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Abstract: Human action recognition (HAR) is growing in machine learning with a wide range of
applications. One challenging aspect of HAR is recognizing human actions while playing music,
further complicated by the need to recognize the musical notes being played. This paper proposes
a deep learning-based method for simultaneous HAR and musical note recognition in music per-
formances. We conducted experiments on Morin khuur performances, a traditional Mongolian
instrument. The proposed method consists of two stages. First, we created a new dataset of Morin
khuur performances. We used motion capture systems and depth sensors to collect data that includes
hand keypoints, instrument segmentation information, and detailed movement information. We then
analyzed RGB images, depth images, and motion data to determine which type of data provides the
most valuable features for recognizing actions and notes in music performances. The second stage
utilizes a Spatial Temporal Attention Graph Convolutional Network (STA-GCN) to recognize musical
notes as continuous gestures. The STA-GCN model is designed to learn the relationships between
hand keypoints and instrument segmentation information, which are crucial for accurate recognition.
Evaluation on our dataset demonstrates that our model outperforms the traditional ST-GCN model,
achieving an accuracy of 81.4%.

Keywords: action recognition; recognize musical notes; spatial temporal attention graph convolu-
tional network (STA-GCN); morin khuur; deep learning

1. Introduction

Recently, human action recognition has garnered substantial interest in machine learn-
ing tasks. The capability to identify actions from a sequence of frames in the video has
numerous applications, including the interaction between humans and computers, intelli-
gent monitoring through video, robot vision, multimedia, and hand gesture recognition by
using hand keypoint and segmentation [1], recognition music sounds and generate musical
compositions [2].

The recognition of hand gesture techniques can be broadly classified into two types:
image-based and skeleton-based. Image-based methods rely on sequences of RGB or RGB-
D images as their input, while skeleton-based methods use 2D or 3D hand joint sequences.
The application of deep learning techniques, including Long Short-Term Memory (LSTMs)
and Convolutional neural network (CNNs) have been implemented for recognizing hand
gestures by using hand skeleton sequences as input. However, the aforementioned methods
fall short of maximizing the utilization of the spatial-temporal connections between joints.

Numerous techniques have been suggested to perform action recognition, such as
skeleton-based recognition that utilizes the human body joint trajectories [3]. Skeleton
data consists of the movements of human body joints and is a compact and effective
means of recognizing actions [4]. It is also resilient to changes in the background, Graph
Convolutional Networks (GCN) [5] to model the human body skeletons, MMPose for
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real-time skeleton detection and tracking [6], The American Sign Language (ASL) hand
gesture recognition [7], which consists of two parallel convolutional neural networks, one
processing spatial features and the other processing motion features. The spatial CNN
takes a single image of a hand gesture as input and extracts spatial information, while
the motion CNN takes a sequence of such images and extracts motion information. Both
CNNs consist of several convolutional and pooling layers, followed by one or more fully
connected layers. The outputs of the two CNNs are then combined and passed through a
softmax layer to obtain the final gesture classification result. Sanchez-Caballero et al. [8]
implemented a real-time method for recognizing human actions from raw depth video
sequences using Recurrent Neural Networks (RNNs).

The recognition of human actions in computer vision is a challenging task due to
the time dimension and the complexities of action speed across frames, human pose,
and distractions in video sequences. This is particularly challenging when it comes to
recognizing the beat and notes of music in videos.

To address this challenge, we introduce a human-computer interaction system that
can recognizing musical notes during musical performance. This system can recognize
dynamic finger movements, the interaction between the musician and the instrument,
as well as the distinct sound of the instrument. In our methodology, we employ data
pre-processing, involving the MMPose method for pose estimation and the YOLOACT seg-
mentation method to identify different parts of musical instruments. For action recognition,
we leverage a Graph Convolutional Network with spatial-temporal attention (STA-GCN),
which integrates both spatial and temporal attention mechanisms. The model employs
a graph convolutional network to learn pose or spatial features from skeletal hand joints
and a temporal convolutional network to capture motion dynamics in the hand movement
sequence. The attention mechanisms fuse spatial and temporal features to enhance recogni-
tion accuracy, with the pose and motion streams sharing the same network architecture but
processing different input data. To extract features, STA-GCN first initializes the skeleton
graph and then applies spatial-temporal graph convolution, along with spatial and tempo-
ral graph attention. These features are then passed through a temporal pyramid pooling
layer (TPP) to obtain multiple scale temporal features. Finally, a fully connected layer and
Softmax function are utilized for hand gesture recognition. The recognition outcome is
acquired by concatenating the extracted features of both the pose and motion streams. The
main contributions are summarized as follows:

e  We propose an architectural framework for simultaneous action and musical note
recognition in music performances. This framework leverages a multimodal approach,
combining visual (RGB and depth) data with motion capture data.

e  The proposed method utilizes MMPose and YOLOACT for data pre-processing, and a
Spatial Temporal Attention Graph Convolutional Network (STA-GCN) for recognizing
notes as continuous gestures.

e  We introduce a new dataset specifically designed for Morin khuur performances,
enriching the existing resources for musical instrument recognition tasks.

The structure of the remaining manuscript is outlined as follows: Section 2 introduces
the related work, Section 3 presents the system architecture of the proposed method,
Section 4 demonstrates the experimental results; and Section 5 concludes our work.

2. Related Work

Advancements in Human Action Recognition (HAR) have been driven by the emer-
gence of deep learning architectures. These architectures surpass traditional methods
that rely on hand-crafted features, which ignore the semantic connections between hu-
man joints [9]. Deep learning emphasizes the significance of understanding the semantic
human skeleton for accurate action prediction. Recurrent Neural Networks (RNNs) [10]
offer a direct method to represent skeleton data as a sequence of coordinate vectors, with
each vector denoting a specific human body joint. RNNs sequentially encode tempo-
ral information, capturing the dynamics of body movements over time. Convolutional
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Neural Networks (CNNs) [11] dramatically improve skeleton-based action recognition by
analyzing both body joint positions (spatial) and their movement over time (temporal)
together. This eliminates complex pre-processing and lets CNNs automatically learn action
details, making them powerful tools for understanding human movement from skeletal
data. For instance, DD-Net [12] utilized 2D human skeleton data within a lightweight
CNN architecture to encode body joint movements and improve action recognition. Liu
et al. [13] introduced ConvNeXts as a challenge to the dominance of Vision Transformers
(ViTs) in image classification, achieving competitive accuracy and scalability by leveraging
grouped convolutions and efficient channel interactions. However, ConvNeXts involve a
high number of parameters and require substantial labeled data for optimal performance.
CondenseNet [14], inspired by DenseNet, utilizes learned group convolutions to reduce
computations, resulting in smaller models and faster processing, but this comes at the cost
of additional complexity. Similarly, Yulin et al. [15] introduced dynamic transformers for
efficient image recognition, addressing the limitations of fixed-size image embeddings by
dynamically adapting the number of tokens based on image complexity. On the other hand,
this approach may increase computational overhead during inference due to dynamic
grid resizing.

In parallel, pose estimation techniques have also witnessed significant advancements,
contributing to the improvement of HAR systems. Pose estimation plays a crucial role
in extracting skeletal information from human movements, providing valuable cues for
action recognition algorithms. Recent works such as PoseFormerV2 by Zhao et al. [16] This
model utilizes the frequency domain to represent human skeleton sequences, boosting the
accuracy and stability of 3D human pose estimation. Despite its effectiveness in discerning
intricate spatial and temporal features, the model may face computational complexity
challenges. Additionally, while the paper focuses solely on skeletal data, integrating RGB
or depth information with PoseFormerV2 could enhance pose estimation robustness in
future research. Similarly, to TokenPose, introduced by Li et al. [17], the model encodes each
keypoint (body joint) as a token. This allows the model to simultaneously learn the visual
cues and the relationships between different body parts. Despite these advancements, pose
estimation techniques may still face challenges in accurately capturing complex human
movements, especially in scenarios with occlusions or limited visibility.

Furthermore, advancements in object detection and instance segmentation have facili-
tated the localization and tracking of human actions in videos. Techniques like BoxInst [18]
achieve this by leveraging only bounding box annotations during training. Unlike tra-
ditional methods that require both bounding boxes and masks, BoxInst demonstrates
impressive accuracy and efficiency instance segmentation tasks. However, a limitation of
this method is its reliance on box annotations, which may not always provide sufficient
information for accurate segmentation, especially in complex scenes with overlapping
objects or fine-grained details. Additionally, the performance of BoxInst could be impacted
by the quality and consistency of the box annotations. RefineMask proposed by Zhang
et al. [19] refines instance segmentation by iteratively improving mask predictions with
fine-grained features. This achieves high-quality segmentation but may suffer from high
computational complexity, especially during the refinement stage, requiring significant
resources and time. Lee et al. [20] introduced a CenterMask method for real-time instance
segmentation that eliminates the requirement for anchor boxes, thus bypassing pre-defined
shapes for object detection. The approach, CenterMask, prioritizes predicting object centers
and subsequently refining those predictions with segmentation masks. Achieving notable
speed and accuracy, CenterMask simultaneously predicts object centers and segmenta-
tion masks. However, a constraint of CenterMask lies in its dependence on anchor-free
techniques, potentially leading to diminished performance in scenarios involving highly
overlapping or irregularly shaped objects.

Recent works, such as AdaDet proposed by Yang et al. [21], have introduced adaptive
object detection systems that leverage early-exit neural networks. The model dynamically
adjusts its inference process based on input complexity, allowing for faster predictions
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with minimal sacrifice in accuracy. However, a limitation of AdaDet lies in its reliance
on early-exit neural networks, which may require additional computational resources for
training and inference compared to traditional object detection systems.

While existing methods might neglect the inherent connections between joints (skele-
ton topology) or suffer from complex design processes, graph-based methods have emerged
as strong contenders in achieving high accuracy on popular benchmarks. Inspired by the
natural structure of the human body, graph-based approaches have recently shown im-
pressive results. Notably, ST-GCN [22] pioneered the use of graph convolution operations
alongside temporal convolutions to simultaneously model both spatial and temporal infor-
mation within the skeleton data. To further enhance the flexibility of the graph topology
itself. For instance, Wang et al. [17] utilized a graph to represent human joints and ap-
plied the Spatial Temporal Graph Convolutional Network (ST-GCN) for feature extraction.
The ST-GCN consists of multiple Graph Convolutional Network (GCN) blocks, which
effectively grasp the structural details of the human body, as bone structure information
is naturally organized as a graph connecting major points in the human body. However,
GCN approaches can have heavy computational overhead. This can result in slower in-
ference times and increased resource requirements, limiting their practicality in real-time
applications or resource-constrained environments.

The MMPose model [6] is introduced to enhance the efficiency of ST-GCNs for real-
time human skeletal posture estimation. In MMPose, Graph Convolutional Transformers
(GCTs) are implemented as a replacement for the traditional graph convolutions used in
ST-GCN . By leveraging the self-attention mechanism of transformers, GCTs effectively
capture long-range dependencies. This enables MMPose to capture global context and refine
the spatial-temporal representations of poses [17]. Additionally, MMPose incorporates
a hierarchical graph structure that captures multi-scale dependencies. This approach
involves incorporating multiple graph levels with varying resolutions, allowing the model
to effectively capture both local and global dependencies. Consequently, the representation
and understanding of human poses are improved. One drawback of the MMPose model
is its higher complexity compared to traditional pose estimation models. This increased
complexity can lead to longer training times. Furthermore, the added complexity of
MMPose raises the risk of overfitting, where the model becomes too specialized to the
training data and may not generalize well to unseen data.

On the other hand, in the realm of action recognition, the demand for incorporating
spatial information alongside temporal patterns is growing. Algorithms like YOLACT [23]
offer a solution by providing precise object segmentation masks, enabling the extraction of
spatial information crucial for a localized understanding of actions. Integrating YOLACT
can significantly improve the precision of action recognition tasks and enhance scene
analysis. Lin et al. [24] proposed a system that leverages YOLACT++ for precise human
body part segmentation and identification. This information is then combined with the
feature extraction capabilities of ResNet18, allowing the system to learn distinctive features
and achieve accurate posture classification. However, the system’s performance is highly
dependent on the quality, size, and diversity of the training data. Limited, biased, or
insufficient training data can lead to decreased recognition accuracy or hinder the system’s
ability to generalize well to different people or pose variations.

Recent trends in HAR research emphasize the importance of multi-task learning and
cross-modal fusion techniques. Integrating information from multiple modalities such as
RGB images, depth maps, and motion data allows for a more comprehensive understanding
of human actions and gestures. For instance, the work by Blanco et al. [25] proposed a
method for violin performance analysis that integrates motion capture data and audio
signals, enhancing the robustness and accuracy of action recognition in musical contexts.
However, the study’s focus on a randomized trial design may limit the generalizability of
the findings, as individual learning styles and preferences could influence the effectiveness
of the feedback mechanism.
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Our proposed approach aims to bridge this gap by leveraging deep learning techniques
to simultaneously recognize actions and musical notes in Morin khuur performances. This
approach has the potential to make significant contributions to both music technology and
human-computer interaction research.

3. Proposed Architecture

In our proposed architecture, we feed video as input. The data preprocessing stage
involves utilizing the MMPose method for pose estimation and the YOLOACT segmen-
tation method for identifying the instances of various instrument parts, such as the body,
bow, upper bridge, and lower bridge. The action recognition process involves the use of
STA-GCN for detecting and classifying actions from skeletal data. This action recognition
process employs a two-stream architecture for recognizing hand gestures from skeletal
data, with the joint stream and motion stream being generated from hand keypoints and
frets location on the fingerboard, as depicted in Figure 1. The model will ultimately output
the prediction of musical notes.

Data preprocessing Action recognition network
< ) .
MMPose ieypoins | o
estimation | —* L = _,| STA-GCN
method 'g module
g ~—
P timati s .
0se estumation 5 Joint-stream b i
o o [Psadd
” = CDEFGARC
mentatior - % P—
. 1 ® fd
Input video Segl‘;‘:t‘ﬁt:ém“ — O | sTA-GCN Output
- = - N
- positions
| Motion-stream
Instrument parts: Body, bow, i
and bridges (upper, lower)

Figure 1. Our proposed architecture.

3.1. MMPose Method

MMPose [6] is a real-time human skeleton detection and tracking method for multi-
person pose estimation that supports a wide range of features such as hand, whole-body,
pose, 2D keypoints, 3D mesh reconstruction, and 3D surface. It is a state-of-the-art method
that achieves high accuracy and efficiency by leveraging multi-scale feature learning,
soft-argmax-based keypoint aggregation, and a fully-convolutional network architecture.
Additionally, MMPose incorporates data augmentation techniques and is trained using
a combination of supervised and unsupervised learning methods. Overall, MMPose is a
powerful tool for accurately and efficiently estimating poses across multiple individuals
with diverse features. The model utilizes the High-Resolution Representation Network
(HRNet) [23] as a backbone, which is capable of preserving high-resolution representations
throughout the entire process.

The HRNet utilizes the concept of multi-resolution representations, where high-
resolution representations are extracted and fused to generate more robust features. HRNet
has a unique architecture that enables it to process high-resolution images efficiently, by
avoiding down-sampling or up-sampling operations that may cause information loss or
computation overhead. It has multiple stages that gradually refines features, allowing it
to learn increasingly complex representations. The HRNet architecture starts from high-
resolution sub-network, followed by the addition of low- resolution sub-network as the
network goes deeper to create multi- resolution. The multi- resolution information is fused
by exchanging information repeatedly across parallel multi-resolution sub-networks. Fi-
nally, the HRNet estimates keypoints based on the high-resolution representations that are
outputted. Figure 2 displays the HRNet network in the MMPose estimation method, where
the x-axis indicates the network depth and the y-axis represents the feature map scale.
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Figure 2. The HRNet architecture in the MMPose estimation method.

We utilize the whole-body top-down pose estimator provided by MMPose as a pre-
trained model to estimate the 133-point keypoints of the entire body from RGB videos and
create a graph of finger keypoints. The whole-body human pose estimation method has
been outperformed in terms of both robustness and efficiency. We compared the whole-
body keypoints estimation from human pose with MediaPipe, OpenPose, and MMPose.
The results shown that MMPose method is outperform other methods as shown in Figure 3.

Figure 3. The whole-body keypoints estimation results of MediaPipe (a), OpenPose (b), MMPose (c).

We compared the whole-body keypoints estimation from human pose performance
with MediaPipe, OpenPose, and MMPose in term of Frame per second (FPS), number of
incorrect keypoints prediction (Incorrect), and number of missing keypoints (Missing) as
shown in Table 1.

Table 1. The comparison with MediaPipe, OpenPose and MMPose.

Method FPS Incorrect Missing
MediaPipe (a) 12 16 43
OpenPose (b) 1 24 9

MMPose (c) 4 0 0

Our evaluation of 100 video frames revealed MMPose to be the superior choice.
It achieved a processing speed of 4 FPS with the lowest number of both incorrect (0)
and missing keypoints (0). This combination of speed and accuracy is essential for our
task, as precise keypoint detection and real-time performance are critical for capturing
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the intricate hand movements and instrument interaction that characterize Morin khuur
music performances.

In contrast, MediaPipe exhibited the fastest processing speed (12 FPS) with a significant
number of incorrect keypoint predictions (16) and missing keypoints (43). OpenPose,
while achieving a processing speed of 1 FPS, suffered from even more incorrect keypoint
predictions (24) and missing keypoints (9).

3.2. YOLACT Segmentation Method

YOLACT is a real-time instance segmentation algorithm developed by Bolya et al. [26].
It is capable of detecting and segmenting objects in an image, where each object is labeled
with a unique mask. YOLACT has implemented a prototype generation network that
responsible for learning a set of object features used to create a set of prototype masks.
These prototype masks are then used to compute a set of feature maps for performing
instance segmentation. To improve the accuracy of instance segmentation, a fusion module
is utilized. This module combines information from the prototype masks, feature maps,
and class labels to produce a final set of instance masks. Additionally, the loss function is
designed to promote the learning of precise object masks and effective object prototypes. It
combines a semantic segmentation loss, a mask prediction loss, and a prototype similarity
loss. YOLACT segmentation method is shown in Figure 4.

YOLOACT segmentation method

Prediction
Head _b

Prototype Mask | Instrument parts: Body, bow
B — ‘ and bridges (upper, lower)

Figure 4. YOLACT segmentation method.

We employ the ResNet101-FPN network as the backbone architecture for feature
extraction from an image, accomplished through a series of convolutional layers. These
convolutional layers are responsible for acquiring diverse image features, encompassing
elements like edges, textures, and shapes. We augment ResNet-50 with the FPN, as it has
the capacity to enhance the model’s efficacy in object detection and segmentation tasks.

The prediction head is a fully convolutional network that takes the feature pyramid
from the FPN as input and predicts the class probabilities, bounding boxes, and mask
coefficients for each object as shown in Figure 5.

In this context, ¢ stands for the number of classes, a denotes the anchors for feature
layer P;, and k signifies the prototypes.

Protonet is a network that predicts a set of prototype masks for the entire image.
It learn during training to represent the different object categories that the model can
detect and segment objects in real-time. We employ the Feature Pyramid Network (FPN)
within the Protonet network. Importantly, the deeper backbone features produce better
performance on smaller objects. In our model, the largest feature layers, denoted as Ps,
are the deepest. The increase in size is accomplished through an upsampling operation,
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followed by a convolutional layer, and further enhanced by the ReLU activation function.
The architecture of the Protonet network is depicted in Figure 6. The labels provide
information about feature dimensions and channels corresponding to the image size. The
arrows represent 3 x 3 convolutional layers, with the exception of the final convolutional
layer, which is 1 x 1 in size and is denoted as k to represent prototypes.

\

Class W x H

/ Box
Feature layer ____, x H —»
P,) x 255
Mask ¢

Figure 5. Prediction Head.

Feature layer —, |69 x 69]----» 69x69 138x 138 138 x 138
(P3) % 255 3 x 255 x 255 x k

Figure 6. Protonet network.
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Mask coefficients are learned during the training process and are used to weight and
combine the prototype masks to generate instance-specific masks for objects detected in
the image. Essentially, they help determine the shape and appearance of the mask for
each individual object, allowing for accurate instance segmentation. After the prediction
head has computed mask coefficients for each object, Non-Maximum Suppression (NMS)
is employed to eliminate redundant bounding boxes among the predicted ones, ensuring
each object is detected only once. Subsequently, instance masks are generated through
Mask Assembly. These masks are then extracted for each object using the crop operation,
and finally, the threshold operation is applied to binarize the instance masks for each object.
Then generate segmentation masks for the instrument parts, such as the body, bow, lower
bridge, and upper bridge.

Mask Assembly is used to generate instance masks. We combine the outputs of the
prototype branch and the mask coefficient branch by using a linear combination of the
former with the latter as coefficients. Subsequently, we apply a sigmoid nonlinearity to
obtain the final masks. These procedures can be implemented through a single matrix
multiplication followed by a sigmoid function, as shown in Equation (1) [26].

M = (PCT) (1)

In this context, M is the predicted mask for the object, o is the sigmoid function, P
represents a matrix of prototype masks with dimensions & x w x k, with their corresponding
coefficients C, and T is the matrix transpose.

3.3. Graph Data Module

The MMPose estimation method generates pose estimation data, from which we
extract fingertip keypoints. These keypoints, along with fret positions obtained from
instrument parts using the YOLOACT segmentation method, are then used as inputs for
the Graph Data module. This module calculates the distances between fingertip keypoints
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and fret positions, as illustrated in Figure 7. The resulting joint-stream and motion-stream
graph data is subsequently fed into the STA-GCN module for further processing.

Graph data module

TIMRP 123456789 R o |

T - R
v SiStaide
— , -
... 1 1 1
. - —_ - ]
Distance between fingertip : =
9 -

keypoints and frets

nt+tmxm+n xs

Figure 7. Graph data module.

Each green element in Figure 7 represents the distance between a fingertip keypoint
and a fret position across a video sequence. White elements represent empty values.
Fingertip keypoints, denoted by #, correspond to the total number detected by the MMPose
estimation method. Similarly, fret positions, denoted by m, represent the total number of
frets on the Morin khuur instrument. Additionally, the sequence length, indexed by s, has a
value of 30 in this study.

The distance computation involves considering all possible combinations of fingertip
keypoints and fret positions throughout the entire sequence. This calculation results in
n+m X m+n x s calculations, effectively capturing the relationships between every
fingertip and every fret position across each frame in the sequence.

Fret Positioning Calculation

The morin khuur, a traditional Mongolian bowed string instrument, does not have
frets on its bridge. Unlike many other string instruments, such as guitars and lutes, the
Morin khuur has a smooth, unfretted neck. To determine fret positions, the space between
frets decline in a consistent ratio, as depicted in Figure 8. Table 2 illustrates the standard
scale length for each fret based on the size of the instrument, which includes small, medium,
and large sizes [27].

Upper bridge

Figure 8. The scale length of the instrument.
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Table 2. The standard scale length values of the instrument.
Size (cm)/Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14
of Fret
Large (56.6) 6 108 137 182 225 263 285 309 334 363 378 394 413 429
Medium (54) 57 103 132 176 215 25 272 297 32 344 358 376 392 406
Small (<54) 54 96 11.8 163 199 234 251 279 303 325 339 352 368 379

In a musical performance video, defining the notes presents a challenge due to varia-
tions in instrument size, which depend on both the camera’s recording distance and the
inherent size of the instrument. Therefore, it becomes essential to establish the scale length
of each fret, representing the distance between the nut and the bridge when the string
is pressed down. The formula used for calculating the scale length of frets on stringed
instruments is given in Equation (2).

SSL
SLi=

)

In this context, SL; denotes the scale length of fret i, where SSL stands for the standard
scale length, which is determined from a table based on the instrument size and fret index.
SI represents the size of the instrument, with i denoting the fret index ranging from 1 to 14.
Additionally, L represents the length of the fretboard for each instrument size: 56.6 cm for
large size, 54 cm for medium size, and 5.4 cm for small size.

As an example, let’s calculate the scale length of fret 1 for a large-sized instrument
(56.6 cm). The standard scale length value in the Table 2 for fret index 1 of a large-sized
instrument is 6. Applying the formula, the result is:

SL1 = gz~ 0106

3.4. Action Recognition Network

We have specifically designed the Action Recognition Network to recognize the rela-
tionship between Morin khuur instrument positions, finger positions, and to link them to
actual music notes. This network leverages a combination of Spatial-Temporal Attention
and Graph Convolutional Networks (STA-GCN).

Initially, the joint-stream and motion-stream graph data are input into the Spatial-
Temporal Attention and Graph Convolutional Network (STA-GCN) module, as illustrated
in Figure 9. Within this module, the spatial graph attention mechanism captures the
spatial dependencies among the key points in the joint-stream and motion-stream data,
allowing the model to learn how the relative positions of hand joints and the locations of
instrument sections influence each other. Subsequently, the Graph Convolutional Network
(GCN) refines the learned features for each data stream through graph-based convolutions.
Imagine the hand and instrument segmentation data as graphs, with keypoints/instrument
sections as nodes and connections between them as edges. The GCN leverages these
connections to further refine the understanding of how these elements relate to each other
within each stream.

Next, the module integrates temporal graph attention to capture temporal relationships
between consecutive frames in the input data, thereby enhancing the understanding of the
dynamic evolution of the pose and motion information over time during a performance.
The features extracted through spatial and temporal attention mechanisms are then passed
through a temporal pooling layer, which aggregates information across frames, capturing
the overall movement patterns. The extracted features are subsequently processed by a
fully connected layer to capture high-level representations, followed by a Softmax layer for
predicting musical notes based on the learned features.
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By employing this two-stream architecture with separate attention mechanisms for
both spatial and temporal information, the STA-GCN model effectively learns the intricate
relationships between hand keypoints and instrument segmentation data, ultimately en-
abling it to recognize the connections between Morin khuur instrument positions, finger
positions, and the corresponding musical notes being played.

STA-GCN module

e N
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Figure 9. The Spatial-Temporal Attention and Graph Convolutional Network (STA-GCN) module.

3.5. Dataset

We collected data from both professional and novice musicians’ performances using
two cameras: a Logitech C200 webcam (Logitech, Lausanne, Switzerland) for recording
RGB footage (color video) and an Intel® RealSense™ camera SR300 (Intel Corporation,
Santa Clara, CA, United States) for capturing RGB-depth data, providing combined color
and depth information. This resulted in a dataset containing RGB front-view and side-view
videos of the performances, along with corresponding MIDI files (musical note information)
and depth sequence data. To extract meaningful information from the videos, we applied
preprocessing techniques using a segmentation module. This involved identifying key
points on the musician’s body (landmarks) and segmenting the four individual parts of the
Morin khuur (body, bow, upper bridge, and lower bridge) for further analysis.

Due to the unique nature of Morin khuur gestures, we developed a custom data
collection and editing tool (as shown in Figure 10). This tool streamlines data gathering by
allowing for simultaneous recording of video and audio, editing and trimming of captured
data across different types (RGB front-view, side-view, depth video, depth raw, and audio),
generating an annotation file, and saving data in suitable formats for further processing, as
illustrated in Figure 11. Examples of data include RGB images captured from front and
side views, along with depth images.

The final dataset consists of 600 videos divided for training, validation, and testing pur-
poses. Seventy percent of the videos are used to train the machine learning model, 15% are
used for validation during training to optimize the model’s performance, and the remaining
15% are used for testing the model’s accuracy on unseen data. The dataset has been released
and is available on the website, accessible through the following link: “https://drive.google.
com/drive/folders/1WLiPbjJ4YOUM6S6KH-2hJ6fCINEUL3IE?usp=drive_link (accessed
on 10 April 2024)”.

The STA-GCN model was trained using the Adam optimizer, chosen for its efficiency in
handling sparse gradients and noisy objectives. Hyperparameter tuning involved adjusting
the learning rate (ranging from 0.0001 to 0.001) and varying the number of hidden units in
GCN layers (e.g., 16, 32, 64). This process allows evaluation of the model’s capacity to learn
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complex relationships. Evaluation of the STA-GCN model typically employs standard
accuracy and loss metrics for action recognition tasks, indicating the overall percentage of
correctly classified musical notes.

Figure 11. Data examples include RGB images captured from front and side views, along with
depth images.

4. Experimental Results

We evaluated the performance of our proposed method (STA-GCN) by comparing
it with various data types, as illustrated in Table 3. These include two-camera data, data
without side camera input, data without front camera input, motion data, motion data
combined with RGB, and RGB data alone, as well as ST-GCN with motion data and ST-GCN
with RGB as baseline models. The results indicate that our proposed method utilizing
motion data achieved the highest accuracy of 0.81, with a loss value of 0.93. Conversely,
the lowest accuracy of 0.43, with a loss of 2.76, was obtained when using two-camera data.
The training accuracy and loss are illustrated in Figure 12.
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Table 3. The comparison of our proposed method performance with different data types.

Method Accuracy Loss
ST-GCN motion data 0.73 1.14
ST-GCN w/RGB 0.70 1.33
STA-GCN w/two camera data 0.43 2.76
STA-GCN wo/side camera data 0.67 2.55
STA-GCN wo/front camera data 0.61 2.13
STA-GCN motion data 0.81 0.93
STA-GCN w/RGB 0.72 0.96
STA-GCN motion data w/RGB 0.63 1.76

Training Accuracy
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Figure 12. Illustrates the training accuracy and loss plot.

The reason behind this discrepancy is likely due to several factors. Motion data
captures small details of musician movement, including finger motions and bow control,
which are crucial for musical expression and note recognition. Camera data, especially in
single-camera setups, might miss these intricacies due to occlusion or limited viewpoints.
Additionally, a two-camera setup might not be optimal for capturing the most relevant
information for note and action recognition. The camera angles might miss crucial hand
and instrument interactions crucial for accurate recognition. RGB data alone might be
insufficient for differentiating subtle movements related to specific notes, especially if
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lighting conditions or background variations are present. Finally, combining motion data
with RGB data might not achieve the best results if the fusion is not effective. The specific
way of combining these data streams could introduce noise or redundancy, negating the
potential benefits of each type.

Compare the Performance of the MASK-RCNN and YOLACT Methods in Segmenting Objects
Our evaluation of MASK-RCNN (a) and YOLACT (b) for instrument segmentation,
illustrated in Figure 13 and Table 4, revealed YOLACT’s superior performance due to
its refined backbone network, optimized anchor design, and swift mask re-scoring. This
superior performance led us to adopt YOLACT for instrument segmentation in our paper.

(@

(b)

Figure 13. MASK-RCNN (a) and YOLACT (b) segmentation comparison.

Table 4. A comparison of Mask R-CNN and YOLACT segmentation performance.

Method AP ask FPS
MASK-RCNN 29.3 6.3
YOLACT 32.6 16.1

Table 4 compares the segmentation performance of Mask R-CNN and YOLACT
based on metrics including APmask and FPS. YOLACT achieves a higher APmask (32.6)
and a faster frame rate (FPS) of 16.1 compared to Mask R-CNN, which scored 29.3 and
6.3 FPS, respectively.

5. Conclusions

This paper introduces an innovative deep learning method for Human Action Recog-
nition (HAR) and musical note recognition in music performances, employing a Spatial
Temporal Attention Graph Convolutional Network (STA-GCN). To facilitate this research,
we carefully constructed a comprehensive dataset using advanced sensor technology,
capturing precise hand keypoint data and instrument segmentation details. These sensor-
derived datasets were essential for capturing the spatial and temporal dynamics crucial for
our STA-GCN model. Our two-stage approach demonstrates the value of detailed, sensor-
based data collection in enhancing the model’s ability to discern intricate patterns in HAR
and music performance, contributing to advancements in the field of machine learning.

However, the STA-GCN model might be computationally expensive, potentially limit-
ing its real-time applicability in some scenarios. Future work could explore lighter-weight
model architectures or optimize the existing model for efficiency to address this limitation.
Additionally, the current work focuses on the specific instrument, Morin khuur. Adapting
the method to handle other instruments with different playing styles and techniques would
necessitate further research and adjustments to the model.
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