10] is presented and validated.

Nevertheless, despite the good evaluation results, there are several limitations to this
work. First of all, the experiments were performed on simulated data. While the ray tracing-
based lens simulation has been verified to exhibit the optical properties stated in the respective
lens patents, i.e., aberration and distortion measurement results from the patents could be
reproduced, there still is a gap between simulation and reality. On one hand, the specified lens
parameters could differ from the final production lenses due to manufacturing inaccuracies or
even deliberate parameter obfuscation by the lens manufacturer to hide specific lens details.
On the other hand, the used framework provided by Blender [11] does not include wave
optic effects such as diffraction [52,53]. Without these effects, the simulated optics are not
diffraction-limited, and might produce images that are sharper than their real pendants.

Further limitations concern the formal lens model used for the error deduction. First, the
microlenses in our model are still formally regarded as thin lenses. While Hahne et al. [9] used
a thick lens model with explicit microlens principal planes, it was decided to leave this aspect
out of our theoretical discussion for reasons of clarity and comprehensibility. However, the
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microlens thickness was factored in while performing the experiments, and Appendix C shows
that an extended model does not change the equations deduced in Sections 2 and 3.

Another limitation, which does affect the validity of these equations, is the restriction
to paraxial models, more specifically the repeated use of the thin lens equation 1 in various
calculations as well as fixed positions for the principal planes and exit pupils. The thin lens
equation describes the relation between the object distance, the image distance, and the
focal length of the lens, and is usually only valid along the optical axis. As the distance
from this axis grows, third-order aberrations such as Petzval field curvature, i.e., a curved
focus surface, can affect the refocusing distance [42]. Furthermore, as seen for the Canon
lens evaluated in Experiment (I), the position of the exit pupil might vary depending on
the viewing angle, leading to a reduction in the applicability of the deduced models.

Further work on the listed limitations is not expected to significantly alter the presented
results, as these are already within the expected accuracy bounds set by the involved image
processing steps. Instead, future work could target the second type of plenoptic cameras,
namely, FPCs, for which a multitude of different calibration methods exists, and which also
differ in their assumed lens models and could benefit from minding the gap between the
principal plane and exit pupil.
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Appendix A. Notation

Table A1. Camera Parameter notation.

Parameter Description

fM Main lens focal length
Hscene Scene-side principal plane of the main lens
Hcam Camera-side principal plane of the main lens

X Signed distance between Hcam and the exit pupil
measured along the optical axis

fm Microlens focal length
HML

scene Scene-side principal plane of a microlens
HML

cam Camera-side principal plane of a microlens
o Object distance measured from Hscene
i Image distance measured from Hcam

o f Focus distance

d Distance between the MLA’s HML
scene

and the main lens Hcam

dML Microlens pitch
spx Pixel pitch, i.e., edge length of a square sensor pixel

Table A2. Light field parametrization notation.

Parameter Description

F Distance between UV and ST plane
∆UV Step size in the virtual lens plane
∆ST Pixel pitch on the virtual sensor

∆ Scaling between the UV and ST step sizes, i.e., ∆ = ∆UV/∆ST
LF Integer indexed 4D light field

i, j, k, l Integer light field coordinates
L̃F Metric parameterization of the 4D light field

s, t, u, v Metric light field coordinates

Table A3. Refocusing and error analysis notation.

Parameter Description

F′ Distance between UV and S′T′ plane for refocusing
α Refocusing parameter defined by α = F/F′

L̃F′ L̃F, but for S′T′ plane
S Sub-aperture image shift in pixels

S(o) S for a given refocusing distance o
o(S) Refocusing distance o for a given shift S

∆̃ Quotient ∆ based on the assumption X = 0
S̃ Sub-aperture image shift in pixels based on the assumption X = 0
õ Refocusing distance based on the assumption X = 0
λ Quotient o/o f

ERRõ
Relative refocusing distance error
for incorrect target distance model

ERRS̃
Relative refocusing distance error

for incorrect shift model
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Appendix B. Revisited Literature—Notation Transfer

In the following sections, the notations of [7,9,10] are transferred into the notation
used in this work.

Appendix B.1. Hahne et al. [9]

Table A4. General notation in Hahne et al. [9] and our work.

Description Hahne et al. [9] Our

Main lens focal length fU fM

Distance Hcam to MLA bU d
Distance Hcam to virtual image bU′ i
Distance Hscene to scene object aU′ o

Distance MLA to exit pupil dA′ d − X
Distance MLA to virtual image d′a d − i

ML focal length fs fm

ML diameter ∆s dML

Pixel size ∆u spx

In addition to the general camera properties listed in Table A4, Hahne et al. [9]
introduced the notation in Table A5 to exemplarily describe the camera-side rays for a
horizontal cross-section of the plenoptic camera model.

Table A5. Further notation in Hahne et al. [9] without direct equivalents in our setup.

Description Hahne et al. [9]

Horizontal number of microlenses J
Microlens index j

Microlens center of lens j sj =
(

j − J−1
2

)
· ∆s

Microlens image center of lens j uc,j =
sj

dA′ · fs + sj

Position of i-th neighbor pixel of MIC uc+i,j = uc,j + i · ∆u

Slope of ray from i-th
neighbor through ML center mc+i,j =

sj−uc+i,j
fs

With these, the linear ray function originating in a pixel at the sensor position uc+i,j
and running through the corresponding microlens center sj can be described via

fc+i,j(z) = mc+i,j · z + sj =
sj − uc+i,j

fs
· z + sj

=
sj − (uc,j + i · ∆u)

fs
· z + sj =

sj −
( sj

dA′ · fs + sj + i · ∆u
)

fs
· z + sj. (A1)

By assuming an MLA with a microlens center located at the main lens optical axis, the ray
originating from the center of the central microlens image going through the microlens
center s0 = 0 can be described by

f (z) := fc,0(z) =
s0 −

(
s0

d−X · fm + s0 + 0 · spx

)
fm

· z + s0 = 0. (A2)
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Given a second pixel position at distance dMLI + Ŝ from the central pixel, this pixel’s index
in the microlens image j = 1 is provided by i = Ŝ

spx
. Accordingly, the ray originating from

this pixel running through the microlens center s1 = dML is provided by

f̃ (z) := fc+i,1(z) =
s1 −

(
s1

d−X · fm + s1 +
Ŝ

spx
· spx

)
fm

· z + s1

=
dML −

(
dML
d−X · fm + dML + Ŝ

)
fm

· z + dML

=
dML −

(
dMLI + Ŝ

)
fm

· z + dML. (A3)

Appendix B.2. Dansereau et al. [7]

Table A6. General notation in Danserau et al. [7] and our work.

Description Dansereau et al. [7] Our

Distance Hcam to MLA dM d
Distance sensor to MLA

(equals ML focal length for SPCs) dµ fm

ML focal length fµ fm

Apart from the intrinsic parameters listed in Table A6, many other aspects of the
notation in Danserau et al. [7] are dedicated to the light field outside the camera, which is
not directly modeled in our work.

Appendix B.3. Pertuz et al. [10]

Using the notation provided in Table A7, the deduction steps for the model in [10] can
be translated as stated in Table A8.

Table A7. General notation in Pertuz et al. [10] and our work.

Description Pertuz et al. [10] Our

Main lens focal length f fM
Focus distance (measured from Hscene) z0 o f

Corresponding image distance
(equals distance MLA to Hcam) x0 d

Target distance z o
Corresponding image distance x i

Distance MLA to sensor (equals ML focal length) β fm

ML diameter D dML
Pixel size µ spx

Separation between real and synthetic focal plane ∆x F − F′

Refocusing parameter (sub-aperture image shift) ρ S̃
UV plane step size ∆u ∆UV

However, note that Table A8 presents a direct notation transfer, especially regarding
Equations (5) and (8) of [10]. As shown in Section 4, the shift parameter ρ is already based
on an incorrect assumption, and as such does not directly correspond to S̃.
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Table A8. Crucial equations from Pertuz et al. [10] and the corresponding notation in our work.

Equation Number in [10] Pertuz et al. [10] Our Notation

(1) 1
f = 1

x0
+ 1

z0

1
fM

= 1
d + 1

o f

(4) ∆u =
µ

βD ∆xu ∆UV =
spx

fmdML
(F − F′) · u

(5) ρ =
µ

βD ∆x −S̃ =
spx

fmdML
(F − F′)

(7) z =
f (x0−∆x)
x0−∆x− f o =

fM(d−(F−F′))
d−(F−F′)− fM

(8) z = z0

(
1−a0ρ
1−a1ρ

)
o = o f

(
1−a0(−S̃)
1−a1(−S̃)

)
Addition to (8) a0 =

βD
µx0

a0 =
fm ·dML
spx ·d

Addition to (8) a1 = z0a0/ f a1 =
o f ·a0

fM

Appendix C. Thick Microlenses

In this appendix, the thin microlenses are extended by a model featuring separate
principal planes HML

cam and HML
scene, i.e., a non-zero thickness. The separation between the

main lens camera-side principal plane Hcam and the MLA d is then provided by the distance
between Hcam and HML

scene. On the other side, the distance between the MLA and the sensor,
which equals the focal length of the microlenses fm, now describes the distance between
HML

cam and the sensor plane, as shown in Figure A1. Because a ray entering HML
scene at a certain

height leaves the microlens at the same height at HML
cam, the deductions from Sections 2 and 3

remain valid.

Hscene Hcam Exit Pupil

HML
scene HML

cam

Sensor

0o 0 iX d fm

0

dMLI
dML

Figure A1. Extension of the plenoptic camera model shown in Figure 2 to a non-zero microlens thickness.

Appendix D. Evaluation Setups

The following Tables A9–A11 list the specific lens models along with their associated
patents and SPC configurations. Note that both Hcam and the exit pupil location are
measured from the main lens aperture position, and have a positive sign indicating that
these planes are located on the sensor side of the aperture. On the other hand, Hscene is
measured from the aperture, with a positive sign if located on the scene-side of the aperture.
X is measured from the position of Hcam, as shown in Figure 2, and all remaining properties
are assumed to be unsigned distance values. All mentioned properties were measured
using a 2D ray tracer, which we also integrated into the Blender add-on to facilitate fast
automatic plenoptic camera reconfigurations.
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Table A9. Model names of the simulated main lenses and the associated patents specifying the lens
element parameters. DE, JP, and US specify the country of the patent application [47].

Manufacturer Model Patent

Rodenstock Sironar-N 100mm F5.6 DE 2729831 Example 1

Zeiss Batis 85mm F1.8 JP 2015-096915 Example 2

Ricoh smc Pentax-A 200mm F4 Macro ED US 4,666,260 Example 1

Canon EF 85mm F1.8 USM JP 1993-157964 Example 1

Olympus Zuiko Auto-Zoom 85–250mm F5 US 4,025,167 Example 2

Table A10. SPC properties for the evaluation setups with finite focus distance.

Finite Focus

Property Rodenstock Zeiss Ricoh Canon Olympus

Focal Length fM (mm) 99.998 82.047 167.994 84.998 85.120
Hcam (mm) −1.395 −30.395 −118.018 −2.303 54.527
Hscene (mm) −0.981 36.192 83.127 −27.317 1.026

Exit Pupil Loc. (mm) −1.201 10.257 −18.109 −31.241 −5.690
Exit Pupil Radius (mm) 8.617 2.423 3.822 6.512 2.917

X (mm) 0.194 40.652 99.909 −28.938 −60.219
f -number 5.600 8.500 8.000 7.330 6.590

Focus Distance F (mm) 500 500 500 300 300
ML Pitch (µm) 178.158 173.703 176.246 177.856 110.567
ML Diam (µm) 178.158 173.703 176.285 177.856 110.567

ML Focal Length fm (mm) 1.290 2.084 3.261 1.779 0.884
MLA Thickness (mm) 0.100 0.100 0.100 0.100 0.100

MLA-Sensor Dist (mm) 1.280 2.084 3.261 1.779 0.874
Aperture-Sensor Dist (mm) 124.702 69.944 138.341 118.176 174.140

Sensor Width (mm) 23.220 23.220 23.220 23.220 7.222
Sensor Height (mm) 23.220 23.220 23.220 23.220 7.222

Table A11. SPC properties for the evaluation setups with infinite focus distance.

Infinite Focus

Property Rodenstock Zeiss Ricoh Canon Olympus

Focal Length fM (mm) 99.998 82.860 173.115 84.998 85.004
Hcam (mm) −1.395 −29.315 −109.963 −2.303 54.617
Hscene (mm) −0.981 34.023 75.005 −27.317 1.155

Exit Pupil Loc. (mm) −1.201 10.257 −18.109 −31.241 −5.690
Exit Pupil Radius (mm) 8.617 3.817 7.093 6.512 9.290

X (mm) 0.194 39.572 91.525 −28.938 −60.308
f -number 5.600 5.870 9.100 8.000 7.660

Focus Distance F (mm) ∞ ∞ ∞ ∞ ∞
ML Pitch (µm) 178.158 175.944 177.164 177.840 171.492
ML Diam (µm) 178.158 175.944 177.164 177.840 171.492

ML Focal Length fm (mm) 1.032 0.998 1.230 1.383 1.297
MLA Thickness (mm) 0.100 0.100 0.100 0.100 0.100

MLA-Sensor Dist (mm) 1.022 0.987 1.220 1.373 1.287
Aperture-Sensor Dist (mm) 99.745 54.659 64.521 84.189 141.035

Sensor Width (mm) 23.220 23.220 23.200 23.220 22.32
Sensor Height (mm) 23.220 23.220 23.200 23.220 22.32
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