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Abstract: This paper introduces an innovative approach to 3D environmental mapping through the
integration of a compact, handheld sensor package with a two-stage sensor fusion pipeline. The
sensor package, incorporating LiDAR, IMU, RGB, and thermal cameras, enables comprehensive
and robust 3D mapping of various environments. By leveraging Simultaneous Localization and
Mapping (SLAM) and thermal imaging, our solution offers good performance in conditions where
global positioning is unavailable and in visually degraded environments. The sensor package runs
a real-time LiDAR-Inertial SLAM algorithm, generating a dense point cloud map that accurately
reconstructs the geometric features of the environment. Following the acquisition of that point
cloud, we post-process these data by fusing them with images from the RGB and thermal cameras
and produce a detailed, color-enriched 3D map that is useful and adaptable to different mission
requirements. We demonstrated our system in a variety of scenarios, from indoor to outdoor
conditions, and the results showcased the effectiveness and applicability of our sensor package
and fusion pipeline. This system can be applied in a wide range of applications, ranging from
autonomous navigation to smart agriculture, and has the potential to make a substantial benefit across
diverse fields.

Keywords: 3D mapping; sensor fusion; SLAM; thermal camera

1. Introduction

Mapping 3D environments has become an essential task across various fields. In
robotics, for instance, constructing an accurate 3D map is crucial for the safe and efficient
navigation of autonomous agents. These maps enable robots to understand and interact
with their surroundings, facilitating tasks ranging from simple navigation to complex
exploration of unknown environments [1]. Another application of advanced mapping
technologies is in agriculture, where understanding the spatial distribution of fruits within
tree canopies is essential for modern orchard management. Accurate 3D mapping aids in
precise harvest forecasting, enabling meticulous planning and efficient resource allocation.
Moreover, with the increasing automation in agriculture, robots designed for tasks such as
fruit picking heavily rely on this spatial data. Detailed knowledge of fruit locations allows
these robots to optimize their operations, minimizing fruit damage and ensuring efficient
movements through orchards [2].

The rise of Simultaneous Localization and Mapping technology has greatly enhanced
the ability to create a map of the environment in real-time while simultaneously tracking
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the agent’s location. This technology has found extensive applications in a variety of fields,
such as autonomous driving [3] and augmented/virtual reality [4], and becomes extremely
valuable in scenarios where global positioning (e.g., GPS) is not available. SLAM can rely
on different sensing systems, including LiDAR and camera, each bringing unique strengths
to the result. For example, LiDAR sensors generate accurate geometrical representations
of the environment through dense point cloud, featuring a long range and high accuracy.
However, they do not capture the visual appearance of objects, which can be crucial for
recognizing and understanding the context of subjects within the mapped environments.
Conversely, traditional cameras providing RGB images offer rich visual details but lack
depth information, leading to an incomplete spatial understanding of the scene. The
integration of LiDAR point cloud with camera pixel data thus offers a more comprehensive
representation of the environment and benefits the 3D mapping and scene reconstruction,
combining both geometric precision and visual context.

Existing mapping solutions often run into challenges in environments with compro-
mised visual conditions, such as those with low illumination or the presence of airborne
particulates (e.g., dust, fog, and smoke). Traditional RGB cameras may not function effec-
tively in these scenarios. Alternative sensors like thermal-infrared cameras can provide
valuable data that enable effective mapping even in challenging visual environments. In
addition to the need for advanced sensing technology, there is also an increasing demand
for a sensor package that is lightweight, compact, and easily portable. This combination
would significantly improve the capability for robust and accurate 3D mapping across
various scenarios.

In this work, we introduce a compact, handheld sensor package along with a sensor
fusion pipeline aimed at enhancing 3D mapping by integrating multiple sensing technolo-
gies. By combining LiDAR, IMU, RGB camera, and thermal camera data, our solution
provides a comprehensive and robust approach to environmental mapping, capable of
functioning efficiently in diverse conditions and applications. Our sensor package, running
a real-time LiDAR-inertial SLAM algorithm, allows for a dense and accurate geometric
reconstruction of the environment. Concurrently, images are logged for post-processing.
We fuse the generated point cloud map with images from the RGB or thermal camera in a
post-processing approach, rendering it into a 3D map colored by RGB or thermal values.
This method seeks to mitigate some of the challenges associated with existing mapping
techniques, potentially enhancing exploration, navigation, and interaction in complex 3D
environments. Our approach sets itself apart from existing handheld mapping solutions
by integrating thermal imaging, which enables mapping in visually degraded conditions,
a feature largely absent in current approaches. Furthermore, our comprehensive evalua-
tion across varied environments, both indoor and outdoor, structured and unstructured,
demonstrates the robustness and versatility of our system in real-world applications. The
main contributions of the work are summarized as follows:

• We design a compact, handheld sensor package equipped with a 3D LiDAR, an RGB
camera, a thermal camera, an IMU, and an onboard processing unit for comprehensive
and robust 3D mapping.

• We propose a sensor fusion pipeline that integrates RGB or thermal images with a
point cloud map produced by the LiDAR-Inertial SLAM algorithm to represent the
3D environments.

• We evaluate the performance of our handheld sensor package and sensor fusion
pipeline in a variety of scenarios, demonstrating its efficacy in both indoor and outdoor
settings, as well as in both structured and unstructured environments.

• We make our code available in a public repository (https://github.com/CHPS-Lab/
handheld_mapping.git, (accessed on 7 April 2024)).

2. Related Work

Three-dimensional mapping has found applications in many fields. For example, it
plays an important role in autonomous driving and drives technological advancements
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by creating a detailed environmental map [5]. In environmental monitoring and remote
sensing, unmanned aerial vehicles (UAVs) can be employed for surveying and mapping
to construct a map of the area of interest [6]. In agriculture settings, 3D mapping captures
the fruit spatial distribution in orchards efficiently. While RGB cameras face issues like
occlusions and low resolution in mapping fruit distribution [7], high-resolution LiDAR
offers a detailed 3D point cloud of tree structures, partially overcoming these challenges.
However, its high cost and the requirement to remain stationary during scans pose limita-
tions [8]. Additionally, many of these mapping technologies rely on a global positioning
system, which becomes problematic in environments where GPS signals are obstructed or
unavailable. One such example includes scenarios like those encountered in the DARPA
Subterranean Challenge [9], which demands exploring and mapping in unknown and
GPS-denied environments. This necessitates the exploration of more comprehensive and
robust mapping solutions.

State-of-the-art SLAM algorithms have demonstrated considerable success in a variety
of applications. Extensive research into both camera-based [10,11] and LiDAR-based SLAM
algorithms [12,13] has showcased their efficacy in a variety of scenarios. These algorithms
can accurately localize robots while maintaining a detailed map of the environment in high
resolution. The integration of inertial measurements has further improved the accuracy,
efficiency, and reliability of these algorithms [14,15]. However, they encounter difficulties
in adverse lighting conditions or in environments obscured by particulates, such as fog,
dust, and smoke, where standard RGB cameras become ineffective. Thermal-infrared
cameras, which detect surface radiation and estimate temperature based on the Stefan–
Boltzmann equation, offer a robust alternative in such challenging conditions, unaffected
by the limitation that impairs RGB cameras [16].

In the domain of 3D temperature mapping, thermal-infrared cameras have been
extensively employed to capture detailed surface imagery of target objects, which provide
richer information for mapping applications [17,18]. Nonetheless, in those works, they
fused the thermal measurements with an RGBD camera’s output, which is limited in range
and primarily suited for indoor environments. Recent research has explored the fusion of
thermal measurements to enhance localization and mapping in broader visibility-reducing
environments. For example, Chen et al. [19] introduced an RGB-T SLAM framework,
merging RGB and thermal data for improved accuracy and robustness in varied lighting
conditions. Shin and Kim [20] proposed a direct thermal-infrared SLAM algorithm utilizing
sparse LiDAR output and demonstrated improved robustness under different illumination
conditions. Saputra et al. [21] presented a probabilistic neural network noise abstraction
method with robust pose graph optimization for a comprehensive thermal-infrared SLAM
system. In addition, Khattak et al. [22] developed a keyframe-based thermal-inertial
odometry algorithm for aerial robots, enabling navigation in GPS-denied and visually
degraded environments. Polizzi et al. [23] devised a collaborative thermal-inertial odometry
system, improving feature matching for loop closure detection and achieving efficient,
decentralized state estimation for teams of flying robots. However, these methods mainly
focus on integrating the thermal measurements to improve the robustness and accuracy
of the state estimation and do not emphasize the generated 3D map by fusing different
sources of sensors. A project closely aligned with our work is by Vidas et al. [17], who
successfully implemented 3D radiometric mapping by combining data from LiDAR SLAM
and a thermal camera.

Regarding other techniques for 3D map reconstruction, the Neural Radiance Field
(NeRF) has recently emerged as a promising method which utilizes deep neural networks
to reconstruct 3D scenes that can offer photorealistic rendering performance [24]. However,
despite its potential, NeRF has the issue of scale ambiguity due to its inherent presence in
the inferring process. Additionally, NeRF requires significant computational resources and
time for training and rendering, which poses limitations for its deployment in scenarios
demanding fast mapping.
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In this work, we designed a compact handheld sensor package that enables fast
and convenient 3D mapping of the surroundings using SLAM and sensor fusion. Many
researchers have explored 3D mapping using handheld or mobile robot solutions. For
example, Maset et al. [25] proposed a mapping system incorporating LiDAR and IMU data,
evaluated in hand-carried and mobile platform-mounted configurations. However, this sys-
tem does not include cameras and its performance in unstructured outdoor environments
remains untested. Lewis et al. [26] studied collaborative 3D scene reconstruction in large
outdoor environments using a fleet of mobile ground robots. Yet, their approach relies on
GPS receivers for global localization, which might not be available in all scenarios. In addi-
tion, Ramezani et al. [27] provided a high-quality dataset comprising LiDAR, inertial, and
visual data collected via a handheld device, alongside ground truth from a survey-grade
LiDAR scanner, which has been used for benchmarking various algorithms. However, this
dataset lacks thermal imaging. A similar device has been developed by Lin and Zhang [28],
who used it to validate their LiDAR–Inertial–Visual sensor fusion algorithm. Nevertheless,
their framework lacks support for thermal input, thus missing the capability to map in
visually degraded environments.

3. Materials and Methods
3.1. Handheld Sensor Package

We built a custom handheld sensor package to balance performance with practicality
and mobility, as shown in Figure 1. This sensor package is equipped with multiple sensors
for comprehensive environmental mapping. At its core, it has a Velodyne Puck Lite 3D
LiDAR (LiDAR Solutions, Edinburgh, VIC, Australia) for point cloud measuring and a
VectorNav VN-100 IMU module (VectorNav, Dallas, TX, USA) to read acceleration and
angular velocity data. We chose a Teledyne FLIR Vue Pro (Teledyne FLIR, Wilsonville, OR,
USA) thermal camera for thermal imaging and an Intel RealSense D405 camera (Intel, Santa
Clara, CA, USA) for RGB imaging (depth is not used). The specifications for each sensor
are presented in Table 1. We installed an NVIDIA Jetson TX2 (Intel, Santa Clara, CA, USA)
computer onboard, which processes all sensor measurements, runs the SLAM algorithm,
and manages data logging. The software is running in the Robot Operating System (ROS).
For immediate feedback on the mapping process, we included a portable LED screen for
the user to visualize the real-time SLAM results when mapping the environment. We also
added a pair of antennas to enable data sharing with a ground station, which is helpful
for remote control and monitoring. The device is powered by a portable power bank,
ensuring up to 3 h of continuous use. This power bank can be easily swapped out, which
extends the devices’ use time during long-term missions. The total weight of the device is
2.4 kg. Designed for adaptability, our handheld sensor package can be easily extended with
additional sensors. For example, one could add a compact air quality sensor to collect air
samples simultaneously while mapping the environment, enhancing the device’s utility for
advanced environmental analysis.

(a) (b)

Figure 1. (a) Front view and (b) rear view of our handheld sensor package.
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Table 1. Main sensors and their specifications.

Sensor Specifications

Velodyne Puck Lite 3D LiDAR
(Velodyne Lidar, Inc., San Jose, CA, USA) • Number of channels: 16

• Maximum measurement range: 100 m
• FOV (vertical): ±15◦

• FOV (horizontal): 360◦

• Frame rate: 10 Hz
• Weight: 600 g
• Power consumption: 8 W

Teledyne FLIR Vue Pro Thermal Camera
(FLIR Systems, Inc., Wilsonville, OR, USA) • Resolution: 336 × 256

• FOV: 44◦ × 33◦

• Lens: 6.8 mm
• Spectral band: 7.5–13.5 µm
• Frame rate: 30 Hz
• Weight: 113.4 g
• Power consumption: 2.1 W

Intel RealSense D405 RGBD Camera
(Intel, Santa Clara, CA, USA) • Resolution: Up to 1280 × 720

• FOV: 87◦ × 58◦

• Frame rate: 30 Hz
• Weight: 60 g
• Power consumption: 1.55 W

VectorNav VN-100 IMU
(VectorNav, Dallas, TX, USA)

• Accel. range: ±15 g
• Accel. bias stability: < 0.04 mg
• Gyro. range: ±2000◦/s
• Gyro. bias stability: 5–7◦/h
• Frame rate: 400 Hz
• Weight: 15 g
• Power consumption: 220 mW

3.2. Calibration Procedure

To achieve accurate localization and mapping results, careful calibrations of the sensors
are necessary. Note that for the Intel RealSense D405 camera, we treated it as a standard
RGB camera and utilized only its RGB output. The depth feature was not used in our study.
For the intrinsic calibration of the RGB camera, we utilized the Kalibr toolbox [29] and
AprilTag markers [30] shown in Figure 2, which facilitate the determination of the intrinsic
parameters (i.e., focal length, optical center) and distortion coefficients assuming a pinhole
camera model. To calibrate the extrinsic parameters and time shift with respect to the IMU,
we employed Kalibr’s visual–inertial calibration tool [31]. The calibration was conducted
by moving our handheld sensor package in front of the AprilTag calibration board. We
collected image and IMU data simultaneously from a variety of angles (roll/pitch/yaw)
and distances (x/y/z directions) to sufficiently excite all degrees of freedom of the IMU.
These data allow us to compare actual motion as recorded by the IMU against the motion
inferred from camera images using the previously obtained intrinsic parameters and the
calibration board. The tool runs a batch optimization algorithm to estimate both the
extrinsic parameters and time offset between the two sensors. These procedures completed
the intrinsic and extrinsic calibrations as well as the temporal alignment of the RGB camera.

Calibrating the FLIR Vue Pro (thermal) camera presented unique challenges, primarily
due to the absence of a thermal gradient in AprilTag. To circumvent this, we designed
a custom calibration board cut from a 3mm acrylic board, with a structured circle grid
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on it. This board was placed in front of a large metal plate. Prior to conducting intrinsic
calibration, both the acrylic board and the metal plate were heated using a heat gun.
The distinct thermal conductivity of the two materials allowed the holes to be distinctly
visible through the thermal camera, as illustrated in Figure 3a. After capturing frames at
different angles and distances, we employed a standard OpenCV library [32] to derive the
thermal camera’s intrinsic parameters and distortion coefficients. The resulting undistorted
image, demonstrating the calibration’s effectiveness, is displayed in Figure 3b. For the
extrinsic calibration, we initially explored the approach presented in [33] that used a simple
3D geometry (e.g., a cardboard box) to estimate the transformation between the LiDAR
and thermal camera. This approach aligns the thermal camera’s data with the LiDAR
point cloud without the need for a target-recognizable calibration pattern. However, our
experiments revealed challenges due to the sparse output from our Velodyne LiDAR—a
spinning LiDAR emitting only 16 laser beams in contrast to the solid-state LiDAR used in
the original paper—which lacks sufficient density for precise corner detection. Therefore,
we adopted a similar visual–inertial calibration approach as the one used for the RGB
camera. We used the Kalibr tool and a heated circular-pattern calibration board to estimate
both the transformation and time shift between the thermal camera and IMU. The steps
have been described above. These processes successfully calibrated the intrinsic and
extrinsic as well as the time shift of our thermal camera in relation to the IMU.

Figure 2. Calibration of RGB camera’s intrinsic and extrinsic parameters using AprilTag fiducial
marker.

(a) (b)

Figure 3. We used a custom board to calibrate the thermal camera. The board was heated during
the calibration. (a) is the original thermal image, and (b) is the undistorted thermal image after we
applied the identified intrinsic parameters and distortion coefficients of the camera.
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The transformation and time offset between the 3D LiDAR and the IMU were cali-
brated using a targetless approach, as described by Lv et al. [34]. This method utilizes a
continuous-time batch optimization approach to jointly minimize the IMU-based cost and
LiDAR point-to-surfel distance on the data collected from LiDAR and IMU. In our system,
we selected the position of IMU position as the origin. Consequently, we determined
the transformation and time shift of all other sensors relative to the IMU. The detailed
calibration results are presented in Table 2.

Although hardware-based synchronization methods, like the pulse per second (PPS)
signal or network time protocol (NTP) method, could offer better accuracy, our handheld
sensor package is designed for use in environments where both GPS signals and internet
service may not be available. In addition, the RealSense D405 camera does not support
external sensor synchronization. Given these constraints, we opted for a software-based
approach to synchronize the sensors in our design.

Table 2. Calibration results of different sensors.

Parameter Value

RGB Camera:
focal length fx = 395.88935644, fy = 396.58689448
optical center cx = 321.40957052, cy = 237.46367861
distortion coefficients 1 k1 = −0.0455943922, k2 = 0.0397782471
distortion coefficients 2 p1 = −0.00179379601, p2 = −0.000123883618
extrinsic translation (m) xyz = [0.031094,−0.024541, 0.031936]
extrinsic rotation (rad) rpy = [−1.5589, 0.0176,−1.5601]
time shift to IMU (s) ∆t = 0.017

Thermal Camera:
focal length fx = 413.42478787, fy = 411.95068373
optical center cx = 159.97522005, cy = 121.32820803
distortion coefficients 1 k1 = −0.424659888, k2 = 0.501250141
distortion coefficients 2 p1 = −0.00250397308, p2 = 0.000725460516
extrinsic translation (m) xyz = [0.054164,−0.091582, 0.031582]
extrinsic rotation (rad) rpy = [−1.5708, 0.0083, 1.5708]
time shift to IMU (s) ∆t = 0.100

LiDAR:
extrinsic translation (m) xyz = [0.039944,−0.051082,−0.06545]
extrinsic rotation (rad) rpy = [−3.1416, 0.0107, 0.0014]
time shift to IMU (s) ∆t = 0.005

IMU:
accelerometer noise density (m/s2/

√
Hz) σaccel = 0.01418

accelerometer random walk (m/s3/
√

Hz) βaccel = 0.0004978
gyroscope noise density (rad/s/

√
Hz) σgyro = 0.0008037

gyroscope random walk (rad/s2/
√

Hz) βgyro = 0.000006203

3.3. LiDAR-Inertial SLAM

Matching image data with point cloud data to create a colored 3D map can present
considerable challenges. While recent LiDAR–Inertial–Visual SLAM algorithms [28] have
demonstrated some successes, fusing data from multiple sensor sources involves sub-
stantial processing and optimization. It may impose excessive computational demands
on the onboard computing unit. Furthermore, the efficacy of RGB cameras can decrease
significantly under visually degraded conditions. This limitation highlights the necessity
for adding thermal imaging to achieve optimal performance in various operational sce-
narios. Our approach addresses these challenges by dividing the mission into two stages.
During the first stage, we utilize LiDAR and IMU sensors along with a state-of-the-art
LiDAR-Inertial SLAM algorithm to produce a dense point cloud map. The algorithm also
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captures the estimated poses at different frames. In the second stage, we integrate image
data into the previously generated point cloud map through a series of post-processing
steps. This two-stage approach offers a simple yet effective solution that maintains high
accuracy without compromising computational efficiency.

In this work, we adopt the FAST-LIO2 framework introduced by Xu et al. [35] to
achieve accurate localization and mapping of the surrounding environments using only Li-
DAR and IMU sensors. FAST-LIO2 stands out as a fast, robust, and accurate LiDAR-inertial
mapping and odometry framework. In the FAST-LIO2 framework, the LiDAR motion
distortion is effectively mitigated through the fusion of high-rate IMU measurements, en-
suring precise alignment and accuracy of the spatial data. The introduced incremental k-d
tree data structure delivers superior performance to existing algorithms while significantly
reducing the computational time. It has demonstrated superior performance in terms
of accuracy and computational efficiency when compared to other algorithms, including
LIO-SAM, LINS, and LILI-OM [35], and is robust to aggressive motions and structureless
environmental conditions. Moreover, the framework has been proven to operate effectively
on both Intel-based and ARM-based CPUs. These advancements enable the algorithm
to run efficiently on our Jetson TX2 computer, allowing for real-time computation and
visualization of the localization and mapping results on the onboard LED screen.

Our TX2 computer is equipped with a quad-core Cortex-A57 processor, operating at a
maximum of 2 GHz, and includes 8 GB of memory. On average, the total processing time
for both mapping and odometry updates is less than 100 ms (occasional exceedances may
occur). This processing time is well within the LiDAR’s sampling rate of 10 Hz during our
tests. To alleviate the system’s load for visualization, we limited the update rate in ROS
rviz to 1 Hz. To illustrate the effectiveness of the FAST-LIO2 algorithm, we show results
from two distinct scenarios: an indoor hallway, depicted in Figure 4a, where the real-time
localization and mapping results displayed on our handheld sensor package are shown
in Figure 4b, and an outdoor semi-structured environment, displayed in Figure 5a. To
further demonstrate the accuracy of this method, we overlay the generated point cloud
map onto a satellite image from Google Maps, corresponding to the same outdoor area.
This comparison, illustrated in Figure 5b, reveals a high degree of alignment between the
point cloud map and the satellite image. These results highlight the robust performance of
our LiDAR-Inertial SLAM algorithm under different conditions.

3.4. Point Cloud Rendering

We modified the original FAST-LIO2 code, so our LiDAR-Inertial SLAM output in-
cludes not only a dense point cloud map but also additional information, such as the count
of newly scanned points, their estimated poses, and the timestamps of their registration.
These supplementary data are crucial for correlating each point in the cloud with the
corresponding image pixel. After acquiring the point cloud map generated by the SLAM
algorithm, our subsequent step is to fuse image pixel values onto the corresponding points
in the 3D space. This fusion is executed through a post-processing approach, designed to
minimize the computational load on the onboard computer while providing us additional
flexibility for filtering and optimization. During this post-processing process, we are able
to choose the image source we want for rendering. We can produce a colored 3D map
using either RGB camera data or thermal camera data, depending on the specific mission
requirement. It is important to note that the version of the thermal camera we used does not
provide radiometric data. Consequently, we are limited to obtaining temperature gradients
from the camera’s output rather than precise temperature measurements for each pixel.
However, given that our primary objective is to validate the effectiveness of our sensor
fusion pipeline, we consider the current setup adequate for this purpose. In our framework,
we process thermal images similarly to traditional RGB images. The input thermal image
uses a green palette; each has a three-channel, 8-bit format.
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(a)

(b)

Figure 4. (a) LiDAR-Inertial SLAM performance in a hallway; (b) real-time localization and mapping
results displayed on the handheld sensor package.

(a) (b)

Figure 5. LiDAR-Inertial SLAM performance in an outdoor environment, where (a) is the generated
point cloud map in a bird’s eye view, and (b) is the same map overlapped with a satellite image of
the same area.
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The fusion process starts with extracting all image files from an ROS bag file with
their pixel values and timestamps. Next, we apply preprocessing to both the images and
point cloud data. Note that our thermal camera periodically undergoes an internal re-
calibrating process, which causes frozen frames for a short time. During our handling of
the thermal camera, we identify and drop these frames to ensure a reliable data input. After
that, image distortion is corrected using the camera’s intrinsic parameters and distortion
coefficients, resulting in undistorted images. For the point cloud, we estimate normals
based on the local density and refine the cloud by aligning normals towards the data capture
position, leveraging the known poses and registered timestamps from our modified SLAM
algorithm. This step helps in removing ambiguity in orientation and filtering out potentially
problematic points.

Subsequently, we employ a virtual depth camera, constructed through extrinsic param-
eters between the IMU and the corresponding camera, to project views onto the processed
point cloud. Camera poses corresponding to image timestamps are interpolated from
the logged trajectory using dual-quaternion linear blending [36]. Suppose we have two
dual-quaterions Q̂1 and Q̂2; the interpolated dual-quaternion Q̂interp is calculated as:

Q̂interp =
(1 − a)Q̂1 + aQ̂2

∥(1 − a)Q̂1 + aQ̂2∥
(1)

where a is an interpolation factor which can be calculated from the timestamps of Q̂1(t),
Q̂2(t), and Q̂interp(t) data. For efficiency, the depth is limited to 10 m. With this virtual
depth camera output, we combine depth and RGB data into RGBD images, which are
then reprojected into a colored map via volumetric integration. For this task, we utilize
Open3D’s truncated signed distance function (TSDF) [37]. TSDF represents a 3D voxel array
where each voxel stores the truncated signed distance to the nearest surface, effectively
capturing objects within a volume of space. This structure enables TSDF to integrate
multiple observations, functioning like a weighted average filter in 3D space to smooth
out noise and discrepancies. This allows us to reconstruct a dense, colored point cloud
map. To balance the quality and processing efficiency, we chose a voxel size of 0.01 m. In
the final step, we apply statistical outlier removal to clean the point cloud and optionally
downsample the point cloud to manage the data volume, yielding the desired output. The
workflow of our 3D mapping and sensor fusion pipeline is depicted in Figure 6.

Figure 6. Overview of the system.



Sensors 2024, 24, 2494 11 of 18

4. Experimental Results
4.1. Results on Indoor Tests

We now present the experiments we performed and their corresponding results.
The first experiment we conducted was to assess the performance of our framework in
an indoor setting focusing on 3D mapping with a thermal camera. The utilization of
thermal imaging for 3D mapping is particularly valuable in scenarios such as search and
rescue operations. The ability to create 3D thermal maps can aid in quickly locating
individuals in smoke-filled or low-visibility environments by detecting heat signatures.
To simulate subjects with varying temperatures, we placed a cardboard box containing
ice in a hallway and surrounded it with hand warmers. Utilizing our handheld sensor
package, we first scanned the hallway to produce a 3D point cloud map, as illustrated in
Figure 7a. Meanwhile, we also recorded the thermal images streamed from the camera,
shown in Figure 7b. As described in Section 3.4, we first corrected the images for distortion
using the camera’s intrinsic parameters and distortion coefficients and also filtered the
point cloud. We then established a virtual depth camera view by merging the history
camera poses with point cloud data in Figure 7c. This setup enabled us to combine the
images with depth information into RGBD images and subsequently reproject these RGBD
images into a colored map using TSDF, as depicted in Figure 7d. In the final step of
post-processing, we employed a ’seismic’ colormap to visually represent the final 3D map,
displayed in Figure 7e, where blue indicates cooler temperatures and red indicates warmer
areas. This visualization distinctly highlights both the ice-filled box and the hand warmers,
and even the location of hallway lights, identifiable by their heat emissions. These results
demonstrate the effectiveness of our 3D thermal mapping and sensor fusion pipeline.

Figure 7. Results from the indoor 3D thermal map reconstruction: (a) SLAM-generated point cloud
map, (b) thermal image, (c) virtual depth camera view, (d) colored 3D map reprojected from the
RGBD images, and (e) the final visualization of the 3D map.

In addition to our thermal imaging experiments, we conducted another test to evaluate
the performance using the RGB camera. This experiment focused on 3D map reconstruction
in an indoor setting containing an artificial apple tree. Figure 8a displays the artificial apple
tree positioned within a room. Employing our handheld sensor package, which executed



Sensors 2024, 24, 2494 12 of 18

the LiDAR-Inertial SLAM algorithm onboard, we walked around the room and collected
data. This process yielded a dense point cloud map of the environment, including the apple
tree, as illustrated in Figure 8b. Leveraging the point cloud rendering framework described
earlier, we generated a 3D RGB map of the scene, shown in Figure 8c. Furthermore, we
manually identified and marked the locations of the apples on the 3D map, with the
results showcased in Figure 8d. These findings confirm that our handheld sensor package,
coupled with the SLAM and sensor fusion pipeline, provides an effective tool for both fruit
localization and environmental reconstruction tasks.

We also reported quantitative results for the processed point cloud and reconstructed
3D map from the indoor apple tree experiment. The point cloud rendering was executed on
a computer equipped with an AMD Ryzen 9 3900X CPU and 64 GB of memory. The LiDAR-
Inertial algorithm generated a point cloud map containing a total of 18,821,342 points, re-
sulting in a file size of 451.7 MB. From the dataset, we generated 1176 virtual RGBD images.
With a voxel size set to 0.01 m, the final reconstructed 3D map comprised 5,967,602 points
and was 167.1 MB in size. The processing time was approximately 9 min. Adjusting the
voxel size to 0.005 m increased the final reconstructed 3D map to 28,215,023 points and
790.0 MB size, with the processing duration extending to 15 min. Note that these computa-
tions were performed solely on the CPU without GPU acceleration, due to a compatibility
issue with the Open3D library. A key direction for our future work is to leverage GPU
acceleration, which we anticipate will significantly reduce the processing time.

Figure 8. Results from the indoor 3D RGB map reconstruction: (a) photograph of an artificial
apple tree, (b) point cloud generated by the SLAM algorithm, (c) RGB-rendered map after fusing
RGB camera data, and (d) cropped view of the reconstructed apple tree with manually labeled
apple positions.

4.2. Results on Outdoor Tests

We extended our testing to outdoor environments, starting with a parking lot scenario.
This test was conducted to assess our system’s effectiveness in thermal rendering under
more complex and dynamic conditions than those encountered indoors. Following the
established procedure, we generated a 3D thermal map, as depicted in Figure 9. It is evident
that the cars, having been exposed to sunlight (data were collected in the afternoon), exhibit
significantly higher surface temperatures compared to their surroundings. Similarly, the
building’s surface, having absorbed heat, also shows higher temperatures. This result
effectively demonstrates our system’s capability in outdoor semi-structured environments,
highlighting its efficacy in accurately capturing thermal variations.
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Figure 9. Visualization of the 3D thermal map generated from an outdoor parking lot.

An additional experiment was conducted to assess our system’s efficacy within agri-
cultural contexts. This setting presents complex challenges due to its unstructured nature
and environmental disturbances. We focused on evaluating the RGB camera’s performance
through two separate tests: one in a peach orchard and another in a walnut orchard. In
addition, for the peach orchard, we also collected the point cloud with the RIEGL VZ-1000
(Riegl USA, Orlando, FL, USA) high-resolution LiDAR for benchmarking purposes. The
RIEGL VZ-1000 was placed in four positions, forming a square surrounding each peach
tree. The individual scans were co-registered using the proprietary software RiScan PRO.
For each experiment, we targeted a specific segment of a tree row for data collection and
processing through our sensor fusion pipeline. The outcomes of these experiments are
illustrated in Figure 10. The results obtained demonstrate the capability of our framework
to deliver detailed and fairly accurate representations of agricultural scenes. Notably,
the map precisely captures the foliage and tree trunks, with even ground details such as
grass and shadows being distinctly rendered. However, it is important to acknowledge
certain challenges we faced during the generation of these results. One primary challenge
is attributed to the height of the trees. Since the scanning was conducted by a person,
reaching the upper sections of the trees to scan them comprehensively proved difficult.
This leads to a partial absence of data for higher areas. Furthermore, some parts of the trees
are particularly thin, resulting in sparse and lower quality in those regions. Consequently,
these portions might blend into the sky in the background due to the lack of detailed
information. Nevertheless, despite these challenges, the overall quality of the generated
map is acceptable, highlighting the potential of our system to provide valuable insights into
agricultural settings. To further assess the quality of the map generated, we compared the
similarity of the point cloud obtained with our system against the point cloud recorded by
the high-resolution RIEGL VZ-1000 (see Figure 11a). The two point clouds are presented in
the Figure 11b. The similarity was evaluated using the metric Average Ratio (AR) proposed
by Berens et al. [38] and presented in Equation (2). This method compares two point clouds
by using multiple thresholds and ensuring that both point clouds are equally considered.

AR(X, Y) :=
∑N

i=1 i
|SDi X,Y |

|X| + ∑N
i=1 i

|SDiY,X |
|Y|

N2 + N
(2)
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where X and Y are the points in the first and second point cloud, respectively. SDiX,Y
represents the set of points in X that have a distance smaller than Di to one point in Y.
This metric considers N thresholds (D) to assess the point cloud similarity. Following the
guidelines presented in Berens et al. [38], we computed the AR between the point cloud
obtained with the RIEGL LiDAR (i.e., ground-truth) and the point cloud obtained using
our device. The result obtained for the peach data was AR = 0.89; it is worth noting that a
perfect match between the two point clouds would be equal to 1.

(a)

(b)

Figure 10. Three-dimensional map reconstruction results in (a) a peach orchard and (b) a walnut orchard.

(a) (b)

Figure 11. Point cloud similarity comparison: (a) ground-truth data captured with the high-resolution
RIEGL VZ-1000 3D Terrestrial Laser Scanner, (b) overlay of registered point clouds, with RIEGL
VZ-1000 data in light blue and our system’s derived point cloud in light green.
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5. Discussion

While there are studies focusing on developing real-time comprehensive LiDAR–
Inertial–Visual SLAM frameworks, our work distinguishes itself by adopting a two-stage
approach, with a significant emphasis on post-processing for 3D map construction. This
framework not only offers enhanced flexibility for optimizing map quality, but also re-
duces the burden placed on the onboard processing unit. Meanwhile, it provides users
with intermediate information, which can be crucial for mission success. In addition, the
incorporation of thermal imaging on our sensor package is particularly useful under sce-
narios where low illumination or environmental factors such as fog, smoke, or darkness are
present, enabling the detection and differentiation of objects based on their heat signatures.
In our two-stage approach, we first leverage a proven SLAM algorithm to address the
challenges of localization and mapping, while the user has access to monitoring these
intermediate results. In the second stage, we integrate RGB or thermal images, depending
on the mission requirement, with the pre-established point cloud via a carefully designed
post-processing sequence. This results in a comprehensive and robust reconstruction of
the environment.

We emphasize the significance of 3D mapping for agriculture, particularly for improv-
ing fruit picking and orchard management. In this work, we seek to provide a solution
using the handheld sensor package we designed. This sensor package, combining the
precision of LiDAR sensors with informative camera outputs, addresses the limitations
of individual sensing sources and other challenges, such as view occlusions, low image
quality, limited mobility, and unreliable GPS signal under tree canopies. Our experiments
demonstrate that our sensor package and algorithm can accurately create 3D maps in
these scenarios. In particular, our artificial apple tree experiment shows that we could
locate the fruit position precisely, though it currently requires human labeling. We could
enhance this process by leveraging state-of-the-art computer vision techniques, for instance,
employing a re-trained YOLO network for automated fruit detection and labeling directly
within our software framework. However, this advancement is beyond the scope of this
paper. Implementing such automatic 3D fruit detection based on our generated 3D map
promises to significantly benefit harvesting operations. Moreover, the digital models that
we generated from various tree configurations and fruit distributions under real-world
conditions could serve as valuable datasets for future research work.

A potential enhancement for our work is to refine the data structure of our color-
rendered maps. Currently utilizing the TSDF method, which relies on a voxel map, we have
identified memory capacity issues when generating results for large-scale environments. A
promising improvement could involve the adoption of an OcTree data structure [39], which
offers a more memory-efficient approach to spatial division. We would also like to upgrade
our thermal camera to a radiometric model. Therefore, we can obtain real temperature
measurements for each pixel. Additionally, our handheld sensor package’s considerable
weight poses challenges for long-term use. We are in the process of developing a backpack
variant that relocates some components into a backpack, significantly alleviating the burden
on the user.

Our handheld device serves as a proof-of-concept of our mapping and sensor fusion
techniques. In the future, we could adapt the core components of our sensor package for
deployment on mobile robots (e.g., wheeled robots, UAVs, legged robots) and facilitate
applications in challenging scenarios such as autonomous mapping and navigation. This
system has the potential to navigate autonomously in areas inaccessible to humans, such
as tunnels, forests, mines, and caves, and offers the capability to perform autonomous
environmental mapping. Robots equipped with our technology could deliver detailed
environmental representations while mitigating the risks humans face when entering such
hazardous places.
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6. Conclusions

In conclusion, our work introduces a novel handheld sensor package and sensor fusion
pipeline that significantly advances the capabilities for 3D environmental mapping. By
integrating data from LiDAR, IMU, RGB, and thermal cameras, we overcome limitations
faced by existing mapping solutions, especially in environments with challenging visual
conditions and unreliable global positioning. Our system adopts a two-stage sensor fusion
framework. First, we create an accurate point cloud map of the environment using a
proven LiDAR-Inertial SLAM algorithm, and later, we render the point cloud map using
camera data to enhance the visual representation of the mapped areas in a post-processing
step. The successful deployment of our system in both indoor and outdoor environments,
through structured and unstructured scenarios, highlights its adaptability and efficacy. Our
system can be applied in a broad range of applications, from autonomous robotics to smart
agriculture. Furthermore, we make our code open-source and hope to contribute to the
ongoing growth and development of 3D mapping technologies.
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Abbreviations
The following abbreviations are used in this manuscript:

AR Average Ratio
CPU Central Processing Unit
FOV Field of view
GPS Global Position System
IMU Inertial Measurement Unit
LiDAR Light Detection And Ranging
NeRF Neural Radiance Fields
NTP Network Time Protocol
PPS Pulse Per Second
RGB Red, Green, Blue
RGBD Red, Green, Blue, Depth
ROS Robot Operating System
SLAM Simultaneous Localization And Mapping
TSDF Truncated Signed Distance Function
UAV Unmanned Aerial Vehicle
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