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Abstract: The operational efficacy of lane departure warning systems (LDWS) in autonomous vehicles
is critically influenced by the retro-reflectivity of road markings, which varies with environmental
wear and weather conditions. This study investigated how changes in road marking retro-reflectivity,
due to factors such as weather and physical wear, impact the performance of LDWS. The study was
conducted at the Yeoncheon SOC Demonstration Research Center, where various weather scenarios,
including rainfall and transitions between day and night lighting, were simulated. We applied
controlled wear to white, yellow, and blue road markings and measured their retro-reflectivity at
multiple stages of degradation. Our methods included rigorous testing of the LDWS’s recognition
rates under these diverse environmental conditions. Our results showed that higher retro-reflectivity
levels significantly improve the detection capability of LDWS, particularly in adverse weather con-
ditions. Additionally, the study led to the development of a simulation framework for analyzing
the cost-effectiveness of road marking maintenance strategies. This framework aims to align mainte-
nance costs with the safety requirements of autonomous vehicles. The findings highlight the need
for revising current road marking guidelines to accommodate the advanced sensor-based needs of
autonomous driving systems. By enhancing retro-reflectivity standards, the study suggests a path
towards optimizing road safety in the age of autonomous vehicles.

Keywords: LDWS; autonomous vehicle; road markings; retro-reflectivity; environmental conditions;
simulation framework

1. Introduction

The rapid evolution of autonomous vehicle technology has brought the need for
precise lane recognition capabilities, which are crucial for vehicle safety and operational
efficiency, into sharp focus [1–4]. These advancements necessitate sophisticated systems
capable of accurately detecting and interpreting road markings, which are fundamental
to vehicular navigation and control. In this context, the development and refinement of
technologies like the lane departure warning system (LDWS) have become increasingly
significant [5–8]. This progression is not just a technological evolution but also a safety
imperative, as accurate lane recognition directly correlates with reducing road accidents and
enhancing traffic management. The integration of such technologies is a critical component
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in advancing the capabilities of automated driving, fundamentally altering conventional
approaches to road safety and vehicle control mechanisms.

LDWS, a key component in advancing driver assistance technologies, actively con-
tributes to road safety by alerting drivers of unintentional lane deviations [6–10]. The
performance of LDWS is dependent on the clarity and detectability of road markings,
which can be influenced by factors such as weather, wear, and lighting conditions [11–13].
That is, this system’s functionality is intricately linked to environmental factors, particu-
larly road marking visibility and conditions. The dependence emphasizes the necessity of
understanding and adapting to the environmental variables that impact LDWS efficiency
in autonomous vehicles, as maintaining its consistent functionality is important for road
safety [14–17].

Ensuring high retro-reflectivity in road markings is crucial for maintaining consistent
functionality of LDWS in autonomous vehicles [18], especially under varying weather
conditions. The determination of a specific retro-reflectivity threshold that reliably supports
lane recognition by LDWS is vital for vehicle safety. Despite its importance, there exists
a research gap in identifying a reliable retro-reflectivity threshold from the perspective
of LDWS. Few studies have addressed this issue [19], pointing to the need for further
research focused on retro-reflectivity thresholds in relation to LDWS. Moreover, current
domestic standards in South Korea for road markings are predominantly designed with
general drivers in mind, primarily focusing on installation, maintenance, and repainting
guidelines (Table 1). These standards have not yet incorporated specific criteria for LDWS,
which rely on machine perception of road boundaries for navigation. As a result, the
existing guidelines, which only consider retro-reflectivity values suitable for general driving
conditions, may not suffice for autonomous driving systems. This highlights a critical need
for revised guidelines that ensure clear and consistent road marking interpretations under
diverse operational conditions, thereby closing the safety gaps in autonomous vehicle
navigation.

Table 1. Retro-reflectivity standards for road markings (manual for installation and management of
traffic road markings, Korea National Police Agency, 2020).

Irradiation
Angle

Observation
Angle Conditions

Retro-Reflectivity (mcd/(m2·Lux))

White Yellow Blue

88.76◦

(1.24◦)
1.05◦

(2.29◦)

Installation 240 150 80 Standard

Repainting 100 70 40 Recommend

Rainfall (wet) 100 70 40 Recommend

“Installation” refers to the period from one week after road marking installation up to the completion of the
project. “Repainting” is considered when the reflective performance value falls below the standard. The use of
products that exceed the Korea Industrial Standards (KSM 6080) is considered a principle. The measurement
of the retro-reflective performance of road markings on wet surfaces shall be in accordance with the methods
specified in European Standards (EN 1436).

The objective of this research was to establish a threshold of retro-reflectivity for road
markings that vision-based LDWS can reliably detect, thus proposing a set of reflective
performance guidelines. This research represents one of the approaches to quantitatively
defining specific retro-reflectivity thresholds for road markings, a critical aspect which has
previously been underexplored, especially from the LDWS perspective, in autonomous
vehicles. The experiments were designed to test the lane recognition rate of LDWS across a
spectrum of retro-reflectivity levels for white, yellow, and blue road lines. We systematically
combined various conditions, including different levels of rainfall, day and night cycles,
and vehicle light statuses (on/off), to comprehensively evaluate the performance of LDWS
under realistic and controlled conditions. This approach allowed us to determine the critical
retro-reflectivity values necessary for the LDWS to function effectively and safely, regardless
of environmental conditions. Building upon these findings, we developed a simulation
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framework that utilizes established thresholds to evaluate road marking maintenance
strategies. In particular, as the cost aspect of the maintenance strategies is a crucial objective
for road management authorities [20–22], this framework was designed to optimize the
balance between cost-effectiveness and the stringent safety requirements of autonomous
vehicle ecosystems.

2. Materials and Methods
2.1. LDWS Functionality Tests

The LDWS functionality tests were conducted in strict compliance with the safety
standards for autonomous vehicles set by the Ministry of Land, Infrastructure, and Trans-
port. The vehicle test conditions meticulously maintained the ambient temperature on
the test track within the range of 0 to 45 degrees Celsius. The procedure involved a vehi-
cle equipped with LDWS using the front-view camera (QX1000, Mando Co., Ltd., Seoul,
Republic of Korea), which accelerated from a stationary state to 60 km/h. This camera
system was tasked with capturing front-view imagery, while lane detection was conducted
using MobileEye’s eyeQ5 processor, specifically designed for advanced image recognition
capabilities in LDWS applications. This configuration is widely used in LDWS vehicles
operating in Korea, ensuring the relevance and applicability of our test results. The tests
included executing a lane departure at a specified lateral speed within a controlled weather
simulation section (Figure 1). The effectiveness of the LDWS was primarily assessed based
on the road marking recognition rate. The road marking recognition rate (%, accuracy)
was calculated as a percentage of correct recognitions, determined by dividing the number
of road markings recognized by the total number of trials, then multiplying by 100%. To
ensure the robustness of our data, each condition within the experiment underwent ten
trials, allowing for a comprehensive assessment of the LDWS’s performance under various
environmental scenarios.
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Figure 1. LDWS testing environment and procedure. (A) shows the real test track with a shielded
section for weather simulation. (B) illustrates the test setup where a vehicle equipped with LDWS
accelerates to 60 km/h and performs a lane departure at a pre-defined lateral angle. The vehicle starts
100 m outside of the shielded area for acceleration and then enters a 100-m section inside the shield,
where the lane departure is executed.

2.2. Experimental Scenarios

The experimental scenarios were designed to assess the luminance of road markings
at various stages of road marking wear, specifically for white, yellow, and blue markings.
Prior to field application, a preliminary analysis was conducted to determine the rate of
luminance reduction due to surface abrasion, ensuring that the scenarios were reflective
of actual road conditions. To rigorously evaluate the LDWS’s capability to detect road
markings under various degrees of wear and environmental conditions, the scenarios inte-
grated factors such as color, wear extent (considering the degree of erosion), luminance, and
weather conditions (rainfall). To reflect the complexities of realistic driving environments,
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the testing conditions were varied. Rainfall intensities were set at incremental levels of dry
road surface, wet road surface, 20 mm/h, and 40 mm/h to simulate wet conditions. In
terms of road marking wear, the experiments included stages of various degradations. The
luminance conditions were controlled to simulate the visibility during the day and at night,
with specific scenarios including daytime brightness, nighttime with street lighting and
vehicle headlight, and nighttime with only vehicle headlights on (Table 2). These detailed
parameters, in conjunction with a controlled track environment that replicated actual road
conditions, allowed for a series of repeated trials to provide a thorough assessment of the
LDWS’s performance across a spectrum of realistic and challenging driving scenarios.

Table 2. Evaluation parameters for LDWS performance testing.

Parameters Conditions

Road marking color White, yellow, and blue

Road marking wearing(grinding frequency) No grinding, 2 grindings, 4 grindings, and 8 grindings

Luminance Daytime, nighttime (road lighting on and vehicle lighting on), and nighttime
(road lighting off and vehicle lighting on)

Weather conditions Normal (dry), wet, rainfall (20 mm/h), rainfall (40 mm/h), fog low visibility
(below 50 m), and fog high visibility (below 100 m)

2.3. Scenario Implementation

The Yeoncheon SOC (System of Control) Demonstration Research Center in Korea
was utilized to establish diverse environmental conditions for analytical evaluation. The
total length of the weather simulation test section spanned 200 m. The initial 100 m, located
outside the tunnel shield, facilitated vehicle acceleration (Figure 1). The subsequent 100
m inside the tunnel shield were dedicated to performing lane changes and calculating the
lane detection rate. Within the shielded section, precipitation was synthetically generated,
ranging from 20 mm/h to 40 mm/h (Figure 2). Lighting conditions were regulated accord-
ing to the time of day and the use of tunnel illumination. Daytime tests ran from 12:00 to
15:00, and nighttime sessions were performed after 21:00 with adjustable tunnel lighting
(Table 2).
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2.4. Vehicle’s Speed and Trajectory

The methodology for evaluating the LDWS’s detection accuracy was developed. The
LDWS-equipped vehicle sufficiently accelerated outside of a shielded area and then passed
through a simulation zone (tunnel shield) to execute a lane change within a specified
section. It enables the measurement of the system’s recognition rate under controlled yet
realistic conditions. The vehicle’s speed was maintained at 60 km/h, the operational speed
for the LDWS, ensuring the system’s activation during testing. The lateral departure angle
and speed were calculated to result in a trajectory with a tangent of 3.5/40 (equivalent to
an angle of 5.01 degrees), corresponding to a lateral speed of 1.458 m/s (Figure 1). The
trials were designed to minimize error and provide an accurate assessment of the LDWS’s
performance in various weather-induced visibility conditions.

2.5. Preliminary Test

Prior to the main experiments of the LDWS’s capability tests, a series of preliminary
experiments was conducted at the Yeoncheon SOC Demonstration Research Center to de-
termine the relationship between the number of grindings and retro-reflectivity reduction.
The test track was marked with white, yellow, and blue lane markings (Figure 3A). These
markings underwent a systematic abrasion process using a grinder (Figure 3B), followed by
measurements of the retro-reflective coefficient. Measurement points were marked along-
side the markings. Subsequent to grinding, these points underwent multiple assessments
to ensure the reliability of the data. The retro-reflective coefficients were obtained using
a retro-reflectometer (LTL-XL, Delta Corp Holdings Ltd., Hørsholm, Denmark), which
was calibrated before each measurement session with standard samples provided by the
manufacturer (Figure 3C).
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Figure 3. Road marking application (A), abrasion process (B), and retro-reflectivity measurement (C)
for preliminary test.

The preliminary findings indicated a decline in the retro-reflective coefficient with
successive grinding frequency for test track lane markings (Figure 4). The results confirmed
the SOC center’s capability to effectively simulate road marking wear and retro-reflectivity
degradation.
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Figure 4. Trend graph of retro-reflectivity coefficients by grinding frequency. This figure illustrates
the diminishing retro-reflectivity coefficients of white (A), yellow (B), and blue (C) lane markings
as a function of grinding frequency. The x-axis represents the abrasion stages, while the y-axis
measures the retro-reflective coefficients. In all colors, the lane markings exhibit a consistent decline
in retro-reflectivity in response to successive grinding stages.

2.6. Experimental Procedures

The LDWS road marking recognition rate experiment followed a protocol that incor-
porated varying weather conditions. The procedure included an initial application of road
markings, simulation of wear through repeated grinding (Table 3), verification of retro-
reflective coefficients, and a sequence of tests in both daytime and nighttime conditions,
replicated ten times each to maintain experimental consistency. Additional tests replicating
rainy conditions were also repeated ten times to ensure robust data.

Table 3. Measured retro-reflectivity coefficients as a function of grinding frequency for the experiment
(unit: mcd/(m2·LUX)).

Color Initial 2 Grindings 4 Grindings 8 Grindings

White 365 253 142 104
Yellow 200 164 76 -

Blue 212 132 62 47

2.7. Simulation Framework for Efficient Road Management

To enhance the practical applications of our experimental findings, a simulation frame-
work was developed to analyze the cost-effectiveness of various road marking repainting
scenarios. This framework specifically evaluated the impact of repainting on the per-
formance of LDWS, particularly under challenging weather conditions. Central to this
framework was the monitoring of road markings’ retro-reflectivity, assessing whether it fell
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below the thresholds outlined in Table 1. As seen in Figure 4, the retro-reflectivity of road
markings tends to be non-linearly degraded by the frequency of grindings. This follows
existing studies [23–25] where the retro-reflectivity of road lane markings in practice is
degraded with a non-linear shape by time and the number of passing vehicles. In this
regard, a non-linear regression model with a power regression design (y = β0 + β1·xρ)
was employed to establish the LDWS recognition rate and the retro-reflectivity of road
markings. This model took into account variations in luminance and weather conditions,
where x denoted the target recognition rate and y represented the required retro-reflectivity.
The model’s hyperparameter, ρ, which indicates the change in the retro-reflectivity with
respect to the target recognition rate, was optimized using a grid search method within
the range of [0, 3], aiming to maximize the r2 statistics and thus providing a more precise
estimation of the necessary retro-reflectivity thresholds (Figure 5). The non-linear model
bridged the gap between theoretical data and actionable guidelines.
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Figure 5. Trend between LDWS recognition rate and retro-reflectivity under the condition of 40 mm/h
rainfall intensity and no additional lighting. The red curve line represents the fitted non-linear
regression model (y = β0 + β1·xρ), where the hyperparameter ρ is optimized through a grid search in
the range of [0, 3] to achieve the maximum r2 statistics. Note that, as it is not possible to fit a curved
line on only 2 observations for yellow lane markings, we assume that the power hyperparameter ρ of
yellow lane markings is 1.78, as shown in Figure 4.
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In its practical application, the framework facilitated cost comparisons among different
road marking paint products. Key factors considered in this comparison included: (1) the
repainting cost per kilometer for each product (C); (2) the initial retro-reflectivity of these
products (W); and (3) the duration taken for each product’s retro-reflectivity to diminish by
one level of wear (D), a measure that varies based on regional environmental conditions.
For this simulation, three hypothetical products were assumed (Table 4): A1 (currently
used in our research), A2 (a more expensive but higher quality alternative to A1), and A3 (a
cheaper but lower quality option compared to A1). The simulation framework, denoted as
SIM : (TR, ST, LW, C, W, D)→ Cost (Algorithm 1), calculated the total cost of maintaining
a specified target recognition rate (TR) over a certain simulation period (ST) under various
luminance and weather conditions (LW). This simulation aided in identifying the most
efficient repainting strategy, balancing cost, and LDWS performance.

Algorithm 1: Simulation Framework to Calculate Repainting Cost

Input: TR, ST, LW, C, W, D
Output: TotalCost

1 Update of variables: assign D to Table 3
2 NewThreshold⟨white, yellow, blue⟩ ← predict retro-reflectivity by the fitted non-linear model based on Tables 5–7 with

inputs of TR, LW
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 365  
mcd/(m2 Lux) 

253  
mcd/(m2 Lux) 

142  
mcd/(m2 Lux) 

104  
mcd/(m2 Lux) 

Dry and Lighting 100 100 100 100 
Dry and No Lighting 100 100 100 100 

Wet and Lighting 100 100 90 90 
Wet and No Lighting 100 100 90 90 

I = 20 (mm/h) and Lighting 100 100 70 60 
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Lighting 
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Table 4. Elements of three paint products (unit: 1000 KRW/km for C; mcd/(m2·Lux) for W; days for D).

Product Elements
Colors

White Yellow Blue

A1
(Our)

Repainting cost (C) 100 110 90

Retro-reflectivity at installation (W) 365 200 212

Duration per grind extent (D) 100 120 80

A2

Repainting cost (C) 130 140 120

Retro-reflectivity at installation (W) 380 215 220

Duration per grind extent (D) 105 130 85

A3

Repainting cost (C) 90 95 85

Retro-reflectivity at installation (W) 360 195 205

Duration per grind extent (D) 95 100 95
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Table 5. LDWS recognition rate for white road markings during nighttime (average of 10 trials, unit: %).

365
mcd/(m2 Lux)

253
mcd/(m2 Lux)

142
mcd/(m2 Lux)

104
mcd/(m2 Lux)

Dry and Lighting 100 100 100 100
Dry and No Lighting 100 100 100 100

Wet and Lighting 100 100 90 90
Wet and No Lighting 100 100 90 90

I = 20 (mm/h) and Lighting 100 100 70 60
I = 20 (mm/h) and No Lighting 100 100 70 50

I = 40 (mm/h) and Lighting 100 100 50 40
I = 40 (mm/h) and No Lighting 100 100 40 30

I = 50 (mm/h) and Lighting 100 100 40 20

I = rainfall intensity.

Table 6. LDWS recognition rate for yellow road markings during nighttime (average of 10 trials, unit: %).

200
mcd/(m2 Lux)

164
mcd/(m2 Lux)

76
mcd/(m2 Lux)

Dry and Lighting 100 100 100
Dry and No Lighting 100 100 100

Wet and Lighting 100 100 90
Wet and No Lighting 100 100 90

I = 20 (mm/h) and Lighting 100 100 50
I = 20 (mm/h) and No Lighting 100 100 50

I = 40 (mm/h) and Lighting 100 100 40
I = 40 (mm/h) and No Lighting 100 100 30

I = 50 (mm/h) and Lighting 100 100 20

I = rainfall intensity.

Table 7. LDWS recognition rate for blue road markings during nighttime (average of 10 trials, unit: %).

212
mcd/(m2 Lux)

132
mcd/(m2 Lux)

62
mcd/(m2 Lux)

47
mcd/(m2 Lux)

Dry and Lighting 100 100 100 100
Dry and No Lighting 100 100 100 100

Wet and Lighting 100 100 90 90
Wet and No Lighting 100 100 90 90

I = 20 (mm/h) and Lighting 100 100 50 0
I = 20 (mm/h) and No Lighting 100 100 50 0

I = 40 (mm/h) and Lighting 100 100 30 0
I = 40 (mm/h) and No Lighting 100 100 20 0

I = 50 (mm/h) and Lighting 100 100 10 0

I = rainfall intensity.

3. Results
3.1. White Lane

In the replicated weather simulation experiments for white lane markings, a 100%
recognition rate was achieved during the day across all rainfall conditions, including 20
and 40 mm/h. However, nighttime conditions revealed that variations in lane recognition
rates correlated with decreases in the retro-reflective coefficient. Repeated trials on dry and
wet surfaces at night demonstrated changes in recognition rates. Regardless of nighttime
lighting, a recognition rate above 90% was consistently observed, but at lower retro-
reflectivity values of 142 mcd/(m2·Lux) and 104 mcd/(m2·Lux), the recognition rates
dropped to 90% (Table 5).

Under nocturnal rainfall conditions, recognition rates fell below 70% for retro-reflective
values of 142 mcd/(m2·Lux) and 104 mcd/(m2·Lux). Specifically, at a rainfall intensity
of 20 mm/h with a retro-reflectivity of 142 mcd/(m2·Lux), the LDWS recognition rate
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decreased to 70% (Table 5). As the precipitation increased to 40 mm/h and 50 mm/h, the
lane recognition rate dropped below 50% at a retro-reflectivity of 142 mcd/(m2·Lux). At
104 mcd/(m2·Lux), the recognition rate decreased to 50% when rainfall reached 20 mm/h.
Furthermore, with rainfall intensifying beyond 40 mm/h, the rate diminished to below 30%.

3.2. Yellow Lane

During the daytime, the yellow lane markings achieved a 100% recognition rate under
all rainfall conditions. Even when the retro-reflectivity approached 76 mcd/(m2·Lux), the
recognition rate remained above 90% regardless of nighttime lighting or surface moisture.
However, during nighttime rain conditions with an intensity of 20 mm/h, the recognition
rate fell to 50% at a retro-reflectivity of 76 mcd/(m2·Lux) (Table 6).

3.3. Blue Lane

For the blue lane markings, a 100% recognition rate was achieved during daytime
conditions. Nighttime trials showed a consistent 90% recognition rate on wet surfaces,
independent of lighting presence (Table 7). The recognition rate significantly dropped to
50% at 60 mcd/(m2·Lux) under rainfall intensity of 20 mm/h. Additionally, to maintain a
recognition rate above 70% during nighttime rainfall at the same intensity, a retro-reflectivity
of at least 130 mcd/(m2·Lux) was required.

3.4. Simulation

The simulation framework’s cost analysis, applied to two alternative paint products,
A2 and A3, in addition to the currently used product A1, yielded significant insights into
efficient road management strategies. The alternatives were defined as A2 being more
expensive but of higher quality, and A3 as a cheaper but lower quality option.

The simulation framework revealed that the product A3 emerged as the most cost-
efficient option for target recognition rates below 79%. Conversely, the current product
A1 was found to be the most effective solution for target recognition rates exceeding 79%
under the condition of 40 mm/h rainfall intensity and no additional lighting (Figure 6).
Additionally, the cost-efficiency ranking of the three alternatives varied depending on
different luminance and weather conditions. At a 60% target recognition rate, A3 was
the most cost-effective product across all conditions. Shifting to a 70% recognition rate,
A1 outperformed under extreme conditions of heavy rainfall with lighting and moderate
rainfall without lighting, while A3 remained the preferred option elsewhere. At an 80%
recognition target, the trend continued, with A1 leading in heavy rain scenarios, whether
illuminated or not, and A3 favored in less severe weather conditions (Figure 7).
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alternatives.

4. Discussion

The study aimed to evaluate the impact of weather conditions and wear on the lane
recognition rates for blue, white, and yellow road markings. Conducted at the Yeoncheon
SOC Demonstration Research Center, various weather scenarios were simulated, incorpo-
rating changes in rainfall, lighting, and diurnal cycles. Wear was artificially induced on the
markings to assess degradation effects. Recognition rates were determined through ten
iterations per condition. The outcomes included: (1) During daytime, the lane recognition
rate was 100% under all weather conditions for all colors. (2) At night under heavy rain-
fall, white lane markings showed a recognition rate below 50% when the retro-reflectivity
dropped to 142 and 104 mcd/(m2·Lux). (3) Yellow markings’ recognition halved at night
under 20 mm/h rainfall at 76 mcd/(m2·Lux). (4) Over 70% recognition for blue markings
at night required a retro-reflectivity of at least 130 mcd/(m2·Lux) under 20 mm/h rainfall.

For stable autonomous driving, a recognition rate above 70% is essential for the func-
tionality of LDWS [26]. In our findings, rainfall exceeding 20 mm/h at night significantly
diminished the recognition rate for LDWS. Our research revealed that under such condi-
tions, the recognition rates for white, yellow, and blue lane markings dropped below the
critical 70% threshold. Specifically, when the retro-reflectivity fell to 142 mcd/(m2·Lux) for
white and 104 mcd/(m2·Lux) for yellow, the recognition rates dropped to around 50%. For
blue markings, the recognition rate sharply decreased to 50% when the retro-reflectivity
was at 60 mcd/(m2·Lux) during nighttime rainfall. These findings underscore the need
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for higher retro-reflectivity standards in road markings to support the reliable operation of
LDWS in autonomous vehicles, especially under challenging weather conditions.

In our findings, the retro-reflectivity of lane markings was a crucial factor in maintain-
ing high recognition rates for LDWS. High retro-reflectivity levels consistently resulted
in robust recognition rates across white, yellow, and blue lane markings regardless of
weather conditions, lighting, or the time of day. Specifically, our study demonstrated
that when retro-reflectivity was maintained at or above 253 mcd/(m2·Lux) for white lines,
164 mcd/(m2·Lux) for yellow lines, and 132 mcd/(m2·Lux) for blue lines, the LDWS
achieved a 100% recognition rate in all tested conditions. Thus, emphasizing the necessity
of setting higher retro-reflectivity for road markings would ensure the effective functioning
of autonomous driving systems.

Current guidelines for road markings do not consider the increased retro-reflectivity
requirements identified in our study, particularly under challenging conditions like heavy
rainfall at night. For instance, while standard retro-reflectivity for road markings is
typically set below 100 mcd/(m2·Lux) [27], our study indicates that higher values are
necessary to maintain effective LDWS performance: 140 mcd/(m2·Lux) for white lines,
160 mcd/(m2·Lux) for yellow lines, and 130 mcd/(m2·Lux) for blue line markings. This dif-
ference would arise because conventional standards are designed for human drivers under
a broader range of conditions, whereas autonomous vehicles rely heavily on consistent and
clear road markings for navigation, especially in challenging environments. Therefore, our
findings suggest a need to a revise these standards to accommodate the specific needs of
autonomous vehicle technology.

The simulation framework provided a predictive cost analysis based on the degra-
dation rate of the retro-reflectivity over time and its impact on LDWS recognition rates.
The results indicate that the most cost-effective product selection depends on the target
recognition rate and specific environmental conditions, which underscores the need for a
dynamic road maintenance planning process. Such findings have profound implications
for transportation policy and the progression of autonomous vehicle infrastructures. They
suggest a shift from traditional road maintenance methods towards adaptive strategies that
meet the intricate requirements of autonomous navigation systems. Clearly, updating the
standards for road marking retro-reflectivity is not only a matter of regulatory compliance,
but also a critical step towards optimizing the financial and functional aspects of road
infrastructure management in the era of autonomous driving [28–30].

There are limitations to consider, although our findings contribute valuable insights
into LDWS performance under varying retro-reflectivity levels and weather conditions.
Firstly, the specificity of the LDWS models tested may not include the full diversity of
systems in use today. Each LDWS may respond differently to the conditions, and further
research would be needed to generalize these results across all types of systems. Addi-
tionally, the simulated environmental conditions cannot replicate all the conditions of
real-world scenarios. Factors such as the interaction with other vehicles, varying light
sources, and unexpected road obstruction were not accounted for and could affect the
performance of LDWS in practice. Future studies could aim to involve a broader range
of LDWS technologies and more complex environmental simulations to build upon the
foundation established by the present study.

5. Conclusions

In conclusion, this study illuminates the significant impact of retro-reflectivity and
adverse weather on the performance of LDWS, while advocating for revised road mark-
ing standards required for autonomous vehicle systems. We identified essential retro-
reflectivity thresholds for optimal lane recognition, suggesting the need for updated guide-
lines and advanced LDWS capable of adapting to diverse environmental conditions. Our
simulation framework for road marking management provides strategic insights for select-
ing products based on their performance across varying scenarios. The simulation results
underscore the importance of choosing the right road marking products to balance cost and
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performance, especially in the evolving context of autonomous vehicle technology. This
leads to the recommendation that vehicle manufacturers and road maintenance authorities
should consider these insights for enhancing autonomous vehicle navigation and safety.

Future research directions include refining our experimental protocol to encompass
more nuanced levels of luminance beyond the basic lighting conditions used in this study.
Additionally, incorporating a wider range of environmental variables such as regional
differences, vehicle traffic frequency, and annual climatic variations will augment the appli-
cability of our simulation framework to real-world road marking maintenance scenarios,
further enriching its practical utility and flexibility.
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