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Abstract: Soft sensors have been extensively utilized to approximate real-time power prediction in
wind power generation, which is challenging to measure instantaneously. The short-term forecast of
wind power aims at providing a reference for the dispatch of the intraday power grid. This study
proposes a soft sensor model based on the Long Short-Term Memory (LSTM) network by combining
data preprocessing with Variational Modal Decomposition (VMD) to improve wind power prediction
accuracy. It does so by adopting the isolation forest algorithm for anomaly detection of the original
wind power series and processing the missing data by multiple imputation. Based on the process
data samples, VMD technology is used to achieve power data decomposition and noise reduction.
The LSTM network is introduced to predict each modal component separately, and further sum
reconstructs the prediction results of each component to complete the wind power prediction. From
the experimental results, it can be seen that the LSTM network which uses an Adam optimizing
algorithm has better convergence accuracy. The VMD method exhibited superior decomposition
outcomes due to its inherent Wiener filter capabilities, which effectively mitigate noise and forestall
modal aliasing. The Mean Absolute Percentage Error (MAPE) was reduced by 9.3508%, which
indicates that the LSTM network combined with the VMD method has better prediction accuracy.

Keywords: short-term wind power prediction; LSTM; VMD; data preprocessing; isolation forest;
soft sensor

1. Introduction

The power output of a wind power generation system has great randomness, volatility
and uncertainty, so its large-scale integration into the power grid brings great challenges to
the safe and stable operation of the power system [1,2]. Soft sensor technology establishes
a mathematical model between the auxiliary and target variables to predict the target
variables, which has the characteristics of low cost and high accuracy [3]. However,
strongly nonlinear, dynamic time-varying and multi-rate data characteristics are caused by
poor soft sensor performance. Short-term forecasting of wind power using deep learning
can provide a reference for the dispatch of the intraday power grid and is one of the key
technologies in solving the above-mentioned problems [4].

At present, the related research on short-term wind power forecasting mainly focuses
on establishing more accurate forecasting models, data preprocessing and signal decompo-
sition. Many existing prediction models treat input samples as different classes and classify
them, which may lead to long-term dependencies between samples that cannot be fully
utilized [5]. In addition, human factors, or the failure of wind turbine equipment, may lead
to abnormal or missing parts of the power data, which affects the accuracy of wind power
prediction. Therefore, in order to ensure the reliability of the data, detecting abnormal
values in power data is essential. The use of an unsupervised isolated forest algorithm
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based on an ensemble learning strategy to detect abnormal data can effectively improve
data processing efficiency and improve the accuracy of abnormality detection [6]. VMD is
a new type of signal decomposition method which can decompose the signal into several
modal components according to the potential characteristics of wind power, and VMD
has less parameter settings, good robustness, high computational efficiency and a rich
theoretical basis [7–9]. Using the VMD method can make the input data of the prediction
model reflect the characteristics of the wind power signal more clearly. A new hybrid
wind speed forecasting model using Variational Modal Decomposition (VMD), the partial
autocorrelation function (PACF), and a weighted regularized extreme learning machine
(WRELM) is proposed to improve the accuracy of wind speed forecasting [10].

In recent years, deep learning has dramatically improved the learning ability of neural
networks via residual connection and shared weights, which are widely used in dynamic
soft sensor modeling. A Recurrent Neural Network (RNN) [11] has recursive links in
its network structure, and the relationship between samples can be considered in the
learning process, so it is especially suitable for processing time series signals. But if there
are long-term dependencies between samples, RNNs will suffer from vanishing gradients
and exploding gradients. A Long Short-Term Memory (LSTM) network is an improved
method for addressing this problem. In recent years, LSTM has been used more and more
in wind power [12–15]. Yu et al. [16] combined wavelet transforms to establish a new
hybrid model based on three recurrent neural networks. The results demonstrate that the
three new hybrid models produce more accurate prediction results. Nevertheless, it is
poor adaptability that the decomposition effect of the wavelet transform depends on the
choice of threshold and the basis function. Curreri et al. [17] compared the recurrent neural
networks and long short-term memory architectures in regard to their transferability. The
obtained results demonstrate the suitability of the proposed transfer learning methods in
the design of nonlinear dynamical models for industrial systems. Zhang et al. [18] proposed
a strategy of building a soft sensor model based on local semi-supervised ensemble learning
of least squares support vector regression, which is used to deal with nonlinear, dynamic
time-varying and multi-rate data regression problems in wind power generation processes.
Han et al. [19] used the VMD technique to decompose the original wind power signal
and used the decomposed components as the input of the improved LSTM prediction
model to predict the wind power. However, data preprocessing operations, such as outlier
detection of the collected raw data, are ignored. Aiming at the above problems, this paper
combines the forecasting model and wind power data processing to improve forecasting
accuracy and proposes a LSTM short-term wind power forecasting model based on data
preprocessing and VMD [20] for the soft sensor. We use the isolation forest and multiple
imputation methods to deal with outliers and missing values of wind power data [21].

An LSTM network consists of an input layer, an output layer, and several recursive
hidden layers between them. The recursive hidden layers are composed of several memory
modules. Each module contains one or more self-connected memory cells and three gates
that control the flow of information: memory gates, forgetting gates and output gates [19].

To minimize the sum of frequency bandwidths to complete noise reduction, VMD
technology is adopted to decompose historical power data into several modal components.
The LSTM method is imported to establish a prediction model for each modal component.
The Dropout parameter regularization method is used to establish the model to prevent
over-fitting. The Adam algorithm is adopted to optimize the effective training of the
network parameters of the LSTM model. Ultimately, sum and reconstruct are used to predict
the results of the components. Compared to the results of BP (Back Propagation), SVM
(Support Vector Machine), LSTM and Complete Ensemble Empirical Mode Decomposition-
LSTM (CEEMDAN-LSTM) models, the experimental results indicate that the VMD-LSTM
model has higher prediction accuracy.
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2. Method
2.1. VMD

VMD [22] decomposes the signal f (t) into discrete modal components
uk(k = 1, 2, 3, · · · , K); for each modal component uk, the Hilbert transform is used to
calculate the relevant analytic signal and obtain the unilateral spectrum, where δ(t) is the
pulse function.

U(t) =
(

δ(t) +
j

πt

)
× uk(t) (1)

The analytical signal obtained from Equation (1) above is mixed with the estimated
center frequency e−jωkt, and the spectrum corresponding to each mode is transformed to
the corresponding baseband.

ˆU(t) = U(t)× e−jωkt (2)

Calculate the square norm of the gradient of the demodulated signal, obtain the
bandwidth of each mode, and then construct the constrained variational problem, where
uk = {u1, · · · , uk}, ωk = {ω1, · · · , ωk}.

L2 =

 min
(uk),(ωk)

{∥∥∥∂t ˆU(t)
∥∥∥2
}

s.t.∑K
k=1 uk = f

(3)

The augmented Lagrangian function is introduced to find the optimal solution for the
constrained variational problem, where α is the quadratic penalty factor, and λ(t) is the
Lagrangian multiplication operator.

L({uk}, {ωk}, λ) = α∑K
k=1

∥∥∥∂t ˆU(t)
∥∥∥2

2
+
∥∥∥ f (t)− ∑K

k=1 uk(t)
∥∥∥2

2
+〈

λ(t), f (t)− ∑K
k=1 uk(t)

〉 (4)

The alternating direction multiplier method (ADMM) is used to update ûn+1
k and

ωn+1
k to find the optimal solution for Equation (3).

ûn+1
k (ω) =

f̂ (ω)− ∑i ̸=k ûi(ω) +
λ̂(ω)

2

1 + 2α(ω − ωk)
2 (5)

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(6)

where ûn+1
k (ω), f̂ (ω), ûi(ω) and λ̂(ω) are Fourier transforms of un+1

k (t), f (t) and λ(t),
respectively.

2.2. LSTM

The LSTM memory unit is used to build the LSTM [23] network prediction model,
and the Dropout regularization method [24] is used between the hidden layer and the
Dense Layer to prevent over-fitting and improve the model generalization ability. The
LSTM model network structure is shown in Figure 1. Among them, LSTM represents the
LSTM memory unit, and Dense represents the full connection layer. When Dropout is
applied to the LSTM layer, the input of the Dense layer is the output of the LSTM layer.
This process is represented by dotted arrows and dotted circles to illustrate the principle
of the Dropout method. The input in the t − 1 time model is represented as the variable
xt−1. After the Dropout method, the LSTM layer outputs the results to the Dense layer, and
the corresponding representation is ht. If xt and ht are the inputs at the next time t + 1,
the output can be represented as ht+1 after the Dropout method, where α is the quadratic
penalty factor, and λ(t) is the Lagrangian multiplication operator.
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In addition, the Adam algorithm is used to optimize LSTM network parameters
and train the network model. The updated rules of the Adam algorithm optimization
parameters are as follows:

Calculate the gradient when t, and initialize t0 = 0 where J(θ) is the random objective
function of θ.

gt = ∇θ J(θt−1) (7)

Calculate the biased first moment estimate mt of the gradient and initialize m0 = 0
where parameter β1 = 0.9.

mt = β1mt−1 + (1 − β1)gt (8)

Calculate the biased first moment estimate vt of the gradient and initialize v0 = 0
where parameter β2 = 0.999.

vt = β2vt−1 + (1 − β2)g2
t (9)

Correct the deviation of the first order moment estimation and express the result as m̂t.

m̂t =
mt

1 − βt
1

(10)

Correct the deviation of the first order moment estimation and express the result as v̂t.

v̂t =
vt

1 − βt
2

(11)

Calculate parameter θ at time t.

θt = θt−1 −
αm̂t√
v̂t + ε

(12)

3. Results and Analysis

In this section, we first describe the real-world dataset used in the experiments. Then,
we discuss the experiments conducted on the dataset.
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3.1. Experimental Data and Evaluation Indicators

To evaluate our method, we performed anomaly detection and missing value inter-
polation operations on 17,280 sets of data with a sampling interval of 1 min from 20 May
to 31 May 2015 at a wind farm in Shanxi Province, China. We used the 12 day data as
the experiment’s dataset. Each datum in the dataset is a two-dimensional datum which
includes the wind speed and the wind farm. Then, taking every 15 sets of data as a cycle,
that is, a cycle of 15 min, the average value of the data within 15 min is recorded, and the
1152 sets of data recorded are used as wind power data research samples and used for
experimental analysis. Following chronological order, we take the first 1056 sets of data as
the training sets and forecast the wind power for 15 min in the future. After each step of
forecasting is achieved, the predicted value is used instead of the actual value to perform
the iterative calculation of the next forecast. The forecast sequence is 1058–1151, a total
of 94 wind power data for each data point. The experimental data is processed by the
min-max normalization (MMN) method for dimensionless data processing, and the data
values are mapped to the [0, 1] interval. After the prediction is completed, the predicted
value is converted to the original interval by inverse normalization.

In the experiment, we chose Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), and Relative Error (RE) as an evaluation
index for the prediction results. yi represents the actual value of wind power, ŷi represents
the predicted value of wind power, N represents the wind power sequence data amount,
and δi represents the relative error.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)

2

(13)

MAE =
1
N

N

∑
i=1

|yi − ŷi| (14)

MAPE =

(
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣
)

(15)

δi =
|yi − ŷi|

yi
× 100% (16)

3.2. Data Preprocessing and Result Analysis

In this work, the isolated forest algorithm is used to detect abnormal wind power
data. After detection by the algorithm, the abnormal data are marked as one, and the
non-abnormal data are marked as zero. All abnormal data are set to zero according to the
index number of identifier one, and the complete data set is further obtained by the method
of multiple imputation.

The columnar scatter diagram before and after processing the raw wind power data is
shown in Figure 2. The horizontal axis represents wind speed (m/s); part A in the figure
represents the collected 17,280 groups of original wind power data, and part B represents
the wind power data after data preprocessing. The vertical axis is wind power (KW). It can
be seen that the data distribution of the unprocessed part A is highly random and chaotic,
and the data points located in the power value range above 1500 KW deviate from most of
the data points. After processing, the data distribution of part B is concentrated and the
data points at both ends of the cylinder center are compact and orderly, which effectively
enhances the reliability and integrity of the data. The processed data are decomposed
into K modal components using VMD signal decomposition technology, and the value
of K is determined by observing the center frequency distribution corresponding to each
component under different modal numbers. In Table 1, when the number of modes is five,
the corresponding center frequencies of IMF2, IMF3 and IMF4 are 78.47 Hz, 123.54 Hz and
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396.97 Hz, respectively, and the center frequencies are close to each other, which indicates
that modal aliasing may occur, resulting in over-resolution of the wind power signal.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 13 
 

 

most of the data points. After processing, the data distribution of part B is concentrated 
and the data points at both ends of the cylinder center are compact and orderly, which 
effectively enhances the reliability and integrity of the data. The processed data are 
decomposed into 𝐾  modal components using VMD signal decomposition technology, 
and the value of 𝐾  is determined by observing the center frequency distribution 
corresponding to each component under different modal numbers. In Table 1, when the 
number of modes is five, the corresponding center frequencies of IMF2, IMF3 and IMF4 
are 78.47 Hz, 123.54 Hz and 396.97 Hz, respectively, and the center frequencies are close 
to each other, which indicates that modal aliasing may occur, resulting in over-resolution 
of the wind power signal. 

 
Figure 2. Comparison of histograms during data processing. 

Table 1. Center frequency corresponding to different K. 

Modal Number 
Center Frequency/Hz 

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 
2 2.81 735.23     
3 1.43 382.21 738.86    
4 1.22 114.96 390.34 740.88   
5 1.08 78.47 123.54 396.97 757.22  
6 0.97 21.63 52.69 135.72 397.42 761.53 

To determine the value of K, we analyzed the change curve of the center frequency 
of each component, which is shown in Figure 3. It can be seen from Figure 3 that when K 
= 2, K = 3 and K = 4, the curves have no obvious curvature, and the slope changes little. 
When K = 5, the curve shows an obvious downward bending phenomenon, and the 
change of curve bending indicates that when K is the critical value of the modal 
decomposition number, the critical value is considered to be an appropriate modal 
decomposition number. 
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Table 1. Center frequency corresponding to different K.

Modal
Number

Center Frequency/Hz

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

2 2.81 735.23
3 1.43 382.21 738.86
4 1.22 114.96 390.34 740.88
5 1.08 78.47 123.54 396.97 757.22
6 0.97 21.63 52.69 135.72 397.42 761.53

To determine the value of K, we analyzed the change curve of the center frequency
of each component, which is shown in Figure 3. It can be seen from Figure 3 that when
K = 2, K = 3 and K = 4, the curves have no obvious curvature, and the slope changes little.
When K = 5, the curve shows an obvious downward bending phenomenon, and the change
of curve bending indicates that when K is the critical value of the modal decomposition
number, the critical value is considered to be an appropriate modal decomposition number.
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In order to further determine the value of K, the Pearson correlation coefficient of
adjacent modal components is calculated, and Table 2 analyzes the correlation between ad-
jacent modal components. Among them, C12 represents the Pearson correlation coefficient
between IMF1 and IMF2, C23 represents the correlation coefficient between IMF2 and IMF3,
and the same is true for C34, C45 and C56. When K < 5, the values of C12, C23 and C34 are all
less than 0.1, indicating that the low- and high-frequency components obtained by signal de-
composition have obvious C12 characteristics. When K = 5, C12 = 0.3614, C23 = 0.2906 and
the correlation coefficient is relatively large, which indicates that the low-frequency modal
components obtained by decomposition are highly correlated, the signal decomposition is
not sufficient, and modal aliasing is prone to occur.

Table 2. Pearson correlation coefficient of adjacent modes.

Modal Number C12 C23 C34 C45 C56

2 0.0915
3 0.0618 0.0900
4 0.0519 0.0901 0.0963
5 0.3614 0.2906 0.0257 0.0810
6 0.3501 0.2860 0.1284 0.0284 0.0601

In Table 2, the Pearson correlation coefficient of adjacent modes based on the above
analysis determines K = 4, and sets parameters α = 2000 and ε = 0.000001, where α is the
quadratic penalty factor, and ε is the convergence accuracy.

The results of decomposing the wind power signal sequence by VMD are shown
in Figure 4. Among them, IMF1 to IMF4 are the decomposed wind power sequence
components from low frequency to high frequency.
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The RMSProp (Root Mean Square prop) algorithm, Adagrad (Adaptive gradient)
algorithm, SGDNesterov (Stochastic Gradient Descent Nesterov) algorithm and Adam
(Adaptive Moment Estimation) algorithm are combined with the Dropout regularization
method to train the LSTM network model. The input data is the preprocessed wind power
sequence without VMD decomposition; the parameter p = 0.3 in the Dropout method is
set, and the Mean Square Error (MSE) function is constructed as the loss function. The
different curves in Figure 5 represent the change of the loss function in each training
model, respectively. It can be seen from the figure that Adam is significantly faster than the
SGDNesterov algorithm in terms of convergence speed. Adam, RMSProp and Adagrad
have basically the same convergence speed, but in the 50th training cycle, Adam has the
lowest training loss value, which is only 0.0078, indicating that the algorithm can achieve
better convergence accuracy.
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The wind power sequence is decomposed by VMD, and then the LSTM network
prediction model is established, respectively, to predict each IMF component and obtain the
prediction result, as shown in Figure 5. In the LSTM network model, the input layer is one
layer, the hidden layer is one layer, the hidden layer contains 16 LSTM neurons, the fully
connected layer is one layer, the number of output layers is one, the loss function is MSE,
and the optimization algorithm is Adam. Add the Dropout regularization method and
set probability between the hidden layer and fully connected layer. The prediction results
of each component are summed and reconstructed, and finally the prediction results of
the VMD-LSTM [25–28] model are obtained. The LSTM model is used to predict the wind
power sequence without VMD, and the prediction result of the LSTM model is obtained.

The comparison curve between the predicted value of the VMD-LSTM model and
LSTM model and the actual wind power value is shown in Figure 6. It can be seen from
Figure 7 that for the LSTM prediction model, the prediction results roughly follow the
change trend of the actual wind power sequence, but when the actual power value suddenly
changes, the prediction effect is poor. However, the error between the predicted value of
the VMD-LSTM model and the actual value is small, and the trend change is completely
consistent. Therefore, using VMD to decompose the original power signal can effectively
extract data features and deal with fluctuations in wind power information.
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In this study, we use CEEMDAN-LSTM, BPNN and SVM to compare and analyze the
performance of the VMD-LSTM model. In this experiment, it is assumed that there are
500 groups of white noise signals with a standard deviation of 0.2 in the CEEMDAN signal
decomposition, and the maximum number of iterations is 5000. In the BPNN, the number
of neurons in the input layer is one, the number of neurons in the hidden layer is 15, the
number of neurons in the output layer is one, the learning rate is 0.01, and the maximum
number of trainings is 100. Using grid method cross-validation in SVM, the parameters are
12.32 and 22.05.

Figure 8a is a dotted line graph of the prediction results of each model; the actual
value represents the actual wind power, and Figure 8b,c are partial enlarged comparisons
of each model. It can be seen from Figure 8 that the wind power prediction curves of
BPNN, SVM and LSTM are consistent with the trend of the actual wind power series, but
the prediction results of the LSTM model are closer to the actual value. This proves that the
LSTM model can effectively capture the long-term dependencies between data samples,
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and the LSTM model is suitable for processing time series signals. Meanwhile, we can
see that the CEEMDAN-LSTM model has a poor prediction effect and large prediction
error. The VMD-LSTM model can not only accurately describe the dynamic changes of
the original wind power sequence, but also the predicted value is closest to the actual
wind power value. This shows that compared with CEEMDAN, the VMD method with a
Wiener filter can effectively remove signal noise, can distinguish between effective signal
information and noise signal significantly and has strong robustness. By decomposing the
original wind power series through VMD, more accurate prediction results can be obtained,
thereby improving the prediction performance of the model.
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In order to further reflect the prediction error at each moment, as shown in Figure 9,
we calculate the relative error of each model and draw its relative error curve to visualize
the error evaluation index of each model. Figure 9a is a columnar schematic diagram of
the three error evaluation indicators of the model: RMSE, MAE and MAPE. It can be seen
that the RMSE, MAE and MAPE values of the CEEMDAN-LSTM model are the largest,
and the RMSE, MAE and MAPE values of the VMD-LSTM model are significantly lower
than the error values of the other models. From the relative error curves of each model in
Figure 9b, it can be seen that except for the relative error of the 78th prediction point, which
is 75%, the relative errors of the remaining prediction points of the VMD-LSTM model are
all below 50%. Especially, the prediction accuracy at the abrupt point of wind speed is
significantly improved compared with other models, which indicates that the VMD-LSTM
method can improve the accuracy of wind power prediction.
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Table 3 lists the specific values of the error evaluation indicators in each prediction
model. It can be seen from Table 3 that the RMSE, MAE and MAPE of the VMD-LSTM
model are 67.6993, 55.7662 and 12.0676, respectively, which has the smallest prediction error
compared with other models. Compared with the single prediction models BPNN and
SVM, the RMSE of VMD-LSTM is reduced by 106.1781 and 106.3299, respectively. After
using the decomposition algorithm, the MAPE value of CEEMDAN-LSTM is increased
by 10.04685% compared with LSTM, and the MAPE value of VMD-LSTM is decreased by
9.3508% compared with LSTM. Meanwhile, the RMSE and MAE values of VMD-LSTM are
reduced by 63.9672 and 48.1798, respectively, compared with LSTM. It can be verified that
the VMD-LSTM model has good prediction performance and can effectively improve the
prediction accuracy of wind power, which is suitable for short-term prediction of actual
wind power.

Table 3. Comparison of the prediction indexes of different prediction methods.

BP SVM LSTM VMD-LSTM CEEMDAN-LSTM

RMSE (KW) 173.8774 174.0292 131.6665 67.6993 270.0046
MAE (KW) 131.4138 133.1894 103.9460 55.7662 215.4398
MAPE (%) 26.9278 26.8527 21.4184 12.0676 31.4652

4. Conclusions

In this study, we proposed a LSTM short-term wind power prediction model based on
isolated forest outlier detection and VMD for the soft sensor. In the model, the isolated forest
algorithm is used to detect the outliers of the wind power series, and the missing values of
the data are processed by the multiple imputation method. Denoising decomposition of
VMD is performed on the research samples, and the number K of modal components is
determined according to the center frequency and the correlation coefficient. The LSTM
contains a memory unit that can store and update information for a long time, making the
network more robust and accurate when processing long time sequences. Additionally, the
VMD decomposes the wind power data into K model components, which are used as the
inputs of the forecast model. And the LSTM short-term wind power prediction model is
established which uses Dropout to prevent over-fitting, and uses the Adam algorithm to
optimize the model. The experiment results verify that the model can improve the accuracy
of short-term power prediction. In addition, through comparative experiments, we can
draw the following conclusions:

1. Using the isolated forest algorithm to detect anomalies in the original wind power
sequence and to perform multiple imputation processing on missing data.

2. In terms of data processing, the experimental data is processed using the minimum-
maximum normalization (MMN) method for dimensionless data, and the data values
are mapped to the [0, 1] interval, which improves the effectiveness of data processing.
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3. Compared with the RMSProp algorithm, Adagrad algorithm and SGD Nesterov
algorithm, using the Adam algorithm to optimize LSTM network parameters has
better convergence accuracy.

4. The VMD method has better decomposition results than the CEEMDAN method
because its own Wiener filter can effectively complete the noise reduction and prevent
modal aliasing.

5. Compared with traditional BPNN and SVM, LSTM is suitable for short-term wind
power prediction and has better prediction accuracy.
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